Как решать систему уравнений тремя способами

Системы уравнений

Система уравнений — это группа уравнений, в которых одни и те же неизвестные обозначают одни те же числа. Чтобы показать, что уравнения рассматриваются как система, слева от них ставится фигурная скобка:

Как решать систему уравнений тремя способамиx — 4y = 2
3x — 2y = 16

Решить систему уравнений — это значит, найти общие решения для всех уравнений системы или убедиться, что решения нет.

Чтобы решить систему уравнений, нужно исключить одно неизвестное, то есть из двух уравнений с двумя неизвестными составить одно уравнение с одним неизвестным. Исключить одно из неизвестных можно тремя способами: подстановкой, сравнением, сложением или вычитанием.

Содержание
  1. Способ подстановки
  2. Способ сравнения
  3. Способ сложения или вычитания
  4. Системы линейных уравнений (7 класс)
  5. Если несколько линейных уравнений с одними теми же неизвестными рассматривают совместно, то говорят, что это система линейных уравнений с несколькими неизвестными.
  6. Решить систему с двумя неизвестными – это значит найти все пары значений переменных, которые удовлетворяют каждому из заданных уравнений. Каждая такая пара называется решением системы.
  7. Как решить систему линейных уравнений?
  8. Как решать систему уравнений
  9. Основные понятия
  10. Линейное уравнение с двумя переменными
  11. Система двух линейных уравнений с двумя переменными
  12. Метод подстановки
  13. Пример 1
  14. Пример 2
  15. Пример 3
  16. Метод сложения
  17. Система линейных уравнений с тремя переменными
  18. Решение задач
  19. Задание 1. Как привести уравнение к к стандартному виду ах + by + c = 0?
  20. Задание 2. Как решать систему уравнений способом подстановки
  21. Задание 3. Как решать систему уравнений методом сложения
  22. Задание 4. Решить систему уравнений
  23. Задание 5. Как решить систему уравнений с двумя неизвестными
  24. 📹 Видео

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Способ подстановки

Чтобы решить систему уравнений способом подстановки, нужно в одном из уравнений выразить одно неизвестное через другое и результат подставить в другое уравнение, которое после этого будет содержать только одно неизвестное. Затем находим значение этого неизвестного и подставляем его в первое уравнение, после этого находим значение второго неизвестного.

Рассмотрим решение системы уравнений:

Как решать систему уравнений тремя способамиx — 4y = 2
3x — 2y = 16

Сначала найдём, чему равен x в первом уравнении. Для этого перенесём все члены уравнения, не содержащие неизвестное x, в правую часть:

Так как x, на основании определения системы уравнений, имеет такое же значение и во втором уравнении, то подставляем его значение во второе уравнение и получаем уравнение с одним неизвестным:

3x— 2y = 16;
3( 2 + 4y )— 2y = 16.

Решаем полученное уравнение, чтобы найти, чему равен y. Как решать уравнения с одним неизвестным, вы можете посмотреть в соответствующей теме.

3(2 + 4y) — 2y = 16;
6 + 12y — 2y = 16;
6 + 10y = 16;
10y = 16 — 6;
10y = 10;
y = 10 : 10;
y = 1.

Мы определили что y = 1. Теперь, для нахождения численного значения x, подставим значение y в преобразованное первое уравнение, где мы ранее нашли, какому выражению равен x:

x = 2 + 4y = 2 + 4 · 1 = 2 + 4 = 6.

Видео:Решение системы уравнений методом ГауссаСкачать

Решение системы уравнений методом Гаусса

Способ сравнения

Способ сравнения — это частный случай подстановки. Чтобы решить систему уравнений способом сравнения, нужно в обоих уравнениях найти, какому выражению будет равно одно и то же неизвестное и приравнять полученные выражения друг к другу. Получившееся в результате уравнение позволяет узнать значение одного неизвестного. С помощью этого значения затем вычисляется значение второго неизвестного.

Например, для решение системы:

Как решать систему уравнений тремя способамиx — 4y = 2
3x — 2y = 16

найдём в обоих уравнениях, чему равен y (можно сделать и наоборот — найти, чему равен x):

x — 4y = 23x — 2y = 16
-4y = 2 — x-2y = 16 — 3x
y = (2 — x) : — 4y = (16 — 3x) : -2

Составляем из полученных выражений уравнение:

2 — x=16 — 3x
-4-2

Решаем уравнение, чтобы узнать значение x:

2 — x· (-4) =16 — 3x· (-4)
-4-2
2 — x = 32 — 6x
x + 6x = 32 — 2
5x = 30
x = 30 : 5
x = 6

Теперь подставляем значение x в первое или второе уравнение системы и находим значение y:

x — 4y = 23x — 2y = 16
6 — 4y = 23 · 6 — 2y = 16
-4y = 2 — 6-2y = 16 — 18
-4y = -4-2y = -2
y = 1y = 1

Видео:Решение систем уравнений методом подстановкиСкачать

Решение систем уравнений методом подстановки

Способ сложения или вычитания

Чтобы решить систему уравнений способом сложения, нужно составить из двух уравнений одно, сложив левые и правые части, при этом одно из неизвестных должно быть исключено из полученного уравнения. Неизвестное можно исключить, уравняв при нём коэффициенты в обоих уравнениях.

Как решать систему уравнений тремя способамиx — 4y = 2
3x — 2y = 16

Уравняем коэффициенты при неизвестном y, умножив все члены второго уравнения на -2:

Как решать систему уравнений тремя способамиx — 4y = 2
-6x + 4y = -32

Теперь сложим по частям оба уравнения, чтобы получить уравнение с одним неизвестным:

+x — 4y = 2
-6x + 4y = -32
-5x = -30

Находим значение x (x = 6). Теперь, подставив значение x в любое уравнение системы, найдём y = 1.

Если уравнять коэффициенты у x, то, для исключения этого неизвестного, нужно было бы вычесть одно уравнение из другого.

Уравняем коэффициенты при неизвестном x, умножив все члены первого уравнения на 3:

(x — 4y) · 3 = 2 · 3

Как решать систему уравнений тремя способами3x — 12y = 6
3x — 2y = 16

Теперь вычтем по частям второе уравнение из первого, чтобы получить уравнение с одним неизвестным:

3x — 12y = 6
3x — 2y = 16
-10y = -10

Находим значение y (y = 1). Теперь, подставив значение y в любое уравнение системы, найдём x = 6:

3x — 2y = 16
3x — 2 · 1 = 16
3x — 2 = 16
3x = 16 + 2
3x = 18
x = 18 : 3
x = 6

Для решения системы уравнений, рассмотренной выше, был использован способ сложения, который основан на следующем свойстве:

Любое уравнение системы можно заменить на уравнение, получаемое путём сложения (или вычитания) уравнений, входящих в систему. При этом получается система уравнений, имеющая те же решения, что и исходная.

Видео:Система с тремя переменнымиСкачать

Система с тремя переменными

Системы линейных уравнений (7 класс)

Если несколько линейных уравнений с одними теми же неизвестными рассматривают совместно, то говорят, что это система линейных уравнений с несколькими неизвестными.

Решить систему с двумя неизвестными – это значит найти все пары значений переменных, которые удовлетворяют каждому из заданных уравнений. Каждая такая пара называется решением системы.

Пример:
Пара значений (x=3);(y=-1) является решением первой системы, потому что при подстановке этих тройки и минус единицы в вместо (x) и (y), оба уравнения превратятся в верные равенства (begin3-2cdot (-1)=5 \3 cdot 3+2 cdot (-1)=7 end)

А вот (x=1); (y=-2) — не является решением первой системы, потому что после подстановки второе уравнение «не сходится» (begin1-2cdot(-2)=5 \3cdot1+2cdot(-2)≠7 end)

Отметим, что такие пары часто записывают короче: вместо «(x=3); (y=-1)» пишут так: ((3;-1)).

Видео:Решение систем уравнений. Методом подстановки. Выразить YСкачать

Решение систем уравнений. Методом подстановки. Выразить Y

Как решить систему линейных уравнений?

Есть три основных способа решения систем линейных уравнений:

Возьмите любое из уравнений системы и выразите из него любую переменную.

Полученное выражение подставьте вместо этой переменной в другое линейное уравнение системы.

Ответ запишите парой чисел ((x_0;y_0))

Замечание к шагу 1: нет никакой разницы какую переменную и из какого уравнения выражать. Обычно более удобно выражать ту переменную, перед которой нет коэффициента или, говоря точнее, коэффициент которой равен единице (в примере выше это был икс в первом уравнении).

Почему так? Потому что во всех остальных случаях у нас при выражении переменной получилась бы дробное выражение . Попробуем, например, выразить икс из второго уравнения системы:

И сейчас нам нужно будет эту дробь подставлять в первое уравнение и решать то, что получиться. До верного ответа мы бы всё равно дошли, но идти было бы неудобнее

Способ алгебраического сложения.

    Равносильно преобразовывая каждое уравнение в отдельности, запишите систему в виде:(begina_1 x+b_1 y=c_1\a_2 x+b_2 y=c_2end).

    Теперь нужно сделать так, чтоб коэффициенты при одном из неизвестных стали одинаковы (например, ((3) и (3)) или противоположны по значению (например, (5) и (-5)). В нашем примере уравняем коэффициенты при игреках. Для этого первое уравнение домножим на (2), а второе — на (3).

    (begin2x+3y=13 |cdot 2\ 5x+2y=5 |cdot 3end)(Leftrightarrow)(begin4x+6y=26\15x+6y=15end)(Leftrightarrow)

    Сложите (или вычтите) почленно обе части уравнения так, чтобы получилось уравнение с одним неизвестным.

    Как решать систему уравнений тремя способами

    Найдите неизвестное из полученного уравнения.

    Подставьте найденное значение неизвестного в любое из исходных уравнений и найдите второе неизвестное.

    Ответ запишите парой чисел ((x_0;y_0)).

    Замечание к шагу 3: В каком случае уравнения складывают, а в каком вычитают? Ответ прост – делайте так, чтоб пропала переменная: если «уравненные» коэффициенты имеют один и тот же знак – вычитайте, а если разные – складывайте.

    Пример. Решите систему уравнений: (begin12x-7y=2\5y=4x-6end)

    Приводим систему к виду (begina_1 x+b_1 y=c_1\a_2 x+b_2 y=c_2end) преобразовывая второе уравнение.

    «Уравняем» коэффициенты при иксах. Для этого домножим второе уравнение на (3).

    Знаки при иксах разные, поэтому чтоб иксы пропали, уравнения надо сложить.

    Делим уравнение на (8), чтобы найти (y).

    Игрек нашли. Теперь найдем (x), подставив вместо игрека (-2) в любое из уравнений системы.

    Икс тоже найден. Пишем ответ.

    Приведите каждое уравнение к виду линейной функции (y=kx+b).

    Постройте графики этих функций. Как? Можете прочитать здесь .

    Как решать систему уравнений тремя способами

  1. Найдите координаты ((x;y)) точки пересечения графиков и запишите их в ответ в виде ((x_0;y_0 )).
    Ответ: ((4;2))
  2. Матхак. Если сомневаетесь в правильности ответа (неважно каким способом вы решали), проверьте подстановкой значений (x_0) и (y_0) в каждое уравнение. Если оба уравнения превратятся в верные равенства, то ответ правильный.
    Пример: решая систему (begin3x-8=2y\x+y=6end), мы получили ответ ((4;2)). Проверим его, подставив вместо икса (4), а вместо игрека (2).

    Оба уравнения сошлись, решение системы найдено верно.

    Пример. Решите систему уравнений: (begin3(5x+3y)-6=2x+11\4x-15=11-2(4x-y)end)

    Перенесем все выражения с буквами в одну сторону, а числа в другую.

    Во втором уравнении каждое слагаемое — четное, поэтому упрощаем уравнение, деля его на (2).

    Эту систему линейных уравнений можно решить любым из способов, но мне кажется, что способ подстановки здесь удобнее всего. Выразим y из второго уравнения.

    Подставим (6x-13) вместо (y) в первое уравнение.

    Первое уравнение превратилась в обычное линейное . Решаем его.

    Сначала раскроем скобки.

    Перенесем (117) вправо и приведем подобные слагаемые.

    Поделим обе части первого уравнения на (67).

    Ура, мы нашли (x)! Подставим его значение во второе уравнение и найдем (y).

    Видео:Матричный метод решения систем уравненийСкачать

    Матричный метод решения систем уравнений

    Как решать систему уравнений

    Как решать систему уравнений тремя способами

    О чем эта статья:

    8 класс, 9 класс, ЕГЭ/ОГЭ

    Видео:Решение системы линейных уравнений графическим методом. 7 класс.Скачать

    Решение системы линейных уравнений графическим методом. 7 класс.

    Основные понятия

    Алгебра в 8 и 9 классе становится сложнее. Но если изучать темы последовательно и регулярно практиковаться в тетрадке и онлайн — ходить на уроки математики будет не так страшно.

    Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в исходное уравнение получилось верное числовое равенство.

    Например, возьмем 3 + 4 = 7. При вычислении левой части получается верное числовое равенство, то есть 7 = 7.

    Уравнением можно назвать, например, равенство 3 + x = 7 с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

    Система уравнений — это несколько уравнений, для которых надо найти значения неизвестных, каждое из которых соответствует данным уравнениям.

    Так как существует множество уравнений, составленных с их использованием систем уравнений также много. Поэтому для удобства изучения существуют отдельные группы по схожим характеристикам. Рассмотрим способы решения систем уравнений.

    Видео:Решение систем уравнений методом сложенияСкачать

    Решение систем уравнений методом сложения

    Линейное уравнение с двумя переменными

    Уравнение вида ax + by + c = 0 называется линейным уравнением с двумя переменными x и y, где a, b, c — числа.

    Решением этого уравнения называют любую пару чисел (x; y), которая соответствует этому уравнению и обращает его в верное числовое равенство.

    Теорема, которую нужно запомнить: если в линейном уравнение есть хотя бы один не нулевой коэффициент при переменной — его графиком будет прямая линия.

    Вот алгоритм построения графика ax + by + c = 0, где a ≠ 0, b ≠ 0:

    Дать переменной 𝑥 конкретное значение x = x₁, и найти значение y = y₁ при ax₁ + by + c = 0.

    Дать x другое значение x = x₂, и найти соответствующее значение y = y₂ при ax₂ + by + c = 0.

    Построить на координатной плоскости xy точки: (x₁; y₁); (x₂; y₂).

    Провести прямую через эти две точки и вуаля — график готов.

    Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

    Видео:Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать

    Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvy

    Система двух линейных уравнений с двумя переменными

    Для ax + by + c = 0 можно сколько угодно раз брать произвольные значение для x и находить значения для y. Решений в таком случае может быть бесчисленное множество.

    Система линейных уравнений (ЛУ) с двумя переменными образуется в случае, когда x и y связаны не одним, а двумя уравнениями. Такая система может иметь одно решение или не иметь решений совсем. Выглядит это вот так:

    Из первого линейного уравнения a₁x + b₁y + c₁ = 0 можно получить линейную функцию, при условии если b₁ ≠ 0: y = k₁x + m₁. График — прямая линия.

    Из второго ЛУ a₂x + b₂y + c₂ = 0 можно получить линейную функцию, если b₂ ≠ 0: y = k₂x + m₂. Графиком снова будет прямая линия.

    Можно записать систему иначе:

    Множеством решений первого ЛУ является множество точек, лежащих на определенной прямой, аналогично и для второго ЛУ. Если эти прямые пересекаются — у системы есть единственное решение. Это возможно при условии, если k₁ ≠ k₂.

    Две прямые могут быть параллельны, а значит, они никогда не пересекутся и система не будет иметь решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ ≠ m₂.

    Две прямые могут совпасть, и тогда каждая точка будет решением, а у системы будет бесчисленное множество решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ = m₂.

    Видео:Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать

    Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.

    Метод подстановки

    Разберем решение систем уравнений методом подстановки. Вот алгоритм при переменных x и y:

    Выразить одну переменную через другую из более простого уравнения системы.

    Подставить то, что получилось на место этой переменной в другое уравнение системы.

    Решить полученное уравнение, найти одну из переменных.

    Подставить поочередно каждый из найденных корней в уравнение, которое получили на первом шаге, и найти второе неизвестное значение.

    Записать ответ. Ответ принято записывать в виде пар значений (x; y).

    Потренируемся решать системы линейных уравнений методом подстановки.

    Пример 1

    Решите систему уравнений:

    x − y = 4
    x + 2y = 10

    Выразим x из первого уравнения:

    x − y = 4
    x = 4 + y

    Подставим получившееся выражение во второе уравнение вместо x:

    x + 2y = 10
    4 + y + 2y = 10

    Решим второе уравнение относительно переменной y:

    4 + y + 2y = 10
    4 + 3y = 10
    3y = 10 − 4
    3y = 6
    y = 6 : 3
    y = 2

    Полученное значение подставим в первое уравнение вместо y и решим уравнение:

    x − y = 4
    x − 2 = 4
    x = 4 + 2
    x = 6

    Ответ: (6; 2).

    Пример 2

    Решите систему линейных уравнений:

    x + 5y = 7
    3x = 4 + 2y

    Сначала выразим переменную x из первого уравнения:

    x + 5y = 7
    x = 7 − 5y

    Выражение 7 − 5y подставим вместо переменной x во второе уравнение:

    3x = 4 + 2y
    3 (7 − 5y) = 4 + 2y

    Решим второе линейное уравнение в системе:

    3 (7 − 5y) = 4 + 2y
    21 − 15y = 4 + 2y
    21 − 15y − 2y = 4
    21 − 17y = 4
    17y = 21 − 4
    17y = 17
    y = 17 : 17
    y = 1

    Подставим значение y в первое уравнение и найдем значение x:

    x + 5y = 7
    x + 5 = 7
    x = 7 − 5
    x = 2

    Ответ: (2; 1).

    Пример 3

    Решите систему линейных уравнений:

    x − 2y = 3
    5x + y = 4

    Из первого уравнения выразим x:

    x − 2y = 3
    x = 3 + 2y

    Подставим 3 + 2y во второе уравнение системы и решим его:

    5x + y = 4
    5 (3 + 2y) + y = 4
    15 + 10y + y = 4
    15 + 11y = 4
    11y = 4 − 15
    11y = −11
    y = −11 : 11
    y = −1

    Подставим получившееся значение в первое уравнение и решим его:

    x − 2y = 3
    x − 2 (−1) = 3
    x + 2 = 3
    x = 3 − 2
    x = 1

    Ответ: (1; −1).

    Видео:Игорь Усовик: Насколько опасен космический мусор?Скачать

    Игорь Усовик: Насколько опасен космический мусор?

    Метод сложения

    Теперь решим систему уравнений способом сложения. Алгоритм с переменными x и y:

    При необходимости умножаем почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами.

    Складываем почленно левые и правые части уравнений системы.

    Решаем получившееся уравнение с одной переменной.

    Находим соответствующие значения второй переменной.

    Запишем ответ в в виде пар значений (x; y).

    Видео:Одиссея по застывшим звёздам ВселеннойСкачать

    Одиссея по застывшим звёздам Вселенной

    Система линейных уравнений с тремя переменными

    Системы ЛУ с тремя переменными решают так же, как и с двумя. В них присутствуют три неизвестных с коэффициентами и свободный член. Выглядит так:

    Решений в таком случае может быть бесчисленное множество. Придавая двум переменным различные значения, можно найти третье значение. Ответ принято записывать в виде тройки значений (x; y; z).

    Если x, y, z связаны между собой тремя уравнениями, то образуется система трех ЛУ с тремя переменными. Для решения такой системы можно применять метод подстановки и метод сложения.

    Видео:Математика без Ху!ни. Метод Гаусса.Скачать

    Математика без Ху!ни. Метод Гаусса.

    Решение задач

    Разберем примеры решения систем уравнений.

    Задание 1. Как привести уравнение к к стандартному виду ах + by + c = 0?

    5x − 8y = 4x − 9y + 3

    5x − 8y = 4x − 9y + 3

    5x − 8y − 4x + 9y = 3

    Задание 2. Как решать систему уравнений способом подстановки

    Выразить у из первого уравнения:

    Подставить полученное выражение во второе уравнение:

    Найти соответствующие значения у:

    Задание 3. Как решать систему уравнений методом сложения

    1. Решение систем линейных уравнений начинается с внимательного просмотра задачи. Заметим, что можно исключить у. Для этого умножим первое уравнение на минус два и сложим со вторым:
    1. Решаем полученное квадратное уравнение любым способом. Находим его корни:
    1. Найти у, подставив найденное значение в любое уравнение:
    1. Ответ: (1; 1), (1; -1).

    Задание 4. Решить систему уравнений

    Решим второе уравнение и найдем х = 2, х = 5. Подставим значение переменной х в первое уравнение и найдем соответствующее значение у.

    Задание 5. Как решить систему уравнений с двумя неизвестными

    При у = -2 первое уравнение не имеет решений, при у = 2 получается:

    📹 Видео

    9 класс, 11 урок, Методы решения систем уравненийСкачать

    9 класс, 11 урок, Методы решения систем уравнений

    ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод ПодстановкиСкачать

    ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод Подстановки

    Алексей Семихатов — «Общая теория относительности: гравитация и космос»Скачать

    Алексей Семихатов — «Общая теория относительности: гравитация и космос»

    Система уравнений. Метод алгебраического сложенияСкачать

    Система уравнений. Метод алгебраического сложения

    Как ЛЕГКО РЕШАТЬ Систему Линейный Уравнений — Метод СложенияСкачать

    Как ЛЕГКО РЕШАТЬ Систему Линейный Уравнений — Метод Сложения

    Решение систем уравнений методом сложенияСкачать

    Решение систем уравнений методом сложения

    Способы решения систем нелинейных уравнений. 9 класс.Скачать

    Способы решения систем нелинейных уравнений. 9 класс.
    Поделиться или сохранить к себе: