Видео:Пропорция. Основное свойство пропорции. Практическая часть - решение задачи. 2 часть. 6 класс.Скачать
Пропорции — что это в математике
Валя съела 3 яблока из пяти. Какую часть яблок съела Валя?
Вначале узнаем, какую часть яблок составляет 1 яблоко. Всего у Вали было 5 яблок, значит, одно из них — это 1 5 часть всех яблок. Тогда 3 съеденных яблока составляют 3 5 всех яблок.
Тот же ответ получим, если 3 разделим на пять.
Получается, что 3 яблока соотносятся с пятью яблоками как 3 к 5.
Другой вариант записи ответа отмечают в виде десятичной дроби и процентов: 3 5 = 0 , 6 или 60%.
Отношением двух чисел называют частное этих чисел.
Отношение показывает, во сколько раз одно число больше другого. Или какую часть первое число составляет от второго.
Термин «отношение» применяют в случаях, когда нужно выразить одну величину в долях другой. Например, одну площадь в долях другой площади. Это операцию выполняют с помощью деления.
Делимое в выражении отношения называют предыдущим членом. Делитель называют последующим членом.
В задаче 1 предыдущий член — это 3, последующий — 5.
Если есть два равных отношения, то они образуют пропорцию.
Пропорцией называют равенство двух отношений.
Даны два отношения: 3,8:2 и 5,7:3.
Можно ли составить из этих выражений пропорцию?
Найдем значения каждого из отношений:
3 , 8 : 2 = 1 , 9 ; 5 , 7 : 3 = 1 , 9 .
Значения выражений оказались равными, значит, эти отношения равны.
Тогда можно записать равенство: 3,8:2=5,7:3.
Такое равенство называется пропорцией.
Ответ: да, можно составить из этих отношений чисел пропорцию.
С помощью буквенных символов пропорцию можно записать так: a : b = c : d или a b = c d .
Полученное равенство читают: «Отношение a к b равно отношению c к d» или «a относится к b, как c относится к d».
Числа a и d в пропорции называют крайними членами пропорции.
Числа b и c — средними членами пропорции.
Назовите крайние и средние члены пропорции 42:6=49:7.
Крайние члены пропорции — 42 и 7.
Средние члены пропорции — 6 и 49.
Определите средние члены пропорции 25 5 = 35 7 .
Средние члены пропорции — 5 и 35.
Понятие «пропорция» пришло из латинского языка. Слово в переводе означает соразмерность, определенное соотношение частей между собой.
Видео:Как решать уравнения с дробью? #shortsСкачать
Основное свойство пропорции, правило
Основное свойство пропорции
В верной пропорции произведение крайних членов равно произведению средних членов:
Определите, верна ли пропорция 6:2=9:3.
В верной пропорции произведение крайних членов равно произведению средних членов.
Произведение крайних членов равно произведению 6 и 3. Получим 6 * 3 = 18 .
Произведение средних членов равно произведению 2 и 9. Получим 2 * 9 = 18 .
Значит, 6:2=9:3. Пропорция верна.
Обратное утверждение тоже верно:
Если произведение средних членов равно произведению крайних членов, то пропорция верна.
Пропорция 60:12=10:2 верна, потому что 60 * 2 = 12 * 10 = 120 .
Если поменять в это пропорции местами средние члены, получим 60:10=12:2. Эта пропорция тоже верна. При перестановке произведение крайних и средних членов не изменилось.
Если в пропорции поменять крайние члены — 2:10=12:60, то произведение тоже не изменится.
Пропорция будет верной, если поменять местами средние члены или крайние члены.
Если какой-то из членов пропорции неизвестен, то его можно найти.
По основному свойству пропорции можно найти ее неизвестный член, если все остальные компоненты известны.
Найдите неизвестный член пропорции: 4,8:b=8:2,5.
Используем основное свойство пропорции: произведение крайних членов = произведению средних членов.
Получим 4 , 8 * 2 , 5 = b * 8 .
b = 4 , 8 * 2 , 5 : 8 ;
Видео:КАК РЕШАТЬ ПРОПОРЦИИ?Скачать
Составление и решение пропорций
Запишите пропорцию: 6 так относится к 18, как 9 относится к 27.
Слово «относится» заменяем на знак деления.
Получаем два отношения: 6:18 и 9:27.
Если эти два отношения равны, то получаем верную пропорцию.
6 : 18 = 9 : 27 ; 1 3 = 1 3 , получили верную пропорцию.
Запишите пропорцию и проверьте ее: отношение 2 к 1 4 равно отношению 3 к 1 15 .
Записываем отношения: 2 1 4 и 3 1 15 .
Составляем пропорцию: 2 1 4 = 3 1 15 .
Проверяем, верна ли пропорция.
Для этого воспользуемся основным свойством пропорции: произведение крайних членов = произведению средних членов.
2 * 1 15 ≠ 1 4 * 3 ; 2 15 ≠ 3 4 . Условие равенства произведений не выполнилось, значит, пропорция не верна.
Определите, верна ли пропорция: 1 , 4 0 , 7 = 3 , 4 1 , 7 .
Чтобы проверить, верна ли пропорция, воспользуемся основным свойством пропорции.
Запишем произведения крайних и средних членов пропорции:
1 , 4 * 1 , 7 = 2 , 38 ; 0 , 7 * 3 , 4 = 2 , 38 .
Значит, произведение крайних членов равно произведению средних членов.
1 , 4 * 1 , 7 = 0 , 7 * 3 , 4 ; 2 , 38 = 2 , 38 .
Вывод: пропорция верна.
Видео:Решить уравнение с дробями - Математика - 6 классСкачать
Примеры уравнений с решением для 6 класса
Решите уравнение: 8 , 8 4 2 5 = n 0 , 12 .
Чтобы найти неизвестный член пропорции, используем основное свойство пропорции. Находим произведение крайних и средних членов. Выражаем неизвестный компонент.
8 , 8 4 2 5 = n 0 , 12 ; 8 , 8 * 0 , 12 = 4 2 5 * n . Из равенства выражаем n : n = 8 , 8 * 0 , 12 4 2 5 Представим смешанное число 4 2 5 в виде десятичной дроби. Для этого приведем дробную часть смешанного числа к дроби со знаменателем 10 : домножим числитель и знаменатель 2 . 4 2 5 = 4 2 * 2 н а 5 * 2 = 4 4 10 . Такое смешанное число записываем в виде десятичной дроби, отделяя целую часть запятой: 4 4 10 = 4 , 4 . Тогда n = 8 , 8 * 0 , 12 4 , 4 . Сокращаем получившуюся дробь: 0 , 12 и 4 , 4 делятся на 4 . n = 8 , 8 * 0 , 03 1 , 1 ; 8 , 8 и 1 , 1 делятся на 1 , 1 . n = 8 * 0 , 03 1 ; n = 0 , 24 .
Найдите неизвестный член пропорции: 1 1 2 : 2 1 4 = 6 : m .
Используем основное свойство пропорций. Записываем равенства произведений крайних и средних членов.
1 1 2 * m = 2 1 4 * 6 . И выражаем m : m = 2 1 4 * 6 : 1 1 2 . Переводим смешанные числа в неправильные дроби: m = 2 * 4 + 1 4 * 6 : 1 * 2 + 1 2 ; m = 9 4 * 6 : 3 2 . Натуральное число переводим в обыкновенную дробь со знаменателем 1 и умножаем на первую дробь: m = 9 4 * 6 1 : 3 2 ; m = 9 * 6 4 * 1 : 3 2 . Чтобы разделить обыкновенные дроби, нужно домножить дробь на взаимно обратную данной: m = 9 * 6 4 * 1 * 2 3 ; m = 9 * 6 * 2 4 * 1 * 3 . Сокращаем получившееся выражение. 4 и 2 делятся нацело на 2 . 9 и 3 делятся нацело на 3 . m = 3 * 6 * 1 2 * 1 * 1 . Для чисел 6 и 2 общий делитель 2 : m = 3 * 3 * 1 1 * 1 * 1 ; m = 9 .
Решите уравнение: 0,25:x=3,75:3.
По основному свойству пропорции получим: 0 , 25 * 3 = x * 3 , 75 .
x = 0 , 25 * 3 : 3 , 75 ; x = 0 , 75 : 3 , 75 . Делить на десятичную дробь нельзя. Преобразуем ее в натуральное число.
После запятой в дроби 3 , 75 два знака, значит, нужно домножить ее на единицу с таким оличеством нулей. Это сто.
Но чтобы выражение осталось неизменным, нужно домножить на сто и делимое.
x = 0 , 75 * 100 : 3 , 75 * 100 ; x = 75 : 375 ; x = 0 , 2 .
Найдите неизвестное: k : 3 1 2 = 0 , 4 : 2 4 5
Чтобы найти неизвестный компонент пропорции, нужно воспользоваться основным свойством дроби.
По основному свойству дроби произведение крайних членов равно произведению средних членов.
Получим: k * 2 4 5 = 3 1 2 * 0 , 4 .
Выразим k : k = 3 1 2 * 0 , 4 : 2 4 5 .
Переведем 0,4 в обыкновенную дробь: 0 , 4 = 4 10 . Эта дробь сократима: числитель и знаменатель делятся на 2 нацело: 4 10 = 4 : 2 10 : 2 = 2 5 .
Записываем полученное выражение:
k = 3 1 2 * 2 5 : 2 4 5 .
1 действие — умножение.
Переводим смешанное число в неправильную дробь и умножаем на вторую: числитель на числитель, знаменатель на знаменатель.
3 1 2 * 2 5 = 3 * 2 + 1 2 * 2 5 = 7 2 * 2 5 = 7 * 2 2 * 5 .
Сокращаем дробь: есть одинаковые числа в числителе и знаменателе.
2 действие — деление.
Теперь делим полученное число на 2 4 5 .
Смешанное число переводим в неправильную дробь.
Умножаем 7 5 на взаимно обратную дробь.
7 5 : 2 4 5 = 7 5 : 2 * 5 + 4 5 = 7 5 : 14 5 = 7 5 * 5 14 = 7 * 5 5 * 14 = 7 * 5 5 * 14 = 7 14 = 1 2 = 0 , 5 .
Видео:Пропорция. Основное свойство пропорции. Практическая часть - решение задачи. 1 часть. 6 класс.Скачать
Урок 22 Бесплатно Пропорции
Чтобы узнать название темы урока, обратите внимание на картинку.
Попробуйте отгадать ребус.
На этом уроке вы узнаете, что называют пропорцией, выведете основное свойство пропорции и с помощью него научитесь решать задачи и уравнения.
Слово «пропорция» (proportio) в переводе с латинского — соразмерность, отношение частей (соотношение).
Видео:Как найти Х в уравнении с дробью. Уравнений с дробями. Как решить дробное уравнение. Пропорция.Скачать
Пропорция
В IV веке до н.э. древнегреческий математик Евдокс Книдский дал определение пропорции, состоящей из величин любой природы, а не только из натуральных величин.
Пропорции применяли с древности при решении различных задач.
Древние греки использовали пропорцию и ее свойство для строительства сооружений, при создании произведений искусства (скульптуры, статуи), в ремесленническом деле и др.
Соблюдение пропорций, определенных соотношений, активно используется и в настоящее время в архитектуре, искусстве, музыке, при решении физических задач.
В географии и моделировании пропорциональные зависимости применяют при создании уменьшенной копии реального объекта.
В швейных технологиях — для изменения размеров выкройки изделия до нужного размера.
В химии для проведения успешной реакции рассчитывают пропорциональное отношение химических веществ.
В медицине и фармацевтике используют пропорции при изготовлении лекарственных препаратов.
В кулинарии, например, с помощью пропорции можно рассчитать рецепт одного и того же блюда для разного количества гостей.
Разберем, что же такое пропорция в математическом понимании.
Возьмем два отношения: (mathbf<frac>) и (mathbf<frac>) и эти отношения равны, так как (mathbf) и (mathbf), значит (mathbf<frac= frac>)
Равенство двух отношений называют пропорцией.
С помощью букв запишем пропорцию из двух отношений так: (mathbf) или (mathbf<frac= frac>).
Эту математическую запись читают так: «Отношение a к b равно отношению c к d» или «a так относится к b, как c относится к d».
Все члены пропорции не равны нулю: (mathbf).
Числа a и d называют крайними членами пропорции.
Числа b и c называют средними членами пропорции.
У меня есть дополнительная информация к этой части урока!
В мире существует «золотая пропорция», которую называют «золотым сечением». Это пропорциональное деление отрезка на различные по размеру части, но в таком соотношении к друг другу, что меньший отрезок так относится к большему, как больший ко всей величине.
Приблизительное значение «золотого сечения» равно 1,618… Число это продолжается бесконечно после запятой, и оно не периодично.
В процентном выражении целая часть относится к большей, как большая к меньшей, примерно так: 62% и 38% соответственно.
Обозначают число «золотого сечения» математической буквой (mathbf) (фи).
Мир живой и неживой природы, мир творений человека полон красоты, симметрии и гармонии. Этот мир описывается законом «золотого сечения».
Рассмотрим только несколько примеров, где присутствует и используется правило «золотого сечения».
Считается, что длина фаланг пальцев и длина кисти руки, средний палец и мизинец, или высота лица и расстояние от кончика подбородка до центральной точки соединения губ у пропорционального человека находятся в определенных отношениях, соответствуя правилу «золотого сечения».
Форма тела ящериц, стрекоз, бабочек соответствует закону «золотого сечения»: отношение грудной и брюшной части тела приближенно равны значению «золотого сечения».
Спиралевидная форма ракушек тоже описывается числом (mathbf) (фи).
«Золотая пропорция» была обнаружена в египетских пирамидах, произведениях искусства, архитектуре и применяется до сих пор в разных областях жизни человека
Пройти тест и получить оценку можно после входа или регистрации
Видео:6 кл.Пропорция.Решение уравненияСкачать
Математика. 6 класс
Конспект урока
Перечень рассматриваемых вопросов:
- Понятие пропорции.
- Основное свойство пропорции.
- Как правильно составить пропорцию.
- Как найти неизвестный член пропорции.
Равенство двух отношений называют пропорцией.
Основное свойство пропорции: произведение крайних членов пропорции равно произведению её средних членов.
- Никольский С. М. Математика. 6 класс. Учебник для общеобразовательных учреждений // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. — М.: Просвещение, 2017. — 258 с.
- Чулков П. В. Математика: тематические тесты. 5-6 кл. // П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина — М.: Просвещение, 2009. — 142 с.
- Шарыгин И. Ф. Задачи на смекалку: 5-6 кл. // И. Ф. Шарыгин, А. В. Шевкин — М.: Просвещение, 2014. — 95 с.
Теоретический материал для самостоятельного изучения
Основное свойство пропорции: произведение крайних членов пропорции равно произведению её средних членов.
Если один член пропорции неизвестен и необходимо его определить, то говорят, что нужно решить пропорцию.
Рассмотрим 3 способа нахождения неизвестного члена пропорции.
Разбор решения заданий тренировочного модуля
№1. Тип задания: сортировка элементов по категориям.
№2. Тип задания: Подстановка элементов в пропуски в тексте.
Найдите неизвестный член пропорции.
Для нахождения неизвестного члена пропорции воспользуемся основным свойством пропорции, из которого следует: чтобы найти неизвестный средний член пропорции, надо произведение крайних членов разделить на известный средний член пропорции.
🎬 Видео
Виленкин. 6 класс за 100 минут. Математика: теория чисел, дроби, уравненияСкачать
Решение уравнений ( подобные слагаемые ) . 6 класс .Скачать
Уравнения с дробями 6 класс (задания, примеры) - как решать?Скачать
Решение уравнений, 6 классСкачать
Пропорция. Основное свойство пропорции. 6 класс.Скачать
Пропорции, 6 классСкачать
как решать дробиСкачать
Решение уравнений, имеющих вид пропорции, с использованием основного свойства пропорции Математика 6Скачать
Метод пропорции ⚖️Скачать
Прямо пропорциональная и обратно пропорциональная зависимость. 6 класс.Скачать
Решение уравнений с дробными числами в 6 классеСкачать
ПРОПОРЦИЯ 6 класс математика отношения и пропорцииСкачать
Математика 6 класс (Урок№51 - Решение задач с помощью уравнений. Часть 1.)Скачать