Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
Рабочие листы и материалы для учителей и воспитателей
Более 2 500 дидактических материалов для школьного и домашнего обучения
Конспект урока № 68
Предмет: алгебра. Класс: 8.
Тема урока: Решение простейших систем, содержащих уравнение второй степени.
Тип урока: урок закрепления полученных знаний, отработка навыков решения систем уравнений.
Цели: закрепить знания по решению систем уравнений; вспомнить способы решения уравнений;
Личностные: формировать ответственное отношение к обучению, готовность к саморазвитию и самообразованию на основе мотивации к обучению, умение объективно оценивать свой труд.
Метапредметные: формировать умение самостоятельно определять цели своего обучения, ставить и формулировать для себя учебные задачи.
Предметные : закреплять навыки решения систем уравнений, содержащих уравнение второй степени.
Планируемые результаты: у меть решать системы уравнений; у меть выбирать рациональный способ решения систем;
уметь правильно применять способы решения систем; уметь высказывать свое мнение, делать выводы;
-Алгебра 8 класс Автор: Ю.М.Колягин Год издания: 2013 Издательство: Просвещение
— карточки с заданиями
Основные понятия: система уравнений, способы решения систем уравнений, метод подстановки, способ сложения систем уравнений, теорема обратная теореме Виета.
1 этап-Оргмомент. Присутствие учащихся. Готовность к уроку.
Цель – активизация учащихся.
Коммуникативные УУД (планирование учебного сотрудничества с учителем и сверстниками)
Личностные УУД (самоопределение)
Готовность наглядности на доске и оборудования к уроку.
Приветствует детей. Проверяет готовность к уроку (рабочих тетрадей, учебников, письменных принадлежностей).
Создает позитивный настрой.
Подготовка к уроку.
2. ЭТАП Актуализация знаний. Фронтальный опрос
(Анализ объектов с целью выделения признаков)
Личностные УУД: (Формулировать собственное мнение и аргументировать его.)
Коммуникативные: вступать в диалог. Участвовать в коллективном обсуждении учебной проблемы.
Оформлять свои мысли в устной и письменной форме.
На прошлом уроке мы изучали методы решения систем, в которых содержатся уравнения второй степени.
Скажите, какими способами мы можем решить систему уравнений?
Проанализируем систему уравнений. Какой алгоритм решения имеет данная система?
Как называется такой способ?
-Методом алгебраического сложения, методом подстановки, по обратной теореме Виета, графическим методом.
Из второго уравнения выражаем х. Подставляем полученное выражение в уравнение второй степени, получается уравнение с одной переменной. Решаем получившееся уравнение с одной переменной. Тем самым найдем у , полученное значение подставляем во второе уравнение и находим х .
— Такой способ называется способом подстановки.
3 ЭТАП. Целеполагание и мотивация. Обеспечение мотивации учения детьми, принятия ими целей урока
Регулятивные: принимают познавательную цель, сохраняют ее при выполнении учебных действий, регулируют весь процесс их выполнения и четко
выполняют требования к познавательной задаче.
Сегодня мы закрепим полученные знания. Поэтому записываем тему урока: «Простейшие системы, содержащие уравнения второй степени»
Записывают в тетради дату и тему урока.
4 ЭТАП. Изучение нового материала. Опыты.
Цель –познакомить учащихся с решением простейших систем, содержащих уравнение второй степени.
КоммуникативныеУУД (Постановка вопросов)
Познавательные УУД (самостоятельное выделение-формулирование познавательной цели)
Проводят наблюдение и эксперимент под руководством учителя, анализируют, сравнивают, обобщают факты и явления.
Познавательные: (эмпирический эксперимент, формулируют выводы наблюдений, сравнивают).
Познавательные: применение полученных знаний в решении практической задачи
Каким способом решена 2я система?
Каким способом решена 3я система?
Каким способом решена 4я система?
Деятельность учащихся. Повторяют правила.
по теореме обратной теореме Виета.
5 ЭТАП. Усвоение новых знаний
Цель – обеспечение восприятия, осмысления и первичного запоминания детьми изучаемой темы: «Решение простейших систем, содержащих уравнение второй степени.»
Формирование УУД Познавательные: понимать информацию, представленную в виде текста. Развитие навыков нахождения закономерностей.
Решение систем уравнений у доски.
Слушают объяснение. Отвечают на поставленные вопросы.
6 ЭТАП. Организация первичного закрепления
Цель — Установление правильности и осознанности восприятия темы «Решение простейших систем, содержащих уравнение второй степени.».
Выявление пробелов первичного осмысления изученного материала, коррекция выявленных пробелов, обеспечение
закрепления знаний и способов действий, которые необходимы для самостоятельной работы по новому материалу.
Формулировать свои мысли в устной форме, уметь взаимодействовать с соседом при выполнении учебной задачи.
Решение у доски.
7 ЭТАП. Организация первичного контроля
Обеспечение восприятия, осмысления и первичного запоминания детьми изучаемой темы: «Решение простейших систем, содержащих уравнение второй степени.»
Выделяют в условии данные, необходимые для решения задачи, строят логическую цепочку рассуждений, сопоставляют полученный результат с
условием задачи. Сличают свой способ действия с эталоном.
Учатся устанавливать и сравнивать разные точки зрения, прежде чем принимать решение и делать выбор.
Учатся аргументировать свою точку зрения, спорить и отстаивать свою позицию невраждебным для оппонентов образом.
А теперь попробуйте выполнить
Ученикам раздаются карточки с заданиями.
1)решить системы уравнений.
б)
2)Каким способом решается эта система уравнений?
б)
в) (приложение 6)
1)а) из второго уравнения выражаем х , получим:
Подставляем в первое уравнение вместо х , получим:
Раскрываем скобки и приводим подобные
Решаем через дискриминант
,
Найденные корни подставляем во второе уравнение
=1,25
Ответ: (1.25; ); (-1:1)
б) Выразим из первого уравнения х и подставим, полученное выражение в первое уравнение
Раскрываем скобки и приводим подобные
Решаем через дискриминант
,
Полученные корни подставляем в первое уравнение
в) В ыразим из второго уравнения х и подставим выражение в первое уравнение
Умножим обе части на
— Нужно сделать замену
Получилось квадратное уравнение. Решаем через дискриминант
,
Найденные корни подставляем в замену
— нет корней
Полученный корень подставляем во второе уравнение
2)а) можно решить способом подстановки и способом сложения.
б) Способом подстановки
в) Способом подстановки
8 ЭТАП Подведение итогов урока
Дать качественную оценку работы класса и отдельных обучаемых
Обобщают полученные знания.
Структурируют знания, в диалоге с учителем совершенствуют самостоятельно выбранные критерии оценки.
— Что изучали сегодня на уроке?
— Какие новые понятия узнали на уроке?
— Какой этап урока оказался наиболее сложным?
Озвучивают понятия, отвечают на вопросы, приводят примеры.
9 ЭТАП. Рефлексия
Инициировать рефлексию детей по поводу психоэмоционального состояния, мотивации, их собственной деятельности и
взаимодействия с учителем и другими детьми в классе.
Личностные. Сформировать рефлексивную самооценку деятельности на уроке, развивать умение выражать настроение, анализировать его изменение
в течение урока.
Оцените свое отношение к уроку и насколько комфортно вы себя чувствовали на нем.
1. Самым интересным на уроке для меня было.
2. Я научился (научилась) .
3. Я хотел(а) бы ещё узнать .
4. Мне понравилось .
5. Мне не понравилось …
Дети заканчивают предложения.
10 ЭТАП Домашнее задание.
П 32 стр135.№ 500 (2): Решить систему уравнений
Курс профессиональной переподготовки
- Математика: теория и методика преподавания в образовательной организации
- Дистанционное обучение как современный формат преподавания
- Педагогическая деятельность в контексте профессионального стандарта педагога и ФГОС
- Дистанционные курсы для педагогов
- Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
- Материал подходит для УМК
- Другие материалы
- Вам будут интересны эти курсы:
- Оставьте свой комментарий
- Автор материала
- Дистанционные курсы для педагогов
- Подарочные сертификаты
- Изящные способы решения систем уравнений с двумя переменными второй степени
- Простейшие системы, содержащие уравнения 2-ой степени план-конспект занятия по алгебре (8 класс) по теме
- Скачать:
- Предварительный просмотр:
- 🎦 Видео
Математика: теория и методика преподавания в образовательной организации
- Сейчас обучается 710 человек из 76 регионов
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
- Сейчас обучается 859 человек из 77 регионов
Курс повышения квалификации
Педагогическая деятельность в контексте профессионального стандарта педагога и ФГОС
- Сейчас обучается 48 человек из 21 региона
«Мотивация здорового образа жизни. Организация секций»
Свидетельство и скидка на обучение каждому участнику
- Для всех учеников 1-11 классов
и дошкольников - Интересные задания
по 16 предметам
«Как закрыть гештальт: практики и упражнения»
Свидетельство и скидка на обучение каждому участнику
Видео:Решение систем уравнений второго порядка. 8 класс.Скачать
Дистанционные курсы для педагогов
Самые массовые международные дистанционные
Школьные Инфоконкурсы 2022
33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»
Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
5 848 602 материала в базе
Материал подходит для УМК
«Алгебра», Колягин Ю.М., Ткачёва М.В., Фёдорова Н.Е. и др.
§ 32. Решение простейших систем, содержащих уравнение второй степени
Ищем педагогов в команду «Инфоурок»
Другие материалы
- 04.06.2020
- 559
- 17
- 02.06.2020
- 197
- 13
- 31.05.2020
- 171
- 5
- 29.05.2020
- 859
- 3
- 28.05.2020
- 172
- 2
- 27.05.2020
- 7217
- 148
- 26.05.2020
- 122
- 5
- 26.05.2020
- 212
- 0
«Учись, играя: эффективное обучение иностранным языкам дошкольников»
Свидетельство и скидка на обучение
каждому участнику
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Добавить в избранное
- 05.06.2020 995
- DOCX 1.8 мбайт
- 83 скачивания
- Оцените материал:
Настоящий материал опубликован пользователем Бочко Анастасия Евгеньевна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт
Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.
Автор материала
- На сайте: 5 лет
- Подписчики: 0
- Всего просмотров: 8842
- Всего материалов: 13
Московский институт профессиональной
переподготовки и повышения
квалификации педагогов
Видео:Решение систем уравнений второго порядка. Практическая часть. 8 класс.Скачать
Дистанционные курсы
для педагогов
663 курса от 690 рублей
Выбрать курс со скидкой
Выдаём документы
установленного образца!
Учителя о ЕГЭ: секреты успешной подготовки
Время чтения: 11 минут
В каждом округе Москвы появятся школьные службы примирения
Время чтения: 3 минуты
Минпросвещения предлагает изменить форму для проведения ВОШ
Время чтения: 1 минута
Вузы смогут разрешить студентам сдать выпускную работу на цифровом носителе
Время чтения: 1 минута
В Госдуму внесли законопроект о возможности повторной сдачи ЕГЭ
Время чтения: 1 минута
25% школ выбрали компьютерный формат проведения ВПР
Время чтения: 1 минута
Роспотребнадзор сообщил об опасности размещения вышек сотовой связи на территории школ
Время чтения: 1 минута
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
Видео:Алгебра 8. Решение простейших систем, содержащих уравнение второй степени.Скачать
Изящные способы решения систем уравнений с двумя переменными второй степени
Разделы: Математика
Цели урока:
- рассмотреть интересные способы решения систем уравнений с двумя переменными второй степени;
- продолжить работу по формированию у учащихся умений решать системы уравнений с двумя переменными различными способами;
- развивать логическое мышление, способность к абстрагированию, анализу.
Ход урока
Решение систем, содержащих два уравнения с двумя переменными второй степени весьма трудная задача, но в некоторых случаях системы могут быть решены с помощью простых и изящных приемов. Открыть некоторые из них – это цель сегодняшнего урока.
I. Проверка домашнего задания.
Решить систему уравнений способом подстановки и графически.
Первый ученик показывает решение системы уравнений:
(1) | — способом подстановки. |
1) ху=-3; | |
2) |
умножим обе части уравнения на ,получим:пусть и 0,тогда по теореме, обратной теореме Виета, получим:
Если z =9,то ,
z =1, то
-3,-1,1,3 отличны от нуля, значит, они являются корнями уравнения
3) Если то | то |
то | то |
Ответ:(3;-1), (-3;1), (-1;3), (1;-3)-решения системы (1).
Второй ученик показывает решение системы уравнений:
— графическим способом. |
В одной системе координат построим графики уравнений: и ху= -3.
-графиком этого уравнения является окружность с центром в точке (0;0) и радиусом .
В треугольнике АВС,АВС =90°, АВ=1, ВС=3, АС=.
Длину отрезка АС= возьмем за радиус окружности .
ху=3; у=; — графиком этого уравнения является гипербола, ветви которой расположены во II и IV координатных углах.
х | -6 | -3 | -1 | -0.5 | 0.5 | 1 | 3 | 6 |
у | 0.5 | 1 | 3 | 6 | -6 | -3 | -1 | -0.5 |
Графики изображены на рисунке 1.
Графики и пересекаются в четырех точках (они обозначены буквами А, В, С, Д), следовательно, данная система уравнений имеет четыре решения:
Интересно заметить, что решения данной системы симметричны. Точки С и В и А и Д симметричны относительно начала координат. Точки С и А и Д и В симметричны относительно биссектрисы I и III координатных углов (прямой у=х), поэтому их координаты “меняются местами”.
II. “Открытие” новых способов решения этой же системы.
Для решения этой системы есть более изящные и красивые способы. Открыть их, понять и научиться применять — это цель нашего урока. Поставив цель мы в конце урока должны подвести итог нашей работе, для этого мы будем использовать идею Эдварда де Боно, которую он назвал “Шесть шляп — шесть способов мышления”- они нам и помогут с разных позиций проанализировать урок, работая в группах.
Работа в группах.
Решить систему новым способом (на работу 5-7мин.).
Свое решение на доске показывает одна из групп:
(1)
Система (1) “распадается” на две более простые системы:
(2) | (3) |
Каждое решение системы (1) является решением хотя бы одной из систем (2) или (3).И каждое решение системы (2) и (3) является решением системы (1).
Системы (2) и (3) является симметричными, решим каждую из них:
(1) | (2) |
Пусть и корни уравнения | Пусть и корни уравнения |
и его корни, решения системы (1). | и его корни, решения системы (2) |
Для того чтобы понять содержательную сторону приведенного решения, обратимся к графической иллюстрации. На рис.2 в одной системе координат показано графическое решение систем.
и
Каждая прямая х+у =2 и х+у =-2 пересекает гиперболу ху=-3 в двух точках, а всего мы имеем четыре точки пересечения (они обозначены буквами А, В, С, Д). Это те же точки, которые получились при пересечение гиперболы и окружности (смотри рис.1).
Еще один способ решения данной системы представил один из учеников, для которого это было домашнее индивидуальное задание.
Сложим почленно первое уравнение системы сначала с уравнением 2ху=-6,а затем с уравнением -2ху=6.Получим систему:
Из первого уравнения получаем, что
Из второго уравнения получаем, что
Рассматривая каждое уравнение первой строки совместно с каждым уравнение второй строки приходим к четырем системам линейных уравнений:
Решив каждую из них получим следующие решения исходной системы:
Решение проиллюстрировано графически на рис.3.
Теперь мы видим, что четыре прямые при попарном пересечении указывают нам те же самые точки, которые получились при пересечении окружности и гиперболы (смотри рис.1).
И еще разберем один из способов решения системы
Данная система является симметричной и решается она очень красиво с помощью введения новых переменных. Пусть , и учитывая, что ,получим:
Если u=-3, то или тогда получим:
и |
Полученные системы тоже являются симметричными системами, которые мы уже решали. Итак,(3;1), (-1;3), (-3;1),(1;-3)-решения данной системы.
Мы рассмотрели пять различных способов решения одной и той же системы уравнений. Каждый выберет для себя способ, который ему больше всего понравился, самое главное — что каждый из Вас научился решать системы такого вида и поэтому эпиграфом урока могли служить слова Б.В.Гнеденко: “Ничто так не содействует усвоению предмета, как действие с ним в разных ситуациях”.
1 задание. Решить систему уравнений:
2 задание. На рисунке 4 построены: окружность парабола и прямая у=2х+10.Составьте всевозможные системы двух уравнений с двумя переменными и укажите их решения.
3 задание. Система уравнений. где b-произвольное число, может иметь одно, два, три или четыре решения, а также может не иметь решений. Запишите конкретную систему, которая имела бы два решения. Проиллюстрируйте решение системы, графически на рисунке 5.
1 задание. Решить систему уравнений:
2 задание. На рисунке 6 построены кубическая парабола у=х, гипербола у= и прямая у=2х.
Составьте всевозможные системы двух уравнений с двумя переменными и укажите их решения.
3 задание. Система уравнений где b- произвольное число, может иметь одно, два, три или четыре решения, а также может не иметь решений. Запишите конкретную систему, которая имела бы одно решение. Проиллюстрируйте решение графически на рисунке 5.
IV. Подведение итогов урока.
Для анализа урока мы будем использовать идею Эдварда де Боно, которую он назвал “Шесть шляп”.
Зелёная шляпа-символ свежей листвы, изобилия и плодородия. Она символизирует творческое начало и расцвет новых идей.
Итак, первая группа ответит на вопросы: пригодятся ли нам знания, полученные на уроке, умения исследовать и находить различные способы решения систем уравнений?
Жёлтая шляпа — солнечный, жизнеутверждающий цвет. Она полна оптимизма, под ней живёт надежда и позитивное мышление.
Итак, вторая группа отметит какие положительные моменты были на уроке и обоснует свой оптимизм.
Белая шляпа — белый цвет беспристрастен и объективен. В ней “варятся” мысли, “замешанные” на цифрах и фактах.
Итак, третья группа должна изложить происходящее на уроке опираясь и подкрепляя свой ответ цифрами и фактами.
Красная шляпа-символ восприятия действительности на уровне чувств. В ней можно отдать себя во власть эмоций.
Итак, четвёртая группа постарается высказать свои эмоции по поводу данного урока.
Чёрная шляпа — черный цвет мрачный, зловещий, словом — недобрый. Это критика, доходящая до въедливости.
Итак, пятая группа должна высказать свое мнение о том, что получилось на уроке или что требует доработки.
Синяя шляпа — синий цвет холодный, это цвет неба. Синяя шляпа связана с организацией, обобщением того, что достигнуто.
Итак, шестая группа при подведении итогов урока должна указать, на что необходимо обратить внимание при изучении данной темы?
V. Домашнее задание.
А.П. Ершова, В.В. Голобородько “Самостоятельные и контрольные работы по алгебре и геометрии для 9 класса” (разноуровневые дидактические материалы). С-9,стр. 19 (по уровням сложности)
Видео:Решение систем уравнений второй степениСкачать
Простейшие системы, содержащие уравнения 2-ой степени
план-конспект занятия по алгебре (8 класс) по теме
Конспект урока в 8 классе по учебнику Колягина
Видео:Решение систем уравнений второй степени. Алгебра, 9 классСкачать
Скачать:
Вложение | Размер |
---|---|
konspekt_no_8.docx | 36.67 КБ |
Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Предварительный просмотр:
Тема урока: Решение задач на тему «простейшие системы, содержащие уравнения второй степени».
Тип урока : урок систематизации знаний умений и навыков.
- образовательная – закрепить знания по решению систем уравнений ; вспомнить способы решения уравнений;
- р азвивающая – развитие мышления, развитие творческого мышления, развитие памяти;
- воспитательная – формирование учебно-коммуникативных, учебно-интеллектуальных умений, воспитание интереса к изучению математики.
- умение решать системы уравнений;
- умение выбирать рациональный способ решения систем;
- умения правильно применять способы решения систем;
- умения высказывать свое мнение, делать выводы;
Развивать: мышление, творческое мышление, память, математический язык, умение осуществлять самостоятельную деятельность на уроке.
- по источнику знаний: беседа, упражнения;
- по характеру познавательной деятельности: объяснительно-иллюстративный, репродуктивный.
Формы обучения : фронтальная.
1. Организационный момент (1 мин).
2. Актуализация опорных знаний и способов действий (5 мин).
3. Закрепление изученного материала (35 мин).
4. Постановка домашнего задания (1 мин).
5. Подведение итогов урока (3 мин).
🎦 Видео
СИСТЕМА УРАВНЕНИЙ второй степени 8 классСкачать
Решение квадратных уравнений. Дискриминант. 8 класс.Скачать
Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0Скачать
Дробно-рациональные уравнения. 8 класс.Скачать
5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать
Система уравнений. Метод алгебраического сложенияСкачать
Математика | Система уравнений на желтую звездочку (feat Золотой Медалист по бегу)Скачать
Алгебра 9 класс (Урок№25 - Решение систем уравнений второй степени.)Скачать
Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать
9 класс, 11 урок, Методы решения систем уравненийСкачать
Решение систем уравнений. Методом подстановки. Выразить YСкачать
Решение систем уравнений методом подстановкиСкачать
Не сдал ОГЭ Устное Собеседование shorts #shortsСкачать
СЛОЖИТЕ ДВА КОРНЯСкачать