Как решать систему квадратных уравнений с тремя неизвестными

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Как решать систему уравнений

Как решать систему квадратных уравнений с тремя неизвестными

О чем эта статья:

8 класс, 9 класс, ЕГЭ/ОГЭ

Видео:Решение систем уравнений второго порядка. 8 класс.Скачать

Решение систем уравнений второго порядка. 8 класс.

Основные понятия

Алгебра в 8 и 9 классе становится сложнее. Но если изучать темы последовательно и регулярно практиковаться в тетрадке и онлайн — ходить на уроки математики будет не так страшно.

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в исходное уравнение получилось верное числовое равенство.

Например, возьмем 3 + 4 = 7. При вычислении левой части получается верное числовое равенство, то есть 7 = 7.

Уравнением можно назвать, например, равенство 3 + x = 7 с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Система уравнений — это несколько уравнений, для которых надо найти значения неизвестных, каждое из которых соответствует данным уравнениям.

Так как существует множество уравнений, составленных с их использованием систем уравнений также много. Поэтому для удобства изучения существуют отдельные группы по схожим характеристикам. Рассмотрим способы решения систем уравнений.

Видео:Система с тремя переменнымиСкачать

Система с тремя переменными

Линейное уравнение с двумя переменными

Уравнение вида ax + by + c = 0 называется линейным уравнением с двумя переменными x и y, где a, b, c — числа.

Решением этого уравнения называют любую пару чисел (x; y), которая соответствует этому уравнению и обращает его в верное числовое равенство.

Теорема, которую нужно запомнить: если в линейном уравнение есть хотя бы один не нулевой коэффициент при переменной — его графиком будет прямая линия.

Вот алгоритм построения графика ax + by + c = 0, где a ≠ 0, b ≠ 0:

Дать переменной 𝑥 конкретное значение x = x₁, и найти значение y = y₁ при ax₁ + by + c = 0.

Дать x другое значение x = x₂, и найти соответствующее значение y = y₂ при ax₂ + by + c = 0.

Построить на координатной плоскости xy точки: (x₁; y₁); (x₂; y₂).

Провести прямую через эти две точки и вуаля — график готов.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Видео:Универсальный способ решения симметрических систем с тремя неизвестнымиСкачать

Универсальный способ решения симметрических систем с тремя неизвестными

Система двух линейных уравнений с двумя переменными

Для ax + by + c = 0 можно сколько угодно раз брать произвольные значение для x и находить значения для y. Решений в таком случае может быть бесчисленное множество.

Система линейных уравнений (ЛУ) с двумя переменными образуется в случае, когда x и y связаны не одним, а двумя уравнениями. Такая система может иметь одно решение или не иметь решений совсем. Выглядит это вот так:

Из первого линейного уравнения a₁x + b₁y + c₁ = 0 можно получить линейную функцию, при условии если b₁ ≠ 0: y = k₁x + m₁. График — прямая линия.

Из второго ЛУ a₂x + b₂y + c₂ = 0 можно получить линейную функцию, если b₂ ≠ 0: y = k₂x + m₂. Графиком снова будет прямая линия.

Можно записать систему иначе:

Множеством решений первого ЛУ является множество точек, лежащих на определенной прямой, аналогично и для второго ЛУ. Если эти прямые пересекаются — у системы есть единственное решение. Это возможно при условии, если k₁ ≠ k₂.

Две прямые могут быть параллельны, а значит, они никогда не пересекутся и система не будет иметь решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ ≠ m₂.

Две прямые могут совпасть, и тогда каждая точка будет решением, а у системы будет бесчисленное множество решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ = m₂.

Видео:Математика | Система уравнений на желтую звездочку (feat Золотой Медалист по бегу)Скачать

Математика | Система уравнений на желтую звездочку (feat  Золотой Медалист по бегу)

Метод подстановки

Разберем решение систем уравнений методом подстановки. Вот алгоритм при переменных x и y:

Выразить одну переменную через другую из более простого уравнения системы.

Подставить то, что получилось на место этой переменной в другое уравнение системы.

Решить полученное уравнение, найти одну из переменных.

Подставить поочередно каждый из найденных корней в уравнение, которое получили на первом шаге, и найти второе неизвестное значение.

Записать ответ. Ответ принято записывать в виде пар значений (x; y).

Решим систему уравнений методом подстановки

Потренируемся решать системы линейных уравнений методом подстановки.

Пример 1

Решите систему уравнений:

x − y = 4
x + 2y = 10

Выразим x из первого уравнения:

x − y = 4
x = 4 + y

Подставим получившееся выражение во второе уравнение вместо x:

x + 2y = 10
4 + y + 2y = 10

Решим второе уравнение относительно переменной y:

4 + y + 2y = 10
4 + 3y = 10
3y = 10 − 4
3y = 6
y = 6 : 3
y = 2

Полученное значение подставим в первое уравнение вместо y и решим уравнение:

x − y = 4
x − 2 = 4
x = 4 + 2
x = 6

Ответ: (6; 2).

Пример 2

Решите систему линейных уравнений:

x + 5y = 7
3x = 4 + 2y

Сначала выразим переменную x из первого уравнения:

x + 5y = 7
x = 7 − 5y

Выражение 7 − 5y подставим вместо переменной x во второе уравнение:

3x = 4 + 2y
3 (7 − 5y) = 4 + 2y

Решим второе линейное уравнение в системе:

3 (7 − 5y) = 4 + 2y
21 − 15y = 4 + 2y
21 − 15y − 2y = 4
21 − 17y = 4
17y = 21 − 4
17y = 17
y = 17 : 17
y = 1

Подставим значение y в первое уравнение и найдем значение x:

x + 5y = 7
x + 5 = 7
x = 7 − 5
x = 2

Ответ: (2; 1).

Пример 3

Решите систему линейных уравнений:

x − 2y = 3
5x + y = 4

Из первого уравнения выразим x:

x − 2y = 3
x = 3 + 2y

Подставим 3 + 2y во второе уравнение системы и решим его:

5x + y = 4
5 (3 + 2y) + y = 4
15 + 10y + y = 4
15 + 11y = 4
11y = 4 − 15
11y = −11
y = −11 : 11
y = −1

Подставим получившееся значение в первое уравнение и решим его:

x − 2y = 3
x − 2 (−1) = 3
x + 2 = 3
x = 3 − 2
x = 1

Ответ: (1; −1).

Видео:Решение системы уравнений с тремя неизвестными с помощью формул Крамера | Высшая математикаСкачать

Решение системы уравнений с тремя неизвестными с помощью формул Крамера | Высшая математика

Метод сложения

Теперь решим систему уравнений способом сложения. Алгоритм с переменными x и y:

При необходимости умножаем почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами.

Складываем почленно левые и правые части уравнений системы.

Решаем получившееся уравнение с одной переменной.

Находим соответствующие значения второй переменной.

Запишем ответ в в виде пар значений (x; y).

Пример.

Домножим первое уравнение системы на -2, второе оставим без изменений. Система примет вид:

Сложим уравнения, получим

Отсюда y = -3, а, значит, x = 2

Ответ: (2; -3).

Видео:СИСТЕМА УРАВНЕНИЙ нелинейных 9 класс алгебраСкачать

СИСТЕМА УРАВНЕНИЙ нелинейных 9 класс алгебра

Система линейных уравнений с тремя переменными

Системы ЛУ с тремя переменными решают так же, как и с двумя. В них присутствуют три неизвестных с коэффициентами и свободный член. Выглядит так:

Решений в таком случае может быть бесчисленное множество. Придавая двум переменным различные значения, можно найти третье значение. Ответ принято записывать в виде тройки значений (x; y; z).

Если x, y, z связаны между собой тремя уравнениями, то образуется система трех ЛУ с тремя переменными. Для решения такой системы можно применять метод подстановки и метод сложения.

Видео:9 класс, 11 урок, Методы решения систем уравненийСкачать

9 класс, 11 урок, Методы решения систем уравнений

Решение задач

Разберем примеры решения систем уравнений.

Задание 1. Как привести уравнение к стандартному виду ах + by + c = 0?

5x − 8y = 4x − 9y + 3

5x − 8y = 4x − 9y + 3

5x − 8y − 4x + 9y = 3

Задание 2. Как решать систему уравнений способом подстановки

Выразить у из первого уравнения:

Подставить полученное выражение во второе уравнение:

Найти соответствующие значения у:

Задание 3. Как решать систему уравнений методом сложения

  1. Решение систем линейных уравнений начинается с внимательного просмотра задачи. Заметим, что можно исключить у. Для этого умножим первое уравнение на минус два и сложим со вторым:
  1. Решаем полученное квадратное уравнение любым способом. Находим его корни:
  1. Найти у, подставив найденное значение в любое уравнение:
  1. Ответ: (1; 1), (1; -1).

Задание 4. Решить систему уравнений

Решим второе уравнение и найдем х = 2, х = 5. Подставим значение переменной х в первое уравнение и найдем соответствующее значение у.

Задание 5. Как решить систему уравнений с двумя неизвестными

При у = -2 первое уравнение не имеет решений, при у = 2 получается:

Видео:Решение системы уравнений с тремя переменнымиСкачать

Решение системы уравнений с тремя переменными

Решить систему из 3-х уравнений с 3-мя неизвестными онлайн

Этот онлайн калькулятор предназначен для решения систем из трёх уравнений с тремя неизвестными. Вы можете быть уверены, что калькулятор выдаёт точный результат.

Видео:ОГЭ задача 21 (системы уравнений) #3Скачать

ОГЭ задача 21 (системы уравнений) #3

Калькулятор

Видео:СИСТЕМЫ УРАВНЕНИЙ В ЕГЭ ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэСкачать

СИСТЕМЫ УРАВНЕНИЙ В ЕГЭ ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэ

Инструкция

Примечание: π записывается как pi; корень квадратный как sqrt().

Шаг 1. Введите в поля три уравнения.

Шаг 2. Нажмите кнопку “Решить систему”.

Шаг 3. Получите точный результат.

В калькулятор нужно вводить только латинские буквы и любые цифры с клавиатуры.

Видео:Решение систем уравнений второй степени. Алгебра, 9 классСкачать

Решение систем уравнений второй степени. Алгебра, 9 класс

Что такое система из 3-х уравнений с 3-мя неизвестными

Решение систем из трёх уравнений с тремя неизвестными – это то же линейное уравнение, которое, чаще всего решается методом Крамера. Однако метод Крамера можно использовать только в том случае, если определитель системы не равняется нулю. Если же определитель системы равен нулю, тогда нельзя использовать этот метод.

Следуя теореме Крамера, в таких уравнениях может быть три случая:

  1. У системы уравнений есть всего навсего одно решение.
  2. У системы уравнений имеется бесконечное множество решений.
  3. У системы уравнений нет решений.

Средняя оценка 2.7 / 5. Количество оценок: 3

Видео:Способы решения систем нелинейных уравнений. 9 класс.Скачать

Способы решения систем нелинейных уравнений. 9 класс.

Урок в 9-м классе «Система уравнений, сводящихся к квадратным»

Разделы: Математика

Цели урока:

  1. Повторить ранее изученные различные способы решения уравнений, сводящихся к квадратным.
  2. Научить сотрудничеству учеников посредством работы в малых группах, а так же взаимопомощи в процессе обучения. 3. Развитие познавательного интереса, интереса к педагогической деятельности.

Форма проведения: Работа в малых группах, с участием консультантов.

ХОД УРОКА

I. Организация начала урока.

Деление на группы

II. Сообщение учащимся цели предстоящей работы. Мотивация учения.

III. Интеллектуальная разминка. (Приложение 1)

Разминка в форме тестовых заданий. Подготовка к ЕГЭ.

IV. Проверка индивидуального домашнего задания, направленного на повторение основных понятий, основополагающих знаний, умений, способов действий. У доски работают консультанты. На предыдущем уроке им было задано индивидуальное домашнее задание.

Системы нелинейных уравнений, сводящихся к квадратным. (Приложение 2)

Решить систему уравнений Как решать систему квадратных уравнений с тремя неизвестными

Решение: Если вычесть второе уравнение из первого, получим Как решать систему квадратных уравнений с тремя неизвестнымиЗначит надо решить систему уравнений

Как решать систему квадратных уравнений с тремя неизвестными

Как решать систему квадратных уравнений с тремя неизвестными

откуда Как решать систему квадратных уравнений с тремя неизвестными. Корнями этого квадратного уравнения служат Как решать систему квадратных уравнений с тремя неизвестными. Если y1=3, то из Как решать систему квадратных уравнений с тремя неизвестныминаходим х1=1. Если же Как решать систему квадратных уравнений с тремя неизвестными.

Ответ: Как решать систему квадратных уравнений с тремя неизвестными

Как решать систему квадратных уравнений с тремя неизвестными

Как решать систему квадратных уравнений с тремя неизвестными

Ответ: Как решать систему квадратных уравнений с тремя неизвестными

Метод введения новых неизвестных при решении систем уравнений. (Приложение 3)

Решить систему уравнений Как решать систему квадратных уравнений с тремя неизвестными

Решение. Обозначим Как решать систему квадратных уравнений с тремя неизвестнымичерез u, а Как решать систему квадратных уравнений с тремя неизвестнымичерез v. Тогда система примет вид

Как решать систему квадратных уравнений с тремя неизвестными

То есть получится система двух линейных уравнений с двумя неизвестными u и v. Из первого уравнения выражаем u через v: Как решать систему квадратных уравнений с тремя неизвестнымии подставляя во второе уравнение, получим Как решать систему квадратных уравнений с тремя неизвестными, откуда v=2. Теперь находим u=1 и решаем уравнения Как решать систему квадратных уравнений с тремя неизвестными

Ответ: Как решать систему квадратных уравнений с тремя неизвестными

Как решать систему квадратных уравнений с тремя неизвестными

Как решать систему квадратных уравнений с тремя неизвестными

Как решать систему квадратных уравнений с тремя неизвестными

Ответ: Как решать систему квадратных уравнений с тремя неизвестными

Решить систему уравнений Как решать систему квадратных уравнений с тремя неизвестными

Решение. Заметим, что для решений системы выполняется условие Как решать систему квадратных уравнений с тремя неизвестными. В самом деле, из первого уравнения системы следует, что если Как решать систему квадратных уравнений с тремя неизвестными, а числа Как решать систему квадратных уравнений с тремя неизвестнымине удовлетворяют второму уравнению системы. Разделим первое уравнение на Как решать систему квадратных уравнений с тремя неизвестными. Получится уравнение

Как решать систему квадратных уравнений с тремя неизвестными

Введем вспомогательное неизвестное Как решать систему квадратных уравнений с тремя неизвестными. Уравнение примет вид Как решать систему квадратных уравнений с тремя неизвестными. Это квадратное уравнение, имеющее корни Как решать систему квадратных уравнений с тремя неизвестными. Таким образом, из первого уравнения мы получаем, что либо Как решать систему квадратных уравнений с тремя неизвестнымилибо Как решать систему квадратных уравнений с тремя неизвестными. Осталось подставить выражения Как решать систему квадратных уравнений с тремя неизвестнымии Как решать систему квадратных уравнений с тремя неизвестными(рассмотрев оба случая) во второе уравнение системы. В первом случае получится уравнение Как решать систему квадратных уравнений с тремя неизвестными, откуда Как решать систему квадратных уравнений с тремя неизвестными; соответственно Как решать систему квадратных уравнений с тремя неизвестными. Во втором случае получается уравнение Как решать систему квадратных уравнений с тремя неизвестными, откуда Как решать систему квадратных уравнений с тремя неизвестными; соответственно Как решать систему квадратных уравнений с тремя неизвестными

Ответ: Как решать систему квадратных уравнений с тремя неизвестными

Возможный способ оформления

Как решать систему квадратных уравнений с тремя неизвестными

разделим первое уравнение на Как решать систему квадратных уравнений с тремя неизвестными, получим

Как решать систему квадратных уравнений с тремя неизвестными

Как решать систему квадратных уравнений с тремя неизвестными

Пусть Как решать систему квадратных уравнений с тремя неизвестными, тогда

Как решать систему квадратных уравнений с тремя неизвестными

Ответ: Как решать систему квадратных уравнений с тремя неизвестными

V. Работа в малых группах.

Решите систему уравнений

Как решать систему квадратных уравнений с тремя неизвестными

Решите систему уравнений

Как решать систему квадратных уравнений с тремя неизвестными

VI. Подведение итогов урока.

VII. Задание на дом.

Задание по группам. Группа консультантов выполняет № 624 (4, 6, 8).

💥 Видео

Решение системы уравнений методом ГауссаСкачать

Решение системы уравнений методом Гаусса

ПРОСТЕЙШИЙ метод решения систем квадратных неравенствСкачать

ПРОСТЕЙШИЙ метод решения систем квадратных неравенств

ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод ПодстановкиСкачать

ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод Подстановки

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

Как решить систему линейных уравнений с тремя неизвестными!?!Скачать

Как решить систему линейных уравнений с тремя неизвестными!?!

2 уравнения и 3 неизвестных — система, которая на олимпиаде вынесла почти всехСкачать

2 уравнения и 3 неизвестных — система, которая на олимпиаде вынесла почти всех

Решение систем уравнений методом подстановкиСкачать

Решение систем уравнений методом подстановки
Поделиться или сохранить к себе: