Как решать тригонометрические уравнения принадлежащие отрезку

Как решать задание 13

Видео:3,5 способа отбора корней в тригонометрии | ЕГЭ по математике | Эйджей из ВебиумаСкачать

3,5 способа отбора корней в тригонометрии | ЕГЭ по математике | Эйджей из Вебиума

О чем задача?

Задачи на решение тригонометрических уравнений, более сложных, чем в задании 5. В большинстве задач требуется не только решить уравнение, но и отобрать корни, принадлежащие определенному отрезку.

Видео:Отбор корней по окружностиСкачать

Отбор корней по окружности

Как решать?

Шаг 1. Найдите область определения

Шаг 2. Приведите уравнение к виду простейших тригонометрических уравнений

Для того чтобы привести уравнение к виду простейших тригонометрических уравнений, применяйте следующие стандартные приемы:

Мы свели исходное уравнение к совокупности простейших тригонометрических уравнений [ cos x = − 1 , cos x = − 1 2 . left[begin cos x = -1 \cos x = -frac endright. [ cos x = − 1 , cos x = − 2 1 ​ . ​

Шаг 3. Решите простейшие тригонометрические уравнения

О решении простейших тригонометрических уравнений читайте в отдельной статье .

Убедитесь, что найденные вами корни принадлежат области определения уравнения.

Остается решить уравнение cos x = − 1 2 cos x =-frac cos x = − 2 1 ​ .

Шаг 4. Выберите корни, принадлежащие отрезку, данному в условии

Корни, принадлежащие данному в условии отрезку, можно найти либо методом перебора, либо путем решения неравенства относительно k k k .

Найдем подходящие корни методом перебора. Для этого рассмотрим две серии корней по отдельности.

Видео:Отбор корней по окружностиСкачать

Отбор корней по окружности

Задание №12. Уравнения — профильный ЕГЭ по математике

Задание 12 Профильного ЕГЭ по математике – это решение уравнений. Чаще всего, конечно, это тригонометрические уравнения. Но встречаются и другие типы – показательные, логарифмические, комбинированные.

Сейчас задание 12 Профильного ЕГЭ на решение уравнения состоят из двух пунктов: собственно решения и отбора корней на определенном отрезке.

Что нужно знать, чтобы справиться с этой задачей на ЕГЭ? Вот необходимые темы для повторения.

Что необходимо помнить при решении уравнений?

1) Помним про область допустимых значений уравнения! Если в уравнении есть дроби, корни, логарифмы или арксинусы с арккосинусами — сразу записываем ОДЗ. А найдя корни, проверяем, входят они в эту область или нет. Есть в уравнении есть — помним, что он существует, только если

2) Стараемся записывать решение в виде цепочки равносильных переходов.

3) Если есть возможность сделать замену переменной — делаем замену переменной! Уравнение сразу станет проще.

4) Если еще не выучили формулы тригонометрии — пора это сделать! Много формул не нужно. Самое главное — тригонометрический круг, формулы синусов и косинусов двойных углов, синусов и косинусов суммы (разности), понижения степени. Формулы приведения не надо зубрить наизусть! Надо знать, как они получаются.

5) Как отбирать решения с помощью тригонометрического круга? Вспомним, что крайняя правая точка тригонометрического круга соответствует числам Дальше всё просто. Смотрим, какая из точек этого типа попадает в указанный в условии промежуток. И к ней прибавляем (или вычитаем) нужные значения.

Например, вы нашли серию решений , где — целое, а найти надо корни на отрезке На указанном промежутке лежит точка . От нее и будем отсчитывать. Получим:

6) Получив ответ, проверьте его правильность. Просто подставьте найденные решения в исходное уравнение!

а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие промежутку

Упростим левую часть по формуле приведения.

Вынесем за скобки. Произведение двух (или нескольких) множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю.

Как решать тригонометрические уравнения принадлежащие отрезкуКак решать тригонометрические уравнения принадлежащие отрезку

б) Отметим на тригонометрическом круге найденные серии решений и отрезок

Видим, что указанному отрезку принадлежат решения

Как решать тригонометрические уравнения принадлежащие отрезку

Как отбирать решения с помощью тригонометрического круга? Вспомним, что крайняя правая точка тригонометрического круга соответствует числам Дальше всё просто. Смотрим, какая из точек этого типа попадает в указанный в условии промежуток. И к ней прибавляем (или вычитаем) нужные значения.

Например, вы нашли серию решений , где — целое, а найти надо корни на отрезке На указанном промежутке лежит точка От нее и отсчитываем.

Как решать тригонометрические уравнения принадлежащие отрезку

2. а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие отрезку

Это уравнение — комбинированное. Кроме тригонометрии, применяем свойства степеней.

Степени равны, их основания равны. Значит, равны и показатели.

Как решать тригонометрические уравнения принадлежащие отрезку

Это ответ в пункте (а).

б) Отберем корни, принадлежащие отрезку

Отметим на тригонометрическом круге отрезок и найденные серии решений.

Как решать тригонометрические уравнения принадлежащие отрезку

Видим, что указанному отрезку принадлежат точки и из серии

Точки серии не входят в указанный отрезок.

А из серии в указанный отрезок входит точка

Ответ в пункте (б):

3. а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие отрезку

Применим формулу косинуса двойного угла:

Перенесем всё в левую часть уравнения и разложим по формуле разности квадратов.

Как решать тригонометрические уравнения принадлежащие отрезку

Как решать тригонометрические уравнения принадлежащие отрезку

Как решать тригонометрические уравнения принадлежащие отрезку

Обратите внимание: мы отметили серии решений на тригонометрическом круге. Это помогло нам увидеть, как их записать одной формулой.

б) Для разнообразия отберем корни на отрезке с помощью двойного неравенства.

Какой способ отбора корней лучше — с помощью тригонометрического круга или с помощью двойного неравенства? У каждого из них есть «плюсы» и «минусы».

Пользуясь тригонометрическим кругом, вы не ошибетесь. Вы видите и интервал, и сами серии решений. Это наглядный способ.

Зато, если интервал больше, чем один круг, удобнее отбирать корни с помощью двойного неравенства. Например, надо найти корни из серии на отрезке Это больше 10 кругов! Конечно, в таком случае лучше решить двойное неравенство.

4. а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие отрезку

Самое сложное здесь — область допустимых значений (ОДЗ). Условие заметно сразу. А условие появляется, поскольку в уравнении есть

Как решать тригонометрические уравнения принадлежащие отрезку

Уравнение равносильно системе:

Как решать тригонометрические уравнения принадлежащие отрезку

Как решать тригонометрические уравнения принадлежащие отрезку

Отберем решения с помощью тригонометрического круга. Нам нужны те серии решений, для которых Как решать тригонометрические уравнения принадлежащие отрезку, то есть те, что соответствуют точкам справа от оси .

Как решать тригонометрические уравнения принадлежащие отрезку

Ответ в пункте а)

б) Отметим на тригонометрическом круге найденные серии решений и отрезок

Как решать тригонометрические уравнения принадлежащие отрезку

Как обычно, ориентируемся на начало круга. Видим, что указанному промежутку принадлежат точки

5. а) Решите уравнение

б) Найдите корни, принадлежащие отрезку

Выражение под корнем должно быть неотрицательно, а произведение двух множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю.

Это значит, что уравнение равносильно системе:

Как решать тригонометрические уравнения принадлежащие отрезку

Решим эту систему с помощью тригонометрического круга. Отметим на нем углы, для которых или . Заметим, что среди них находятся и углы, для которых

Как решать тригонометрические уравнения принадлежащие отрезку

Числа серии не могут быть корнями исходного уравнения, т.к. для этих чисел не выполнено условие . Остальные серии решений нас устраивают.

Тогда в ответ в пункте (а) войдут серии решений:

Как решать тригонометрические уравнения принадлежащие отрезку

б) Отберем корни, принадлежащие отрезку любым способом — с помощью тригонометрического круга или с помощью двойного неравенства.

Видео:Три способа отбора корней в задании 13 ЕГЭ профильСкачать

Три способа отбора корней в задании 13 ЕГЭ профиль

Как решать тригонометрические уравнения принадлежащие отрезку

Как решать тригонометрические уравнения принадлежащие отрезку

Как решать тригонометрические уравнения принадлежащие отрезку

Как решать тригонометрические уравнения принадлежащие отрезку

Видео:Нахождение корней уравнения, принадлежащих промежуткуСкачать

Нахождение корней уравнения, принадлежащих промежутку

Методы решения тригонометрических уравнений.

Видео:Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor onlineСкачать

Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor online

1. Алгебраический метод.

( метод замены переменной и подстановки ).

Как решать тригонометрические уравнения принадлежащие отрезку

Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

2. Разложение на множители.

П р и м е р 1. Решить уравнение: sin x + cos x = 1 .

Р е ш е н и е . Перенесём все члены уравнения влево:

sin x + cos x – 1 = 0 ,

преобразуем и разложим на множители выражение в

левой части уравнения:

Как решать тригонометрические уравнения принадлежащие отрезку

П р и м е р 2. Решить уравнение: cos 2 x + sin x · cos x = 1.

Р е ш е н и е . cos 2 x + sin x · cos x – sin 2 x – cos 2 x = 0 ,

sin x · cos x – sin 2 x = 0 ,

sin x · ( cos x – sin x ) = 0 ,

Как решать тригонометрические уравнения принадлежащие отрезку

П р и м е р 3. Решить уравнение: cos 2 x – cos 8 x + cos 6 x = 1.

Р е ш е н и е . cos 2 x + cos 6 x = 1 + cos 8 x ,

2 cos 4x cos 2x = 2 cos ² 4x ,

cos 4x · ( cos 2x – cos 4x ) = 0 ,

cos 4x · 2 sin 3x · sin x = 0 ,

1). cos 4x = 0 , 2). sin 3x = 0 , 3). sin x = 0 ,

Как решать тригонометрические уравнения принадлежащие отрезку

Видео:Тригонометрия 8. Отбор корнейСкачать

Тригонометрия 8. Отбор корней

3. Приведение к однородному уравнению.

а) перенести все его члены в левую часть;

б) вынести все общие множители за скобки;

в) приравнять все множители и скобки нулю;

г ) скобки, приравненные нулю, дают однородное уравнение меньшей степени, которое следует разделить на

cos ( или sin ) в старшей степени;

д) решить полученное алгебраическое уравнение относительно tan .

П р и м е р . Решить уравнение: 3 sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2.

Р е ш е н и е . 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x ,

sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 ,

tan 2 x + 4 tan x + 3 = 0 , отсюда y 2 + 4y +3 = 0 ,

корни этого уравнения: y 1 = — 1, y 2 = — 3, отсюда

1) tan x = –1, 2) tan x = –3,

Как решать тригонометрические уравнения принадлежащие отрезку

Видео:Задание №13. Как отбирать корни в тригонометрической окружности? 🤔Скачать

Задание №13. Как отбирать корни в тригонометрической окружности? 🤔

4. Переход к половинному углу.

П р и м е р . Решить уравнение: 3 sin x – 5 cos x = 7.

Р е ш е н и е . 6 sin ( x / 2 ) · cos ( x / 2 ) – 5 cos ² ( x / 2 ) + 5 sin ² ( x / 2 ) =

= 7 sin ² ( x / 2 ) + 7 cos ² ( x / 2 ) ,

2 sin ² ( x / 2 ) – 6 sin ( x / 2 ) · cos ( x / 2 ) + 12 cos ² ( x / 2 ) = 0 ,

tan ² ( x / 2 ) – 3 tan ( x / 2 ) + 6 = 0 ,

Видео:Как решать тригонометрические неравенства?Скачать

Как решать тригонометрические неравенства?

5. Введение вспомогательного угла.

где a , b , c – коэффициенты; x – неизвестное.

Как решать тригонометрические уравнения принадлежащие отрезку

Теперь коэффициенты уравнения обладают свойствами синуса и косинуса , а именно : модуль ( абсолютное значение ) каждого из них не больше 1, а сумма их квадратов равна 1 . Тогда можно обозначить их соответственно как cos Как решать тригонометрические уравнения принадлежащие отрезкуи sin Как решать тригонометрические уравнения принадлежащие отрезку( здесь Как решать тригонометрические уравнения принадлежащие отрезку— так называемый вспомогательный угол ), и наше уравнение прини мает вид:

Как решать тригонометрические уравнения принадлежащие отрезку

Как решать тригонометрические уравнения принадлежащие отрезку

Видео:Щелчок по математике I №5,6,12 Тригонометрия с нуля и до ЕГЭ за 4 часаСкачать

Щелчок по математике I №5,6,12 Тригонометрия с нуля и до ЕГЭ за 4 часа

6. Преобразование произведения в сумму.

П р и м е р . Решить уравнение: 2 sin x · sin 3 x = cos 4 x .

Р е ш е н и е . Преобразуем левую часть в сумму:

🎬 Видео

ЕГЭ-ПРОФИЛЬ. ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ. ЗАДАНИЕ-12Скачать

ЕГЭ-ПРОФИЛЬ. ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ. ЗАДАНИЕ-12

Выборка с помощью окружностиСкачать

Выборка с помощью окружности

10 класс, 23 урок, Методы решения тригонометрических уравненийСкачать

10 класс, 23 урок, Методы решения тригонометрических уравнений

Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.Скачать

Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.

Тригонометрические уравнения | Борис ТрушинСкачать

Тригонометрические уравнения | Борис Трушин

Тригонометрия в ЕГЭ может быть простойСкачать

Тригонометрия в ЕГЭ может быть простой

Находим решение тригонометрического уравнения на интервале Алгебра 10 классСкачать

Находим решение тригонометрического уравнения на интервале Алгебра 10 класс

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по МатематикеСкачать

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по Математике

Отбор корней при решении тригонометрических уравненийСкачать

Отбор корней при решении тригонометрических уравнений
Поделиться или сохранить к себе: