Как решать систему из двух уравнений с четырьмя неизвестными

Математика

68. Уравнения с четырьмя и более неизвестными . Теперь ясны следующие соображения: одно уравнение с четырьмя неизвестными имеет бесконечно много решений, причем можно давать произвольные значения трем неизвестным, два уравнения с 4 неизвестными имеют бесконечно много решений, причем произвольные значения можно давать двум неизвестным, три уравнения с 4 неизвестными имеют бесконечно много решений, причем произвольные значения можно давать одному неизвестному, четыре уравнения с 4 неизвестными имеют лишь одно решение (конечно, если ни одно из этих уравнений не есть следствие остальных и не противоречит остальным).

Такие соображения можно продолжить и дальше. Например, 5 уравнений с 8-ю неизвестными имеют бесконечно много решений, причем произвольные значения можно давать трем неизвестным и т. п.

Решать системы уравнений с большим числом неизвестных приходится редко. Следует при этом решении пользоваться по возможности всеми особенностями уравнений, чтобы упростить решение.

Рассмотрим 2 примера. Пример 1:

x + y + 2z – t = 9
x + y – 2z + t = 7
x – y + z + 2t = –9
x – y – z – 2t = 5

Сложив 1-е и 2-е уравнения по частям, мы получим очень простое уравнение только с двумя неизвестными, а именно

2x + 2y = 16 или x + y = 8.

Сложив по частям 3-е и 4-е уравнения, получим:

2x – 2y = –4 или x – y = –2.

Теперь легко решить 2 полученных уравнения (x + y = 8 и x – y = –2), и тогда найдем x = 3 и y = 5.

Подставляя эти значения в 1-е и в 3-е уравнения, получим:

3 + 5 + 2z – t = 9 или 2z – t = 1
3 – 5 + z + 2t = –9 или z + 2t = –7

Подстановка этих значений во 2-е и 4-е уравнения приведет к таким же точно уравнениям.

Теперь остается решить 2 уравнения с 2 неизвестными:

Видео:Решение систем уравнений методом подстановкиСкачать

Решение систем уравнений методом подстановки

Решение СЛАУ 4-го порядка методом Гаусса

В данной статье мы продолжим знакомиться с решениями СЛАУ методом Гаусса.

Теперь мы рассмотрим пример решения матрицы четвёртого порядка, то есть системы уравнений, состоящей из четырёх неизвестных.

Если вы ещё не знаете, как решать этим методом матрицы третьего порядка, то вам необходимо обязательно прочитать эту статью. В ней мы изложили суть данного метода и подробным образом расписали решение подобного задания.

Для того чтобы решить матрицу четвёртого порядка, мы должны воспользоваться тем же алгоритмом решения, что и для матриц третьего порядка.

Необходимо постепенно трансформировать начальную матрицу путём элементарных преобразований с целью получения единичной матрицы из первых четырёх столбцов, в то время как в пятом столбце свободных членов мы получим значения x, y, z, c соответственно. Приступим к практике.

Дана система уравнений:

Как решать систему из двух уравнений с четырьмя неизвестными

1. Составим матрицу:

Как решать систему из двух уравнений с четырьмя неизвестными

2. Преобразуем матрицу:

2.1. Из второй строки вычитаем первую строку:

Как решать систему из двух уравнений с четырьмя неизвестными

2.2. Из третьей строки вычитаем первую строку, умноженную на 3:

Как решать систему из двух уравнений с четырьмя неизвестными

2.3. Из четвертой строки вычитаем первую строку, умноженную на 2:

Как решать систему из двух уравнений с четырьмя неизвестными

2.4. Из четвертой строки вычитаем вторую строку:

Как решать систему из двух уравнений с четырьмя неизвестными

2.5. Прибавляем к третьей строке вторую строку, умноженную на 4:

Как решать систему из двух уравнений с четырьмя неизвестными

2.6. Делим третью строку на -3:

Как решать систему из двух уравнений с четырьмя неизвестными

2.7. Прибавляем к четвертой строке третью строку, умноженную на 6:

Как решать систему из двух уравнений с четырьмя неизвестными

2.8. Делим четвертую строку на 51:

Как решать систему из двух уравнений с четырьмя неизвестными

2.9. Вычитаем из первой строки вторую строку:

Как решать систему из двух уравнений с четырьмя неизвестными

2.10. Вычитаем из первой строки третью строку:

Как решать систему из двух уравнений с четырьмя неизвестными

2.11. Вычитаем из второй строки третью строку:

Как решать систему из двух уравнений с четырьмя неизвестными

2.12. Вычитаем из третьей строки четвертую строку, умноженную на 9:

Как решать систему из двух уравнений с четырьмя неизвестными

2.13. Прибавляем ко второй строке четвертую строку, умноженную на 13:

Как решать систему из двух уравнений с четырьмя неизвестными

2.14. Прибавляем к первой строке четвертую строку, умноженную на 2:

Как решать систему из двух уравнений с четырьмя неизвестными

Можете заметить, решение матриц четвёртого порядка является достаточно простым и понятным, если расписывать каждое действие по отдельности. Промежуточные действия можете делать на черновике.

Однако есть вероятность допущения арифметических ошибок. В этих случаях советуем пользоваться калькулятором.

Видео:Система с тремя переменнымиСкачать

Система с тремя переменными

Решить систему из 4-х уравнений с 4-мя неизвестными онлайн

Воспользовавшись этим онлайн калькулятором, вы легко найдёте решение системы линейных уравнений. Вы можете вводите не только 4 уравнения, но и меньше. Калькулятор всё равно посчитает быстро и правильно.

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Калькулятор

Видео:Решение систем уравнений. Методом подстановки. Выразить YСкачать

Решение систем уравнений. Методом подстановки. Выразить Y

Инструкция

Примечание: π записывается как pi ; корень квадратный как sqrt() .

Шаг 1. Заполните все необходимые поля коэффициентами при неизвестных.

Шаг 2. Нажмите кнопку “Решить систему”.

Шаг 3. Получите развёрнутый результат.

Числа можно вводить в виде целых чисел, десятичных или дробей (1/2).

Видео:ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод ПодстановкиСкачать

ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод Подстановки

Что такое линейная система уравнений

Как правило, если в линейной системе 4 уравнения, её решают методом Гаусса. Это классический метод решения систем линейных уравнений. В основе системы лежат элементарные преобразования – сложение, вычитание, умножение на коэффициенты. Суть данного метода – последовательное исключение неизвестных.

🔍 Видео

Урок СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ С ДВУМЯ ПЕРЕМЕННЫМИ 7 КЛАСССкачать

Урок СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ С ДВУМЯ ПЕРЕМЕННЫМИ 7 КЛАСС

Решение систем уравнений методом сложенияСкачать

Решение систем уравнений методом сложения

Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать

Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.

Как ЛЕГКО РЕШАТЬ Систему Линейный Уравнений — Метод СложенияСкачать

Как ЛЕГКО РЕШАТЬ Систему Линейный Уравнений — Метод Сложения

Линейное уравнение с двумя переменными. 7 класс.Скачать

Линейное уравнение с двумя переменными. 7 класс.

Решение систем уравнений второго порядка. 8 класс.Скачать

Решение систем уравнений второго порядка. 8 класс.

Решение системы линейных уравнений графическим методом. 7 класс.Скачать

Решение системы линейных уравнений графическим методом. 7 класс.

9 класс, 11 урок, Методы решения систем уравненийСкачать

9 класс, 11 урок, Методы решения систем уравнений

Математика | Система уравнений на желтую звездочку (feat Золотой Медалист по бегу)Скачать

Математика | Система уравнений на желтую звездочку (feat  Золотой Медалист по бегу)

ЛИНЕЙНОЕ УРАНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ — Как решать линейное уравнение // Алгебра 7 классСкачать

ЛИНЕЙНОЕ УРАНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ — Как решать линейное уравнение // Алгебра 7 класс

Решение системы уравнений методом Гаусса. Бесконечное множество решенийСкачать

Решение системы уравнений методом Гаусса. Бесконечное множество решений

Урок по теме СПОСОБ ПОДСТАНОВКИ 7 классСкачать

Урок по теме СПОСОБ ПОДСТАНОВКИ 7 класс

Решение системы уравнений методом Крамера 2x2Скачать

Решение системы уравнений методом Крамера 2x2

Решение системы линейных уравнений. Подстановка. С дробными выражениями.Скачать

Решение системы линейных уравнений. Подстановка. С дробными выражениями.

Решение системы неравенств с двумя переменными. 9 класс.Скачать

Решение системы неравенств с двумя переменными. 9 класс.
Поделиться или сохранить к себе: