Как решать систему линейных уравнений с дробями 7 класс

Содержание
  1. Системы линейных уравнений (7 класс)
  2. Если несколько линейных уравнений с одними теми же неизвестными рассматривают совместно, то говорят, что это система линейных уравнений с несколькими неизвестными.
  3. Решить систему с двумя неизвестными – это значит найти все пары значений переменных, которые удовлетворяют каждому из заданных уравнений. Каждая такая пара называется решением системы.
  4. Как решить систему линейных уравнений?
  5. Решение задач по математике онлайн
  6. Калькулятор онлайн. Решение системы двух линейных уравнений с двумя переменными. Метод подстановки и сложения.
  7. Немного теории.
  8. Решение систем линейных уравнений. Способ подстановки
  9. Решение систем линейных уравнений способом сложения
  10. Алгебра. Урок 4. Уравнения, системы уравнений
  11. Линейные уравнения
  12. Квадратные уравнения
  13. Разложение квадратного трехчлена на множители
  14. Дробно рациональные уравнения
  15. Системы уравнений
  16. Задание №9 из ОГЭ 2020. Типовые задачи и принцип их решения.
  17. 🔍 Видео

Видео:Решение системы линейных уравнений. Подстановка. С дробными выражениями.Скачать

Решение системы линейных уравнений. Подстановка. С дробными выражениями.

Системы линейных уравнений (7 класс)

Если несколько линейных уравнений с одними теми же неизвестными рассматривают совместно, то говорят, что это система линейных уравнений с несколькими неизвестными.

Решить систему с двумя неизвестными – это значит найти все пары значений переменных, которые удовлетворяют каждому из заданных уравнений. Каждая такая пара называется решением системы.

Пример:
Пара значений (x=3);(y=-1) является решением первой системы, потому что при подстановке этих тройки и минус единицы в вместо (x) и (y), оба уравнения превратятся в верные равенства (begin3-2cdot (-1)=5 \3 cdot 3+2 cdot (-1)=7 end)

А вот (x=1); (y=-2) — не является решением первой системы, потому что после подстановки второе уравнение «не сходится» (begin1-2cdot(-2)=5 \3cdot1+2cdot(-2)≠7 end)

Отметим, что такие пары часто записывают короче: вместо «(x=3); (y=-1)» пишут так: ((3;-1)).

Видео:Решение системы линейных уравнений графическим методом. 7 класс.Скачать

Решение системы линейных уравнений графическим методом. 7 класс.

Как решить систему линейных уравнений?

Есть три основных способа решения систем линейных уравнений:

Возьмите любое из уравнений системы и выразите из него любую переменную.

Полученное выражение подставьте вместо этой переменной в другое линейное уравнение системы.

Ответ запишите парой чисел ((x_0;y_0))

Замечание к шагу 1: нет никакой разницы какую переменную и из какого уравнения выражать. Обычно более удобно выражать ту переменную, перед которой нет коэффициента или, говоря точнее, коэффициент которой равен единице (в примере выше это был икс в первом уравнении).

Почему так? Потому что во всех остальных случаях у нас при выражении переменной получилась бы дробное выражение . Попробуем, например, выразить икс из второго уравнения системы:

И сейчас нам нужно будет эту дробь подставлять в первое уравнение и решать то, что получиться. До верного ответа мы бы всё равно дошли, но идти было бы неудобнее

Способ алгебраического сложения.

    Равносильно преобразовывая каждое уравнение в отдельности, запишите систему в виде:(begina_1 x+b_1 y=c_1\a_2 x+b_2 y=c_2end).

    Теперь нужно сделать так, чтоб коэффициенты при одном из неизвестных стали одинаковы (например, ((3) и (3)) или противоположны по значению (например, (5) и (-5)). В нашем примере уравняем коэффициенты при игреках. Для этого первое уравнение домножим на (2), а второе — на (3).

    (begin2x+3y=13 |cdot 2\ 5x+2y=5 |cdot 3end)(Leftrightarrow)(begin4x+6y=26\15x+6y=15end)(Leftrightarrow)

    Сложите (или вычтите) почленно обе части уравнения так, чтобы получилось уравнение с одним неизвестным.

    Как решать систему линейных уравнений с дробями 7 класс

    Найдите неизвестное из полученного уравнения.

    Подставьте найденное значение неизвестного в любое из исходных уравнений и найдите второе неизвестное.

    Ответ запишите парой чисел ((x_0;y_0)).

    Замечание к шагу 3: В каком случае уравнения складывают, а в каком вычитают? Ответ прост – делайте так, чтоб пропала переменная: если «уравненные» коэффициенты имеют один и тот же знак – вычитайте, а если разные – складывайте.

    Пример. Решите систему уравнений: (begin12x-7y=2\5y=4x-6end)

    Приводим систему к виду (begina_1 x+b_1 y=c_1\a_2 x+b_2 y=c_2end) преобразовывая второе уравнение.

    «Уравняем» коэффициенты при иксах. Для этого домножим второе уравнение на (3).

    Знаки при иксах разные, поэтому чтоб иксы пропали, уравнения надо сложить.

    Делим уравнение на (8), чтобы найти (y).

    Игрек нашли. Теперь найдем (x), подставив вместо игрека (-2) в любое из уравнений системы.

    Икс тоже найден. Пишем ответ.

    Приведите каждое уравнение к виду линейной функции (y=kx+b).

    Постройте графики этих функций. Как? Можете прочитать здесь .

    Как решать систему линейных уравнений с дробями 7 класс

  1. Найдите координаты ((x;y)) точки пересечения графиков и запишите их в ответ в виде ((x_0;y_0 )).
    Ответ: ((4;2))
  2. Матхак. Если сомневаетесь в правильности ответа (неважно каким способом вы решали), проверьте подстановкой значений (x_0) и (y_0) в каждое уравнение. Если оба уравнения превратятся в верные равенства, то ответ правильный.
    Пример: решая систему (begin3x-8=2y\x+y=6end), мы получили ответ ((4;2)). Проверим его, подставив вместо икса (4), а вместо игрека (2).

    Оба уравнения сошлись, решение системы найдено верно.

    Пример. Решите систему уравнений: (begin3(5x+3y)-6=2x+11\4x-15=11-2(4x-y)end)

    Перенесем все выражения с буквами в одну сторону, а числа в другую.

    Во втором уравнении каждое слагаемое — четное, поэтому упрощаем уравнение, деля его на (2).

    Эту систему линейных уравнений можно решить любым из способов, но мне кажется, что способ подстановки здесь удобнее всего. Выразим y из второго уравнения.

    Подставим (6x-13) вместо (y) в первое уравнение.

    Первое уравнение превратилась в обычное линейное . Решаем его.

    Сначала раскроем скобки.

    Перенесем (117) вправо и приведем подобные слагаемые.

    Поделим обе части первого уравнения на (67).

    Ура, мы нашли (x)! Подставим его значение во второе уравнение и найдем (y).

    Видео:Уравнения с дробями. Алгебра 7 класс.Скачать

    Уравнения с дробями. Алгебра 7 класс.

    Решение задач по математике онлайн

    //mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

    Видео:Решение систем уравнений с дробями ..|| 7 классСкачать

    Решение систем уравнений с дробями ..|| 7 класс

    Калькулятор онлайн.
    Решение системы двух линейных уравнений с двумя переменными.
    Метод подстановки и сложения.

    С помощью данной математической программы вы можете решить систему двух линейных уравнений с двумя переменными методом подстановки и методом сложения.

    Программа не только даёт ответ задачи, но и приводит подробное решение с пояснениями шагов решения двумя способами: методом подстановки и методом сложения.

    Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

    Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

    В качестве переменной может выступать любая латинсая буква.
    Например: ( x, y, z, a, b, c, o, p, q ) и т.д.

    При вводе уравнений можно использовать скобки. При этом уравнения сначала упрощаются. Уравнения после упрощений должны быть линейными, т.е. вида ax+by+c=0 с точностью порядка следования элементов.
    Например: 6x+1 = 5(x+y)+2

    В уравнениях можно использовать не только целые, но также и дробные числа в виде десятичных и обыкновенных дробей.

    Правила ввода десятичных дробей.
    Целая и дробная часть в десятичных дробях может разделяться как точкой так и запятой.
    Например: 2.1n + 3,5m = 55

    Правила ввода обыкновенных дробей.
    В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
    Знаменатель не может быть отрицательным.
    При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
    Целая часть отделяется от дроби знаком амперсанд: &

    Примеры.
    -1&2/3y + 5/3x = 55
    2.1p + 55 = -2/7(3,5p — 2&1/8q)

    Решить систему уравнений

    Видео:ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод ПодстановкиСкачать

    ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод Подстановки

    Немного теории.

    Видео:Система уравнений. Метод алгебраического сложенияСкачать

    Система уравнений. Метод алгебраического сложения

    Решение систем линейных уравнений. Способ подстановки

    Последовательность действий при решении системы линейных уравнений способом подстановки:
    1) выражают из какого-нибудь уравнения системы одну переменную через другую;
    2) подставляют в другое уравнение системы вместо этой переменной полученное выражение;
    3) решают получившееся уравнение с одной переменной;
    4) находят соответствующее значение второй переменной.

    Пример. Решим систему уравнений:
    $$ left< begin 3x+y=7 \ -5x+2y=3 end right. $$

    Выразим из первого уравнения y через x: y = 7-3x. Подставив во второе уравнение вместо y выражение 7-Зx, получим систему:
    $$ left< begin y = 7—3x \ -5x+2(7-3x)=3 end right. $$

    Нетрудно показать, что первая и вторая системы имеют одни и те же решения. Во второй системе второе уравнение содержит только одну переменную. Решим это уравнение:
    $$ -5x+2(7-3x)=3 Rightarrow -5x+14-6x=3 Rightarrow -11x=-11 Rightarrow x=1 $$

    Подставив в равенство y=7-3x вместо x число 1, найдем соответствующее значение y:
    $$ y=7-3 cdot 1 Rightarrow y=4 $$

    Пара (1;4) — решение системы

    Системы уравнений с двумя переменными, имеющие одни и те же решения, называются равносильными. Системы, не имеющие решений, также считают равносильными.

    Видео:КАК РЕШИТЬ УРАВНЕНИЕ С ДРОБЯМИ, СВОДЯЩЕЕСЯ К ЛИНЕЙНОМУ? Примеры | АЛГЕБРА 7 классСкачать

    КАК РЕШИТЬ УРАВНЕНИЕ С ДРОБЯМИ, СВОДЯЩЕЕСЯ К ЛИНЕЙНОМУ? Примеры | АЛГЕБРА 7 класс

    Решение систем линейных уравнений способом сложения

    Рассмотрим еще один способ решения систем линейных уравнений — способ сложения. При решении систем этим способом, как и при решении способом подстановки, мы переходим от данной системы к другой, равносильной ей системе, в которой одно из уравнений содержит только одну переменную.

    Последовательность действий при решении системы линейных уравнений способом сложения:
    1) умножают почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами;
    2) складывают почленно левые и правые части уравнений системы;
    3) решают получившееся уравнение с одной переменной;
    4) находят соответствующее значение второй переменной.

    Пример. Решим систему уравнений:
    $$ left< begin 2x+3y=-5 \ x-3y=38 end right. $$

    В уравнениях этой системы коэффициенты при y являются противоположными числами. Сложив почленно левые и правые части уравнений, получим уравнение с одной переменной 3x=33. Заменим одно из уравнений системы, например первое, уравнением 3x=33. Получим систему
    $$ left< begin 3x=33 \ x-3y=38 end right. $$

    Из уравнения 3x=33 находим, что x=11. Подставив это значение x в уравнение ( x-3y=38 ) получим уравнение с переменной y: ( 11-3y=38 ). Решим это уравнение:
    ( -3y=27 Rightarrow y=-9 )

    Таким образом мы нашли решение системмы уравнений способом сложения: ( x=11; y=-9 ) или ( (11; -9) )

    Воспользовавшись тем, что в уравнениях системы коэффициенты при y являются противоположными числами, мы свели ее решение к решению равносильной системы (сумировав обе части каждого из уравнений исходной симтемы), в которой одно из уравнений содержит только одну переменную.

    Видео:МЕТОД ПОДСТАНОВКИ 7 класс СИСТЕМА УРАВНЕНИЙСкачать

    МЕТОД ПОДСТАНОВКИ 7 класс СИСТЕМА УРАВНЕНИЙ

    Алгебра. Урок 4. Уравнения, системы уравнений

    Смотрите бесплатные видео-уроки на канале Ёжику Понятно по теме “Уравнения”.

    Как решать систему линейных уравнений с дробями 7 класс

    Видео-уроки на канале Ёжику Понятно. Подпишись!

    Содержание страницы:

    • Линейные уравнения

    Видео:№7 Линейное уравнение (5х+4)/2+3=9x/5 Простое уравнение с дробями Решите уравнение с дробью ОГЭ ЕГЭСкачать

    №7 Линейное уравнение (5х+4)/2+3=9x/5 Простое уравнение с дробями Решите уравнение с дробью  ОГЭ ЕГЭ

    Линейные уравнения

    Линейное уравнение – уравнение вида a x = b , где x – переменная, a и b некоторые числа, причем a ≠ 0 .

    Примеры линейных уравнений:

    1. 3 x = 2
    1. 2 7 x = − 5

    Линейными уравнениями называют не только уравнения вида a x = b , но и любые уравнения, которые при помощи преобразований и упрощений сводятся к этому виду.

    Как же решать уравнения, которые приведены к виду a x = b ? Достаточно поделить левую и правую часть уравнения на величину a . В результате получим ответ: x = b a .

    Как распознать, является ли произвольное уравнение линейным или нет? Надо обратить внимание на переменную, которая присутствует в нем. Если старшая степень, в которой стоит переменная, равна единице, то такое уравнение является линейным уравнением.

    Для того, чтобы решить линейное уравнение , необходимо раскрыть скобки (если они есть), перенести «иксы» в левую часть, числа – в правую, привести подобные слагаемые. Получится уравнение вида a x = b . Решение данного линейного уравнения: x = b a .

    Примеры решения линейных уравнений:

    1. 2 x + 1 = 2 ( x − 3 ) + 8

    Это линейное уравнение, так как переменная стоит в первое степени.

    Попробуем преобразовать его к виду a x = b :

    Для начала раскроем скобки:

    2 x + 1 = 4 x − 6 + 8

    В левую часть переносятся все слагаемые с x , в правую – числа:

    Теперь поделим левую и правую часть на число ( -2 ) :

    − 2 x − 2 = 1 − 2 = − 1 2 = − 0,5

    Это уравнение не является линейным уравнением, так как старшая степень, в которой стоит переменная x равна двум.

    Это уравнение выглядит линейным на первый взгляд, но после раскрытия скобок старшая степень становится равна двум:

    x 2 + 3 x − 8 = x − 1

    Это уравнение не является линейным уравнением.

    Особые случаи (в 4 задании ОГЭ они не встречались, но знать их полезно)

    1. 2 x − 4 = 2 ( x − 2 )

    Это линейное уравнение. Раскроем скобки, перенесем иксы влево, числа вправо:

    2 x − 2 x = − 4 + 4

    И как же здесь искать x , если его нет? После выполнения преобразований мы получили верное равенство (тождество), которое не зависит от значения переменной x . Какое бы значение x мы ни подставляли бы в исходное уравнение, в результате всегда получается верное равенство (тождество). Значит x может быть любым числом. Запишем ответ к данном линейному уравнению.

    Это линейное уравнение. Раскроем скобки, перенесем иксы влево, числа вправо:

    2 x − 4 = 2 x − 16

    2 x − 2 x = − 16 + 4

    В результате преобразований x сократился, но в итоге получилось неверное равенство, так как . Какое бы значение x мы ни подставляли бы в исходное уравнение, в результате всегда будет неверное равенство. А это означает, что нет таких значений x , при которых равенство становилось бы верным. Запишем ответ к данному линейному уравнению.

    Видео:Графический метод решения систем линейных уравнений 7 классСкачать

    Графический метод решения систем линейных уравнений 7 класс

    Квадратные уравнения

    Квадратное уравнение – уравнение вида a x 2 + b x + c = 0, где x – переменная, a , b и c – некоторые числа, причем a ≠ 0 .

    Алгоритм решения квадратного уравнения:

    1. Раскрыть скобки, перенести все слагаемые в левую часть, чтобы уравнение приобрело вид: a x 2 + b x + c = 0
    2. Выписать, чему равны в числах коэффициенты: a = … b = … c = …
    3. Вычислить дискриминант по формуле: D = b 2 − 4 a c
    4. Если D > 0 , будет два различных корня, которые находятся по формуле: x 1,2 = − b ± D 2 a
    5. Если D = 0, будет один корень, который находится по формуле: x = − b 2 a
    6. Если D 0, решений нет: x ∈ ∅

    Примеры решения квадратного уравнения:

    1. − x 2 + 6 x + 7 = 0

    a = − 1, b = 6, c = 7

    D = b 2 − 4 a c = 6 2 − 4 ⋅ ( − 1 ) ⋅ 7 = 36 + 28 = 64

    D > 0 – будет два различных корня:

    x 1,2 = − b ± D 2 a = − 6 ± 64 2 ⋅ ( − 1 ) = − 6 ± 8 − 2 = [ − 6 + 8 − 2 = 2 − 2 = − 1 − 6 − 8 − 2 = − 14 − 2 = 7

    Ответ: x 1 = − 1, x 2 = 7

    a = − 1, b = 4, c = − 4

    D = b 2 − 4 a c = 4 2 − 4 ⋅ ( − 1 ) ⋅ ( − 4 ) = 16 − 16 = 0

    D = 0 – будет один корень:

    x = − b 2 a = − 4 2 ⋅ ( − 1 ) = − 4 − 2 = 2

    a = 2, b = − 7, c = 10

    D = b 2 − 4 a c = ( − 7 ) 2 − 4 ⋅ 2 ⋅ 10 = 49 − 80 = − 31

    D 0 – решений нет.

    Также существуют неполные квадратные уравнения (это квадратные уравнения, у которых либо b = 0, либо с = 0, либо b = с = 0 ). Смотрите видео, как решать такие квадратные уравнения!

    Видео:Урок по теме СПОСОБ ПОДСТАНОВКИ 7 классСкачать

    Урок по теме СПОСОБ ПОДСТАНОВКИ 7 класс

    Разложение квадратного трехчлена на множители

    Квадратный трехчлен можно разложить на множители следующим образом:

    a x 2 + b x + c = a ⋅ ( x − x 1 ) ⋅ ( x − x 2 )

    где a – число, коэффициент перед старшим коэффициентом,

    x – переменная (то есть буква),

    x 1 и x 2 – числа, корни квадратного уравнения a x 2 + b x + c = 0 , которые найдены через дискриминант.

    Если квадратное уравнение имеет только один корень , то разложение выглядит так:

    a x 2 + b x + c = a ⋅ ( x − x 0 ) 2

    Примеры разложения квадратного трехчлена на множители:

    1. − x 2 + 6 x + 7 = 0 ⇒ x 1 = − 1, x 2 = 7

    − x 2 + 6 x + 7 = ( − 1 ) ⋅ ( x − ( − 1 ) ) ( x − 7 ) = − ( x + 1 ) ( x − 7 ) = ( x + 1 ) ( 7 − x )

    1. − x 2 + 4 x − 4 = 0 ; ⇒ x 0 = 2

    − x 2 + 4 x − 4 = ( − 1 ) ⋅ ( x − 2 ) 2 = − ( x − 2 ) 2

    Если квадратный трехчлен является неполным, ( ( b = 0 или c = 0 ) то его можно разложить на множители следующими способами:

    • c = 0 ⇒ a x 2 + b x = x ( a x + b )
    • b = 0 ⇒ применить формулу сокращенного умножения для разности квадратов.

    Видео:ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

    ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по Математике

    Дробно рациональные уравнения

    Пусть f ( x ) и g ( x ) – некоторые функции, зависящие от переменной x .

    Дробно рациональное уравнение – это уравнение вида f ( x ) g ( x ) = 0 .

    Для того, чтобы решить дробно рациональное уравнение, надо вспомнить, что такое ОДЗ и когда оно возникает.

    ОДЗ – область допустимых значений переменной.

    В выражении вида f ( x ) g ( x ) = 0

    ОДЗ: g ( x ) ≠ 0 (знаменатель дроби не может быть равен нулю).

    Алгоритм решения дробно рационального уравнения:

    1. Привести выражение к виду f ( x ) g ( x ) = 0 .
    2. Выписать ОДЗ: g ( x ) ≠ 0.
    3. Приравнять числитель дроби к нулю f ( x ) = 0 и найти корни.
    4. Указать в ответе корни из числителя, исключив те корни, которые попали в ОДЗ.

    Пример решения дробного рационального уравнения:

    Решить дробно рациональное уравнение x 2 − 4 2 − x = 1.

    Решение:

    Будем действовать в соответствии с алгоритмом.

    1. Привести выражение к виду f ( x ) g ( x ) = 0 .

    Переносим единичку в левую часть, записываем к ней дополнительный множитель, чтобы привести оба слагаемых к одному общему знаменателю:

    x 2 − 4 2 − x − 1 2 − x = 0

    x 2 − 4 2 − x − 2 − x 2 − x = 0

    x 2 − 4 − ( 2 − x ) 2 − x = 0

    x 2 − 4 − 2 + x 2 − x = 0

    x 2 + x − 6 2 − x = 0

    Первый шаг алгоритма выполнен успешно.

    Обводим в рамочку ОДЗ, не забываем про него: x ≠ 2

    1. Приравнять числитель дроби к нулю f ( x ) = 0 и найти корни:

    x 2 + x − 6 = 0 – Квадратное уравнение. Решаем через дискриминант.

    a = 1, b = 1, c = − 6

    D = b 2 − 4 a c = 1 2 − 4 ⋅ 1 ⋅ ( − 6 ) = 1 + 24 = 25

    D > 0 – будет два различных корня.

    x 1,2 = − b ± D 2 a = − 1 ± 25 2 ⋅ 1 = − 1 ± 5 2 = [ − 1 + 5 2 = 4 2 = 2 − 1 − 5 2 = − 6 2 = − 3

    1. Указать в ответе корни из числителя, исключив те корни, которые попали в ОДЗ.

    Корни, полученные на предыдущем шаге:

    Значит, в ответ идет только один корень, x = − 3.

    Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

    Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

    Системы уравнений

    Системой уравнений называют два уравнения с двумя неизвестными (как правило, неизвестные обозначаются x и y ) , которые объединены в общую систему фигурной скобкой.

    Пример системы уравнений

    Решить систему уравнений – найти пару чисел x и y , которые при подстановке в систему уравнений образуют верное равенство в обоих уравнениях системы.

    Существует два метода решений систем линейных уравнений:

    1. Метод подстановки.
    2. Метод сложения.

    Алгоритм решения системы уравнений методом подстановки:

    1. Выразить из любого уравнения одну переменную через другую.
    2. Подставить в другое уравнение вместо выраженной переменной полученное значение.
    3. Решить уравнение с одной неизвестной.
    4. Найти оставшуюся неизвестную.

    Решить систему уравнений методом подстановки

    Решение:

    1. Выразить из любого уравнения одну переменную через другую.
    1. Подставить в другое уравнение вместо выраженной переменной полученное значение.
    1. Решить уравнение с одной неизвестной.

    3 ( 8 − 2 y ) − y = − 4

    y = − 28 − 7 = 28 7 = 4

    1. Найти оставшуюся неизвестную.

    x = 8 − 2 y = 8 − 2 ⋅ 4 = 8 − 8 = 0

    Ответ можно записать одним из трех способов:

    Решение системы уравнений методом сложения.

    Метод сложения основывается на следующем свойстве:

    Идея метода сложения состоит в том, чтобы избавиться от одной из переменных, сложив уравнения.

    Решить систему уравнений методом сложения

    Давайте избавимся в данном примере от переменной x . Суть метода состоит в том, чтобы в первом и во втором уравнении перед переменной x стояли противоположные коэффициенты. Во втором уравнении перед x стоит коэффициент 3 . Для того, чтобы метод сложения сработал, надо чтобы перед переменной x оказался коэффициент ( − 3 ) . Для этого домножим левую и правую часть первого уравнения на ( − 3 ) .

    Теперь, когда перед переменной в обоих уравнениях стоят противоположные коэффициенты, при сложении левых частей уравнений переменная x исчезнет.

    ( − 3 x − 6 y ) + ( 3 x − y ) = ( − 24 ) + ( − 4 )

    − 3 x − 6 y + 3 x − y = − 24 − 4

    y = − 28 − 7 = 28 7 = 4

    Осталось найти переменную x . Для этого подставим y = 4 в любое из двух уравнений системы. Например, в первое.

    Ответ можно записать одним из трех способов:

    Видео:Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать

    Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.

    Задание №9 из ОГЭ 2020. Типовые задачи и принцип их решения.

    🔍 Видео

    Решить уравнение с дробями - Математика - 6 классСкачать

    Решить уравнение с дробями - Математика - 6 класс

    МЕТОД АЛГЕБРАИЧЕСКОГО СЛОЖЕНИЯ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ II #математика #егэ #shorts #профильныйегэСкачать

    МЕТОД АЛГЕБРАИЧЕСКОГО СЛОЖЕНИЯ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ II #математика #егэ  #shorts #профильныйегэ

    СИСТЕМЫ УРАВНЕНИЙ В ЕГЭ ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэСкачать

    СИСТЕМЫ УРАВНЕНИЙ В ЕГЭ ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэ

    Сложное уравнение с дробями. Алгебра 7 класс.Скачать

    Сложное уравнение с дробями. Алгебра 7 класс.

    Решение систем уравнений методом подстановкиСкачать

    Решение систем уравнений методом подстановки

    7 класс, 39 урок, Метод алгебраического сложенияСкачать

    7 класс, 39 урок, Метод алгебраического сложения
    Поделиться или сохранить к себе: