I. ax 2 =0 – неполное квадратное уравнение (b=0, c=0). Решение: х=0. Ответ: 0.
Решить уравнения.
Пример 1. 2x·(x+3)=6x-x 2 .
Решение. Раскроем скобки, умножив 2х на каждое слагаемое в скобках:
2x 2 +6x=6x-x 2 ; переносим слагаемые из правой части в левую:
2x 2 +6x-6x+x 2 =0; приводим подобные слагаемые:
3x 2 =0, отсюда x=0.
Ответ: 0.
II. ax 2 +bx=0 – неполное квадратное уравнение (с=0). Решение: x (ax+b)=0 → x1=0 или ax+b=0 → x2=-b/a. Ответ: 0; -b/a.
Пример 2. 5x 2 -26x=0.
Решение. Вынесем общий множитель х за скобки:
х(5х-26)=0; каждый множитель может быть равным нулю:
х=0 или 5х-26=0 → 5х=26, делим обе части равенства на 5 и получаем: х=5,2.
Ответ: 0; 5,2.
Пример 3. 64x+4x 2 =0.
Решение. Вынесем общий множитель 4х за скобки:
4х(16+х)=0. У нас три множителя, 4≠0, следовательно, или х=0 или 16+х=0. Из последнего равенства получим х=-16.
Ответ: -16; 0.
Пример 4. (x-3) 2 +5x=9.
Решение. Применив формулу квадрата разности двух выражений раскроем скобки:
x 2 -6x+9+5x=9; преобразуем к виду: x 2 -6x+9+5x-9=0; приведем подобные слагаемые:
x 2 -x=0; вынесем х за скобки, получаем: x (x-1)=0. Отсюда или х=0 или х-1=0 → х=1.
Ответ: 0; 1.
III. ax 2 +c=0 – неполное квадратное уравнение (b=0); Решение: ax 2 =-c → x 2 =-c/a.
Если (-c/a) 0, то имеем два действительных корня:
Пример 5. x 2 -49=0.
Решение.
x 2 =49, отсюда x=±7. Ответ: -7; 7.
Видео:Неполные квадратные уравнения. Алгебра, 8 классСкачать
Неполные квадратные уравнения
О чем эта статья:
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Видео:МАТЕМАТИКА 8 класс - Неполные Квадратные Уравнения. Как решать Неполные Квадратные Уравнения?Скачать
Основные понятия
Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.
Степень уравнения можно определить по наибольшей степени, в которой стоит неизвестное. Если неизвестное стоит во второй степени — это квадратное уравнение.
Квадратное уравнение — это ax² + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.
Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Чтобы его найти, берем формулу: D = b² − 4ac. А вот свойства дискриминанта:
- если D 0, есть два различных корня.
Неполное квадратное уравнение — это уравнение вида ax² + bx + c = 0, где хотя бы один из коэффициентов b или c равен нулю.
Неполные квадратные уравнения бывают трех видов:
Такие уравнения отличаются от полного квадратного тем, что их левые части не содержат слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения. Видео:АЛГЕБРА 8 класс : Решение неполных квадратных уравнений | ВидеоурокСкачать Решение неполных квадратных уравненийКак мы уже знаем, есть три формулы неполных квадратных уравнений:
Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курс подготовки к ЕГЭ по математике (профиль). Видео:РЕШЕНИЕ НЕПОЛНЫХ КВАДРАТНЫХ УРАВНЕНИЙ. §19 алгебра 8 классСкачать Как решить уравнение ax² = 0Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax² = 0. Уравнение ax² = 0 равносильно x² = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x² = 0 является нуль, так как 0² = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней. Таким образом, неполное квадратное уравнение ax² = 0 имеет единственный корень x = 0.
Пример 1. Решить −5x² = 0.
Записывайся на дополнительные уроки по математике онлайн, с нашими лучшими преподавателями! Для учеников с 1 по 11 класса! Видео:Как решать неполные квадратные уравнения. Алгебра 8 классСкачать Как решить уравнение ax² + с = 0Обратим внимание на неполные квадратные уравнения вида ax² + c = 0, в которых b = 0, c ≠ 0. Мы знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный. Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. То есть одно и то же, только с другими цифрами. Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax² + c = 0:
Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи. Если — c/а 0, то корни уравнения x² = — c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а)² = — c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а)² = — c/а. Ура, больше у этого уравнения нет корней. В двух словахНеполное квадратное уравнение ax² + c = 0 равносильно уравнению ax² + c = 0, которое:
Пример 1. Найти решение уравнения 9x² + 4 = 0.
Разделим обе части на 9: Ответ: уравнение 9x² + 4 = 0 не имеет корней. Пример 2. Решить -x² + 9 = 0.
Разделим обе части на -1: Ответ: уравнение -x² + 9 = 0 имеет два корня -3; 3. Видео:Алгебра 8 класс (Урок№27 - Квадратные уравнения. Неполные квадратные уравнения.)Скачать Как решить уравнение ax² + bx = 0Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0. Квадратное уравнение без с непривычно решать только первые несколько примеров. Запомнив алгоритм, будет значительно проще щелкать задачки из учебника. Неполное квадратное уравнение ax² + bx = 0 можно решить методом разложения на множители. Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x. Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a. Таким образом, неполное квадратное уравнение ax² + bx = 0 имеет два корня: Пример 1. Решить уравнение 2x² — 32x = 0
Ответ: х = 0 и х = 16. Пример 2. Решить уравнение 3x² — 12x = 0 Разложить левую часть уравнения на множители и найти корни: Видео:Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполныеСкачать Неполные квадратные уравненияНеполное квадратное уравнение – это уравнение вида в котором хотя бы один из коэффициентов b или c равен нулю. Следовательно, неполное квадратное уравнение может иметь вид:
Видео:НЕПОЛНЫЕ КВАДРАТНЫЕ УРАВНЕНИЯ 8 классСкачать Решение неполных квадратных уравненийЧтобы решить уравнение вида ax 2 + bx = 0 , надо разложить левую часть уравнения на множители, вынеся x за скобки: Произведение может быть равно нулю только в том случае, если один из множителей равен нулю, значит: Чтобы ax + b было равно нулю, нужно, чтобы
Следовательно, уравнение ax 2 + bx = 0 имеет два корня:
Неполные квадратные уравнения вида ax 2 + bx = 0, где b ≠ 0, решаются разложением левой части на множители. Такие уравнения всегда имеют два корня, один из которых равен нулю. Пример 1. Решите уравнение:
Пример 2. Решите уравнение:
Чтобы решить уравнение вида ax 2 + c = 0 , надо перенести свободный член уравнения c в правую часть:
В этом случае уравнение не будет иметь корней, так как квадратный корень нельзя извлечь из отрицательного числа. Если данное неполное уравнение будет иметь вид x 2 — c = 0 , то сначала опять переносим свободный член в правую часть и получаем: В этом случае уравнение будет иметь два противоположных корня: Неполное квадратное уравнение вида ax 2 + c = 0, где c ≠ 0, либо не имеет корней, либо имеет два корня, которые являются противоположными числами. Пример 1. Решите уравнение:
Пример 2. Решите уравнение:
Уравнение вида ax 2 = 0 всегда имеет только один корень: x = 0. Так как a ≠ 0, то из ax 2 = 0 следует, что x 2 = 0, значит, и x = 0. Любое другое значение x не будет являться корнем данного уравнения. 🔍 ВидеоНеполные квадратные уравнения. Урок 15. Алгебра 8 классСкачать Квадратное уравнение. 8 класс.Скачать РЕШЕНИЕ НЕПОЛНОГО КВАДРАТНОГО УРАВНЕНИЯ ЗА 5 СЕКУНДСкачать Решение квадратных уравнений. Дискриминант. 8 класс.Скачать Квадратные уравнения #shorts Как решать квадратные уравненияСкачать Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | МатематикаСкачать Как решать квадратные уравнения. 8 класс. Вебинар | МатематикаСкачать Теорема Виета за 30 сек🦾Скачать Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0Скачать Квадратные уравнения решение неполных квадратных уравнений – 8 класс алгебраСкачать МАТЕМАТИКА 8 класс - Полные Квадратные Уравнения. Как решать Полные Квадратные Уравнения?Скачать Как решать Квадратные Уравнения по АЛГЕБРЕ 8 класс // Метод Переброски // Урок Математики 8 классСкачать |