В двадцать втором задании необходимо решить задачу, составив уравнение с неизвестными. Ниже мы приводим алгоритмы решения типовых вариантов.
- Как решать систему уравнений
- Основные понятия
- Линейное уравнение с двумя переменными
- Система двух линейных уравнений с двумя переменными
- Метод подстановки
- Пример 1
- Пример 2
- Пример 3
- Метод сложения
- Система линейных уравнений с тремя переменными
- Решение задач
- Задание 1. Как привести уравнение к к стандартному виду ах + by + c = 0?
- Задание 2. Как решать систему уравнений способом подстановки
- Задание 3. Как решать систему уравнений методом сложения
- Задание 4. Решить систему уравнений
- Задание 5. Как решить систему уравнений с двумя неизвестными
- Разбор задания №21 ОГЭ
- Дистанционное обучение как современный формат преподавания
- Математика: теория и методика преподавания в образовательной организации
- Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
- Дистанционные курсы для педагогов
- Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
- Другие материалы
- Вам будут интересны эти курсы:
- Оставьте свой комментарий
- Автор материала
- Дистанционные курсы для педагогов
- Подарочные сертификаты
- 🎦 Видео
Алгоритм решения:
- Введем неизвестную величину: скорость третьего.
- Составим краткую запись в виде таблицы, где разместим данные в графы: скорость, время, расстояние.
- Выясняем, на какой
Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.
Решение:
1. Обозначим через x км/ч скорость третьего велосипедиста. 2. Составим таблицу их краткого условия:
v, км/ч | t, ч | S, км |
1 велосипедист | 21 | На 2 ч раньше всех |
2 велосипедист | 15 | На 1 ч раньше третьего |
3 велосипедист | х |
3. Задача на движение водном направлении, значит, для определения совместной скорости (сближения), необходимо из большей скорости вычитать меньшую. Наибольшая скорость была у третьего велосипедиста, потому что он догонял двух других.
4. Перед тем, как выехал третий велосипедист, первый двигался уже 2 часа. За это время он проехал 42 км, а второй проехал 15 км, поскольку был в пути 1 час. Совместная скорость третьего и второго велосипедистов равна (x-15) км/ч. так как они движутся в одном направлении. Третий велосипедист догнал второго спустя ч после своего выезда.
Совместная скорость третьего и первого велосипедистов равна (x-21)км/ч. Третий велосипедист догнал первого через ч после своего выезда из поселка.
По условию третий велосипедист догнал первого спустя 9 ч после того, как догнал второго.
5. Исходя из этого, составим равенство:
,
Преобразуем полученное уравнение:
6. Получили квадратное уравнение. Решим его:
По условию скорость третьего велосипедиста была наибольшей, значит, второй
Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.
pазбирался: Даниил Романович | обсудить разбор | оценить
Алгоритм решения:
- Введем неизвестные величины: скорость третьего и время его движения.
- Составим краткую запись в виде таблицы, где разместим данные в графы: скорость, время, расстояние.
- Используя условие, формулы времени или скорости, выражаем через неизвестные величины все остальные.
- Исходя из условия, составляем равенства.
- Составляем и решаем систему уравнений.
- Определяем величины, которые еще нужно найти.
- Записываем ответ.
Решение:
1. Пусть x км/ч – скорость третьего велосипедиста, а t ч – время, за которое он догнал второго велосипедиста.
2. Составим таблицу данных условия:
v, км/ч | t, ч | s, км |
1 велосипедист | 15 | t +7 |
2 велосипедист | 10 | t +1 |
3 велосипедист | х | t |
3. До места встречи со вторым велосипедистом третий проехал x·t км.
Скорость второго велосипедиста 10 км/ч. В пути он находился t + 1 часов к моменту встречи с третьим велосипедистом. Тогда в момент встречи велосипедисты находились на расстоянии 10·(t + 1) км от поселка. Расстояния эти одинаковы, значит, x·t = 10·(t + 1).
Первого велосипедиста третий догонит через t + 5 ч – время, за которое он догнал первого велосипедиста после второго, тогда до места встречи с первым велосипедистом третий проехал x·(t + 5) км.
Первый велосипедист ехал со скоростью 15 км/ч и был в пути до встречи с третьим t + 7 часов, потому как выехал он на 2 часа раньше. Расстояние, которое проехал первый велосипедист, равно 15·(t + 7) км.
Получаем еще одно равенство: x·(t + 5) = 15·(t + 7)
4. Составляем систему уравнений:
5. Решаем полученную систему, преобразовав каждое из уравнений: Вычитаем из второго уравнение первое, получаем
Подставляем вместо x в первое уравнение системы правую часть равенства и решаем полученное уравнение.
(t + 19)·t = 10t + 10
t 2 + 19t = 10t + 10
По формуле дискриминанта и корней:
D = 9 2 — 4·1·(-10) = 81 + 40 = 121
Первый ответ не может удовлетворять условию задачи, поскольку время не может иметь отрицательных значений. Следовательно,
x = t + 19 = 1 + 19 = 20
Скорость третьего велосипедиста 20 км/ч.
pазбирался: Даниил Романович | обсудить разбор | оценить
Алгоритм решения:
- Введем неизвестные величины: скорость третьего и время его движения.
- Составим краткую запись в виде таблицы, где разместим данные в графы: скорость, время, расстояние.
- Используя условие, формулы времени или скорости, выражаем через неизвестные величины все остальные.
- Исходя из условия, составляем равенства.
- Составляем и решаем систему уравнений.
- Определяем величины, которые еще нужно найти.
- Записываем ответ.
Решение:
1. Пусть x км/ч – скорость третьего велосипедиста, а t ч – время, за которое он догнал второго велосипедиста. 2. Составим таблицу данных условия:
v, км/ч | t, ч | s, км |
1 велосипедист | 24 | t +9 |
2 велосипедист | 21 | t +1 |
3 велосипедист | х | t |
3. До места встречи со вторым велосипедистом третий проехал x·t км. Второй велосипедист до момента, когда его догонит третий велосипедист, двигался t + 1 часов . Он проехал до места встречи 21·(t + 1) км. Расстояния, пройденные велосипедистами, одинаковы. Получим первое равенство x·t = 21·(t + 1). Третий велосипедист до момента встречи с первым велосипедистом после встречи о вторым, ехал t + 9 ч тогда до места встречи с первым велосипедистом он проехал расстояние x·(t + 9) км. Первый велосипедист до встречи с третьим ехал t + 11 часов, поскольку до момента выезда третьего, уже проехал 2 часа. До места встречи он проехал 24·(t + 11) км. Расстояния одинаковы. Тогда получим еще одно равенство: x·(t + 9) = 24·(t + 11) Составим систему уравнений для решения задачи: Решим ее, раскрыв скобки и преобразовав каждое уравнение: Далее используем метод вычитания, откуда получим:
Подставив выражение для x в первое уравнение: Получили квадратное уравнение.
t 2 + 81t = 63t + 63
t 2 + 18t – 63 = 0
D = 18 2 — 4·1·(-63) = 324 + 252 = 576
Первое значение не подходит, поскольку время по условию не может иметь отрицательные значения. Значит, Таким образом, скорость третьего велосипедиста 28 км/ч.Ответ: 28
pазбирался: Даниил Романович | обсудить разбор | оценить
Пусть искомое расстояние равно x км. Скорость лодки при движении против течения равна 4 км/ч, при движении по течению равна 8 км/ч. Время, за которое лодка доплывёт от места отправления до места назначения и обратно, равно
часа.
Из условия задачи следует, что это время равно 3 часам. Составим уравнение:
Решая уравнение, получаем x = 8.
pазбирался: Даниил Романович | обсудить разбор | оценить
Алгоритм решения:
- Находим число процентов (или долю) твердого вещества в свежих фруктах. Находим эту величину в кг.
- Вычисляем кол-во процентов твердого вещества в сушеных фруктах.
- Составляем пропорцию и определяем общую массу сушеных фруктов.
Решение:
В сушеных фруктах масса твердого вещества, по сравнению со свежими, не меняется (а только снижается объем воды). Поэтому в искомой массе сухих фруктов мякоти тоже будет 4,2 кг. Но в процентном соотношении эта масса составит 100%–30%=70% (30% по условию приходится на воду). Искомая же (общая) масса сухих фруктов в данном случае – это 100%.
Тогда обозначим искомую массу через Х и составим пропорцию: 4,2 кг – 70% Х – 100%
Решим эту пропорцию:
pазбирался: Даниил Романович | обсудить разбор | оценить
Алгоритм решения:
- Вводим переменные-обозначения для скорости наполнения резервуара (л/мин) и для времени наполнения (мин). Выражаем через соответствующие переменные параметры наполнения для 1-й и 2-й труб.
- Составляем систему уравнений (1-е уравнение для первой трубы, 2-е – для второй).
- Решаем систему.
Решение:
Обозначим через х скорость наполнения 1-й трубы (это наша искомая величина). Тогда скорость наполнения 2-й трубы равна (х+5).Обозначим через t время наполнения 2-й трубы. Тогда время наполнения 1-й трубы составит (t+2).
Через каждую из труб должно пройти 200 л воды. Для 1-й трубы получим:
Аналогично для 2-й трубы:
Из уравнения для 2-й трубы выразим t через х:
Подставим полученное для t выражение в уравнение для 1-й трубы: Решим это уравнение и найдем искомую величину:
Корень х2 не может быть принят в качестве ответа, поскольку он не удовлетворяет условию (скорость наполнения резервуара не может быть отрицательной величиной).
Значит, искомая скорость наполнения равна 20 л/мин.
pазбирался: Даниил Романович | обсудить разбор | оценить
Составим для удобства решения таблицу, в которую внесем данные из условия задачи, обозначив переменной х неизвестную величину – скорость 1 автомобиля:
Скорость | Время | Расстояние | |
1 автомобиль | х | 800 х . . | 800 |
2 автомобиль | х – 36 | 800 х − 36 . . | 800 |
Пояснения к заполнению таблицы:
Так как мы обозначили за х скорость 1 авто, значит скорость 2 авто будет на 36 км/ч меньше.
Расстояние у каждого авто будет 800 км.
Для нахождения времени надо расстояние разделить на скорость, поэтому мы получили дроби с переменной в знаменателе.
Зная, что первый прибывает к финишу на 5 ч раньше второго, составим и решим уравнение:
800 х − 36 . . − 800 х . . = 5
Приведем к общему знаменателю х(х-36) наше уравнение и решим его:
800х – 800х+28800=5х 2 – 180
5х 2 – 180 – 28800 =0; разделим на 5 каждый коэффициент:
Решим полученное квадратное уравнение
D=b 2 – 4ac=36 2 – 4 ∙ ( − 5760 ) =24336
х1,2= − b ± √ D 2 a . . = 36 ± 156 2 . .
Отсюда х1=96, а х2 не удовлетворяет условию задачи, так как оно отрицательное, а скорость не может быть выражена отрицательным числом.
Значит, скорость первого автомобиля 36 км/ч
pазбирался: Даниил Романович | обсудить разбор | оценить
Видео:Как решить систему уравнений на ОГЭ 2021? / Полный разбор задачи №20 ОГЭ по математикеСкачать
Как решать систему уравнений
О чем эта статья:
8 класс, 9 класс, ЕГЭ/ОГЭ
Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Основные понятия
Алгебра в 8 и 9 классе становится сложнее. Но если изучать темы последовательно и регулярно практиковаться в тетрадке и онлайн — ходить на уроки математики будет не так страшно.
Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в исходное уравнение получилось верное числовое равенство.
Например, возьмем 3 + 4 = 7. При вычислении левой части получается верное числовое равенство, то есть 7 = 7.
Уравнением можно назвать, например, равенство 3 + x = 7 с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.
Система уравнений — это несколько уравнений, для которых надо найти значения неизвестных, каждое из которых соответствует данным уравнениям.
Так как существует множество уравнений, составленных с их использованием систем уравнений также много. Поэтому для удобства изучения существуют отдельные группы по схожим характеристикам. Рассмотрим способы решения систем уравнений.
Видео:ОГЭ задача 21 (системы уравнений) #3Скачать
Линейное уравнение с двумя переменными
Уравнение вида ax + by + c = 0 называется линейным уравнением с двумя переменными x и y, где a, b, c — числа.
Решением этого уравнения называют любую пару чисел (x; y), которая соответствует этому уравнению и обращает его в верное числовое равенство.
Теорема, которую нужно запомнить: если в линейном уравнение есть хотя бы один не нулевой коэффициент при переменной — его графиком будет прямая линия.
Вот алгоритм построения графика ax + by + c = 0, где a ≠ 0, b ≠ 0:
Дать переменной 𝑥 конкретное значение x = x₁, и найти значение y = y₁ при ax₁ + by + c = 0.
Дать x другое значение x = x₂, и найти соответствующее значение y = y₂ при ax₂ + by + c = 0.
Построить на координатной плоскости xy точки: (x₁; y₁); (x₂; y₂).
Провести прямую через эти две точки и вуаля — график готов.
Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!
Видео:Задание №20. Уравнение 2 часть ОГЭ по математике 2023 | УмскулСкачать
Система двух линейных уравнений с двумя переменными
Для ax + by + c = 0 можно сколько угодно раз брать произвольные значение для x и находить значения для y. Решений в таком случае может быть бесчисленное множество.
Система линейных уравнений (ЛУ) с двумя переменными образуется в случае, когда x и y связаны не одним, а двумя уравнениями. Такая система может иметь одно решение или не иметь решений совсем. Выглядит это вот так:
Из первого линейного уравнения a₁x + b₁y + c₁ = 0 можно получить линейную функцию, при условии если b₁ ≠ 0: y = k₁x + m₁. График — прямая линия.
Из второго ЛУ a₂x + b₂y + c₂ = 0 можно получить линейную функцию, если b₂ ≠ 0: y = k₂x + m₂. Графиком снова будет прямая линия.
Можно записать систему иначе:
Множеством решений первого ЛУ является множество точек, лежащих на определенной прямой, аналогично и для второго ЛУ. Если эти прямые пересекаются — у системы есть единственное решение. Это возможно при условии, если k₁ ≠ k₂.
Две прямые могут быть параллельны, а значит, они никогда не пересекутся и система не будет иметь решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ ≠ m₂.
Две прямые могут совпасть, и тогда каждая точка будет решением, а у системы будет бесчисленное множество решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ = m₂.
Видео:21 задание из ОГЭ по математике 2024. Текстовые задачиСкачать
Метод подстановки
Разберем решение систем уравнений методом подстановки. Вот алгоритм при переменных x и y:
Выразить одну переменную через другую из более простого уравнения системы.
Подставить то, что получилось на место этой переменной в другое уравнение системы.
Решить полученное уравнение, найти одну из переменных.
Подставить поочередно каждый из найденных корней в уравнение, которое получили на первом шаге, и найти второе неизвестное значение.
Записать ответ. Ответ принято записывать в виде пар значений (x; y).
Потренируемся решать системы линейных уравнений методом подстановки.
Пример 1
Решите систему уравнений:
x − y = 4
x + 2y = 10
Выразим x из первого уравнения:
x − y = 4
x = 4 + y
Подставим получившееся выражение во второе уравнение вместо x:
x + 2y = 10
4 + y + 2y = 10
Решим второе уравнение относительно переменной y:
4 + y + 2y = 10
4 + 3y = 10
3y = 10 − 4
3y = 6
y = 6 : 3
y = 2
Полученное значение подставим в первое уравнение вместо y и решим уравнение:
x − y = 4
x − 2 = 4
x = 4 + 2
x = 6
Ответ: (6; 2).
Пример 2
Решите систему линейных уравнений:
x + 5y = 7
3x = 4 + 2y
Сначала выразим переменную x из первого уравнения:
x + 5y = 7
x = 7 − 5y
Выражение 7 − 5y подставим вместо переменной x во второе уравнение:
3x = 4 + 2y
3 (7 − 5y) = 4 + 2y
Решим второе линейное уравнение в системе:
3 (7 − 5y) = 4 + 2y
21 − 15y = 4 + 2y
21 − 15y − 2y = 4
21 − 17y = 4
17y = 21 − 4
17y = 17
y = 17 : 17
y = 1
Подставим значение y в первое уравнение и найдем значение x:
x + 5y = 7
x + 5 = 7
x = 7 − 5
x = 2
Ответ: (2; 1).
Пример 3
Решите систему линейных уравнений:
x − 2y = 3
5x + y = 4
Из первого уравнения выразим x:
x − 2y = 3
x = 3 + 2y
Подставим 3 + 2y во второе уравнение системы и решим его:
5x + y = 4
5 (3 + 2y) + y = 4
15 + 10y + y = 4
15 + 11y = 4
11y = 4 − 15
11y = −11
y = −11 : 11
y = −1
Подставим получившееся значение в первое уравнение и решим его:
x − 2y = 3
x − 2 (−1) = 3
x + 2 = 3
x = 3 − 2
x = 1
Ответ: (1; −1).
Видео:Задание 21. Уравнения и системы уравнений. Подготовка к ОГЭ 2020. Вебинар | МатематикаСкачать
Метод сложения
Теперь решим систему уравнений способом сложения. Алгоритм с переменными x и y:
При необходимости умножаем почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами.
Складываем почленно левые и правые части уравнений системы.
Решаем получившееся уравнение с одной переменной.
Находим соответствующие значения второй переменной.
Запишем ответ в в виде пар значений (x; y).
Видео:ВСЕ ТИПЫ 20 ЗАДАНИЕ 2 ЧАСТЬ ОГЭ МАТЕМАТИКА 2023Скачать
Система линейных уравнений с тремя переменными
Системы ЛУ с тремя переменными решают так же, как и с двумя. В них присутствуют три неизвестных с коэффициентами и свободный член. Выглядит так:
Решений в таком случае может быть бесчисленное множество. Придавая двум переменным различные значения, можно найти третье значение. Ответ принято записывать в виде тройки значений (x; y; z).
Если x, y, z связаны между собой тремя уравнениями, то образуется система трех ЛУ с тремя переменными. Для решения такой системы можно применять метод подстановки и метод сложения.
Видео:Решение систем уравнений методом подстановкиСкачать
Решение задач
Разберем примеры решения систем уравнений.
Задание 1. Как привести уравнение к к стандартному виду ах + by + c = 0?
5x − 8y = 4x − 9y + 3
5x − 8y = 4x − 9y + 3
5x − 8y − 4x + 9y = 3
Задание 2. Как решать систему уравнений способом подстановки
Выразить у из первого уравнения:
Подставить полученное выражение во второе уравнение:
Найти соответствующие значения у:
Задание 3. Как решать систему уравнений методом сложения
- Решение систем линейных уравнений начинается с внимательного просмотра задачи. Заметим, что можно исключить у. Для этого умножим первое уравнение на минус два и сложим со вторым:
- Решаем полученное квадратное уравнение любым способом. Находим его корни:
- Найти у, подставив найденное значение в любое уравнение:
- Ответ: (1; 1), (1; -1).
Задание 4. Решить систему уравнений
Решим второе уравнение и найдем х = 2, х = 5. Подставим значение переменной х в первое уравнение и найдем соответствующее значение у.
Задание 5. Как решить систему уравнений с двумя неизвестными
При у = -2 первое уравнение не имеет решений, при у = 2 получается:
Видео:ОГЭ Задание 21 Системы уравненийСкачать
Разбор задания №21 ОГЭ
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
«Актуальность создания школьных служб примирения/медиации в образовательных организациях»
Свидетельство и скидка на обучение каждому участнику
Задание 21. Решите систему уравнений
Для решения данной системы можно вычесть второе уравнение из первого, это позволит избавиться от переменной y, получим:
Решаем квадратное уравнение через дискриминант, имеем два корня:
Для каждого из найденных корней найдем соответствующее значение y, подставив во второе уравнение:
и
Задание 21. Решите систему уравнений
Так как оба уравнения равны одному и тому же значению y, то их можно приравнять, получим:
,
Полученное выражение будет равно 0, если
или
Найдем теперь значения y для каждого x, имеем:
и
Задание 21. Решите систему уравнений
Разделим первое уравнение на 2, а второе – на 4, получим:
Видим, что у обоих уравнений есть слагаемое . Чтобы избавиться от него, вычтем из первого уравнения второе:
Теперь вычислим значение y при x=2, подставив x в первое уравнение, имеем:
.
Таким образом, имеем решение (2, -2), (2,2).
Задание 21. Решите систему уравнений
Разделим второе уравнение на 2, получим систему
и вычтем из первого уравнения второе:
Для значения x=2 найдем соответствующие значения y, подставив x в первое уравнение:
То есть имеем два решения: (2;-3) и (2;3).
Задание 21. Решите уравнение
Преобразуем уравнение, приведем его к следующему виду:
Полученное выражение будет равно 0, если
Таким образом, получили следующие корни: -4; -3; 2.
Задание 21. Решите уравнение .
Упростим выражение, перепишем его в следующем виде:
Полученное выражение будет равно 0, если
Получили три корня: -5; -4; 3.
Задание 21. Решите систему уравнений
Сложим оба уравнения, получим:
Для найденных корней x вычислим из первой формулы соответствующие значения y, имеем:
— для : ;
— для : .
Получили два решения: (-1;5), (1;5).
Задание 21. Решите систему уравнений
Сложим оба уравнения, получим:
Вычислим соответствующие значения y при x=-2 и 2, подставив эти значения в первую формулу системы:
— при x=-2: ;
— при x=2: .
Имеем следующие решения: (-2; 3) и (2; 3).
Задание 21. Решите неравенство .
Можно заметить, что данное неравенство будет больше либо равно 0, если
.
Преобразуем данное выражение, перепишем его в виде:
Из последнего выражения имеем две точки, делящие числовую ось:
и
.
Ответ: .
Задание 21. Решите неравенство
Сложим оба уравнения системы, избавимся таким образом от переменной y, получим:
Теперь, для каждого из найденных x, вычислим y из первого уравнения:
Получаем решения: (-1; 8), (1; 8).
Задание 21. Решите неравенство
Сложим оба уравнения системы, избавимся от переменной y, получим:
Для каждого найденного корня x вычислим соответствующее значение y из первого уравнения, имеем:
То есть получили следующие решения: (-2; 1), (2; 1).
Задание 21. Найдите значение выражения 28a-7b+40, если .
Приведем выражение к виду , получим:
Задание 21. Найдите значение выражения 33a-23b+71, если .
Приведем выражение к выражению , получим:
Задание 21. Решите уравнение .
Учитывая, что слагаемые в уравнении всегда больше либо равны 0, то уравнение будет равно нулю, если каждое из слагаемых равно нулю. Соответственно, получаем следующую систему уравнений:
Из первого уравнения имеем корни
Из второго уравнения, получаем следующие два корня:
Из полученных значений видно, что оба уравнения одновременно будут принимать значение 0 при x=-5.
Задание 21. Решите уравнение .
Любое число в квадрате всегда больше 0, следовательно, уравнение будет равно 0, если оба слагаемых равны 0. Это условие можно записать в виде следующей системы:
Из первого уравнения получаем два корня:
Из второго уравнения, имеем корни:
Общий корень, при котором оба уравнения переходят в 0, равен -4.
Задание 21. Решите уравнение .
Упростим уравнение, приведем его к следующему виду:
Данное уравнение будет равно 0, если
Решаем первое квадратное уравнение, получаем корни:
Оба корня удовлетворяют неравенству , следовательно, они являются решениями уравнения.
Ответ: .
Задание 21. Решите уравнение .
Преобразуем уравнение к виду
Данное уравнение будет равно 0, если
Найдем корни уравнения из квадратного уравнения:
Оба корня не равны 0, следовательно, являются решениями уравнения.
Ответ: .
Задание 21. Решите уравнение .
Сначала преобразуем выражение, получим:
Последнее выражение показывает, что уравнение будет равно 0, если хотя бы один из множителей будет равен 0, то есть имеем 3 уравнения и 3 корня:
Задание 21. Решите уравнение .
Сначала выполним преобразование уравнения, получим:
Последнее выражение показывает, что уравнение будет равно, если хотя бы один из множителей равен 0, то есть имеем следующие три уравнения:
Задание 21. Решите неравенство .
Преобразуем неравенство, приведем его к виду:
Полученное выражение дает две точки, делящие числовую ось:
.
Ответ: .
Задание 21. Решите неравенство .
Перепишем неравенство в следующем виде:
Из последнего выражения имеем две точки, делящие числовую ось:
.
Ответ: .
Задание 21. Решите уравнение .
Выполним следующее преобразование уравнения:
Полученное выражение будет равно 0, если хотя бы один из множителей равен 0, то есть имеем три уравнения и три корня:
Задание 21. Решите уравнение .
Перепишем уравнение в следующем виде:
Последнее выражение принимает нулевое значение, когда хотя бы один из множителей равен 0, то есть имеем три следующих корня:
Задание 21. Решите уравнение .
Решим уравнение при условии, что , получим:
Решим квадратное уравнение с помощью дискриминанта, имеем:
Значение 7 не входит в диапазон , остается только один корень -5.
Задание 21. Решите уравнение .
1. Запишем ОДЗ уравнения:
2. Упростим уравнение, приведем его к виду:
Решаем квадратное уравнение, имеем два корня:
Из двух корней только второй принадлежит ОДЗ.
Задание 21. Решите уравнение .
Так как каждое из слагаемых всегда больше либо равно 0, то уравнение будет равно нулю только если оба слагаемых равны 0, то есть данное уравнение можно записать в виде следующей системы:
Упрощаем данные выражения, имеем:
Имеем один общий корень -3, при котором оба уравнения одновременно равны 0, то есть этот корень есть решение уравнения.
Задание 21. Решите уравнение .
Каждое из слагаемых уравнения всегда больше либо равно 0, следовательно, уравнение будет равно 0, только если оба слагаемых равны 0. Запишем это положение в следующем виде:
Упростим выражения, получим:
Первое уравнение дает два корня
Второе уравнение также дает два корня:
В результате получаем один общий корень , при котором оба уравнения одновременно равны 0.
Задание 21. Решите уравнение .
Упростим выражение, запишем его в виде:
Последнее выражение будет равно 0, если хотя бы один из множителей равен 0, то есть имеем два уравнения:
Таким образом, получили три корня уравнения -2; -1; 1.
Задание 21. Решите уравнение .
Перепишем уравнение в следующем виде:
Последнее выражение будет равно 0, если хотя бы одна из скобок будет равна 0, то есть имеем следующие два уравнения:
Таким образом, получили три корня уравнения -5; -2; 2.
Задание 21. Найдите значение выражения 61a-11b+50, если .
Упростим выражение , перепишем его в следующем виде:
Чтобы привести выражение к виду , прибавим к левой и правой части уравнения 10, получим:
То есть получили значение 10.
Задание 21. Найдите значение выражения 39a-15b+25, если .
Преобразуем выражение к виду
Чтобы получить выражение вида прибавим к левой и правой части уравнения 1, получим:
Задание 21. Решите уравнение .
1. Запишем ОДЗ уравнения
2. Упростим уравнение, получим:
Решаем квадратное уравнение, имеем два корня:
ОДЗ удовлетворяет только один корень -3.
Задание 21. Решите уравнение .
1. ОДЗ уравнения
2. Упростим уравнение, получим:
Решаем квадратное уравнение, имеем два корня:
ОДЗ принадлежит только один корень уравнения -3.
Задание 21. Найдите значение выражения 19a-7b+12, если .
Перепишем выражение в виде:
Приведем последнее выражение к виду , получим:
Задание 21. Найдите значение выражения 25a-5b+22, если .
Упростим выражение , получим:
Чтобы привести последнее выражение к виду , добавим к выражению 4:
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
- Сейчас обучается 949 человек из 80 регионов
Курс профессиональной переподготовки
Математика: теория и методика преподавания в образовательной организации
- Сейчас обучается 681 человек из 75 регионов
Курс повышения квалификации
Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
- Сейчас обучается 314 человек из 70 регионов
Ищем педагогов в команду «Инфоурок»
Видео:ОГЭ 21 ЗАДАНИЕ. РЕШИТЕ СИСТЕМУ УРАВНЕНИЙ. 3 ВАРИАНТ ЯЩЕНКО 2020Скачать
Дистанционные курсы для педагогов
Самые массовые международные дистанционные
Школьные Инфоконкурсы 2022
33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»
Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
5 569 266 материалов в базе
Другие материалы
- 26.09.2019
- 132
- 0
- 26.09.2019
- 187
- 0
- 26.09.2019
- 261
- 11
- 26.09.2019
- 539
- 28
- 26.09.2019
- 157
- 0
- 26.09.2019
- 211
- 1
- 26.09.2019
- 691
- 7
- 26.09.2019
- 152
- 0
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Добавить в избранное
- 26.09.2019 2082
- DOCX 138.9 кбайт
- 97 скачиваний
- Рейтинг: 5 из 5
- Оцените материал:
Настоящий материал опубликован пользователем Шамченко Елена Николаевна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт
Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.
Автор материала
- На сайте: 2 года и 4 месяца
- Подписчики: 1
- Всего просмотров: 24995
- Всего материалов: 31
Московский институт профессиональной
переподготовки и повышения
квалификации педагогов
Видео:ОГЭ. Математика. Задание 21. Как решать системы уравнений методом подстановки.Скачать
Дистанционные курсы
для педагогов
663 курса от 690 рублей
Выбрать курс со скидкой
Выдаём документы
установленного образца!
Учителя о ЕГЭ: секреты успешной подготовки
Время чтения: 11 минут
В Воронеже продлили удаленное обучение для учеников 5-11-х классов
Время чтения: 1 минута
В России могут объявить Десятилетие науки и технологий
Время чтения: 1 минута
ЕГЭ в 2022 году будут сдавать почти 737 тыс. человек
Время чтения: 2 минуты
Рособрнадзор не планирует переносить досрочный период ЕГЭ
Время чтения: 0 минут
У 76% российских учителей оклад ниже МРОТ
Время чтения: 2 минуты
Тринадцатилетняя школьница из Индии разработала приложение против буллинга
Время чтения: 1 минута
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
🎦 Видео
Задание 21 ОГЭ по математике #16Скачать
21 задание на ОГЭ по математике. Система уравнений. Метод алгебраического сложения.Скачать
ОГЭ Задание 21 | Сухофрукты | Самое быстрое решение | +2 балла к ОГЭ 2023Скачать
ОГЭ Задание 21 Система уравнений Метод заменыСкачать
ОГЭ Задание 21 Системы уравнений 1Скачать
ОГЭ Задание 21 Система уравненийСкачать
ОГЭ по математике. Задание 21. Система уравнений. Способ подстановки.Скачать
ОГЭ задача 21 (системы уравнений) #2Скачать
ОГЭ задание 21 Системы уравнений 3Скачать