План урока:
Видео:Как решать уравнение с параметром и модулем ★ Решите уравнение: x-|x|=aСкачать
Модуль числа
Напомним, что такое модуль числа. Так называют значение числа, взятое без учета его знака. То есть модуль чисел 9 и (– 9) одинаков и равен 9. Для обозначения модуля применяют специальные прямоугольные скобки:
|2,536| = |– 2,536| = 2,536
Грубо говоря, операция нахождения модуля сводится к отбрасыванию у числа знака «минус», если он у него есть. Вообще, если число х неотрицательно, то его модуль |х| = х. Если же число отрицательно, то его модуль имеет противоположное значение: |х| = х. Математически это можно записать так:
Именно такое определение обычно и применяется в математике.
Модуль играет важную роль в математике. Дело в том, с его помощью удобно записывать расстояние между двумя точками на координатной прямой. Пусть на ней отмечены точки a и b. Расстояние между ними равно |a – b|, причем неважно, какое из этих чисел больше, а какое меньше:
Также модуль возникает при извлечении квадратного корня из четной степени числа:
В частности, если n = 1, получим формулу:
Для того чтобы получить график функции у = |x|, сначала надо построить график функции без учета знака модуля:
Далее следует выполнить преобразование. Те точки графика, которые располагаются выше оси Ох, остаются на своем месте. В данном случае это та часть графика, которая находится в I четверти. Те же точки, которые располагаются ниже оси Ох, должны быть симметрично (относительно этой самой оси Ох) отображены. В результате они окажутся выше оси Ох:
В результате получилась «галочка».
Пример. Постройте график ф-ции у = |х 2 – 4х + 3|
Решение. Для построения графика функции, содержащей модуль, сначала надо построить график для «подмодульного» выражения. Поэтому построим график у = х 2 – 4х + 3. Это квадратичная ф-ция, ее график – это парабола:
Часть графика, в промежутке от 1 до 3, находится ниже оси Ох. Чтобы построить ф-цию у = |х 2 – 4х + 3|, надо перевернуть эту часть графика:
Видео:Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | МатематикаСкачать
Решение уравнений с модулем
Изучим простейший случай уравнения, содержащего модуль, когда вся его слева записано выр-ние в модульных скобках, а справа находится число. То есть уравнение имеет вид
где b – какое-то число, а у(х) – произвольная ф-ция.
Если b 10 + 97x 4 – 12,56х 3 + 52х 2 + 1001х – 1234| = – 15
Решение: Справа стоит отрицательное число. Однако модуль не может быть меньше нуля. Это значит, что у ур-ния отсутствуют корни.
Ответ: корни отсутствуют.
Если b = 0, то мы получим какое-то произвольное ур-ние у(х) = 0, у которого могут быть корни. Проще говоря, модульные скобки в таком случае можно просто убрать.
Пример. Решите ур-ние
Ясно, что подмодульное выр-ние равно нулю:
Наиболее интересен случай, когда b> 0, то есть в правой части стоит положительное число. Ясно, что тогда под модулем находится либо само это число b, либо противоположное ему число – b:
То есть мы получаем два различных ур-ния: у(х) = bи у(х) = – b.
Пример. Решите ур-ние
Решение. В правой части – положительное число, поэтому либо х = – 10, либо х = 10.
Пример. Решите ур-ние
Решение. Исходное ур-ние разбивается на два других ур-ния:
10х + 5 = 7 или 10х + 5 = – 7
10х = 2 или 10х = – 12
х = 0,2 или х = – 1,2
Пример. Найдите корни ур-ния
Решение. Снова заменим исходное равенство на два других:
x 2 – 2х – 4 = 4 или x 2 – 2х – 4 = – 4
Имеем два квадратных ур-ния. Решим каждое из них:
D = b 2 – 4ас = (– 2) 2 – 4•1•(– 8) = 4 + 32 = 36
Нашли корни (– 2) и 4. Решаем второе ур-ние:
х = 0 или х – 2 = 0
Получили ещё два корня: 0 и 2.
Встречаются случаи, когда в уравнении, содержащем знак модуля, под ним находятся обе части равенства:
Здесь возможны два варианта. Либо подмодульные выр-ния равны друг другу (у(х) = g(x)), либо у них противоположные значения (у(х) = – g(x)). То есть снова надо решить два ур-ния.
Пример. Решите ур-ние
|x 2 + 2x– 1| = |х + 1|
Решение. Выр-ния справа и слева (без знака модуля) либо равны, либо противоположны. Можно составить два ур-ния:
x 2 + 2x– 1 = х + 1 или x 2 + 2x– 1 = – (х + 1)
х 2 + х – 2 = 0 или х 2 + 3х = 0
Решим 1-ое ур-ние:
D = b 2 – 4ас = 1 2 – 4•1•(– 2) = 1 + 8 = 9
Теперь переходим ко 2-омуур-нию:
х = 0 или х + 3 = 0
Всего удалось найти 4 корня: (– 1), (– 2), 2 и 0.
Возможен случай, когда в левой части равенства находится модуль выр-ния, а в правой – обычное выражение, без модуля. Такое ур-ние имеет вид |у(х)| = g(x). Здесь также возможны два варианта: у(х) = g(x) или у(х) = – g(x). Однако следует учитывать ещё один факт. Модуль не может быть отрицательным, а потому должно выполняться нер-во g(x)⩾ 0. Но это неравенство не надо решать. Достаточно просто подставить в него все полученные корни и проверить, справедливо ли нер-во.
Пример. Найдите решение уравнения, содержащего модуль:
|х 2 + 3,5х – 20| = 4,5х
Решение. Рассмотрим два отдельных равенства:
х 2 + 3,5х – 20 = 4,5х илих 2 + 3,5х – 20 = – 4,5х
х 2 – х – 20 = 0 или х 2 + 8х – 20 = 0
Решим каждое из полученных квадратных ур-ний.
D = b 2 – 4ас = 1 2 – 4•1•(– 20) = 1 + 80 = 81
D = b 2 – 4ас = 8 2 – 4•1•(– 20) = 64 + 80 = 144
Итак, получили 4 корня: (– 4), 5, (– 10) и 2. Однако правая часть исходного ур-ния, 4,5x, не может быть отрицательной, ведь модуль числа – это всегда неотрицательная величина:
Для х = – 4 и х = – 10 это условие не выполняется, поэтому эти корни должны быть исключены.
Мы рассмотрели три случая, когда ур-ние имеет вид:
Однако порою ур-ние не удается свести ни к одному из этих видов. Тогда для решения уравнений и неравенств, содержащих модуль, следует рассматривать их на отдельных интервалах, где подмодульные выр-ния не изменяют свой знак.
Пример. Найдите корни ур-ния
Решение. Выр-ния х + 1 и х – 4 меняют знак при переходе через точки (– 1) и 4:
Если отметить обе точки на прямой, то они образуют на ней 3 интервала:
Исследуем ур-ние на каждом из полученных промежутков.
Так как при х 2 + bx + c = 0
Параметры встречаются не только при описании ур-ний, но и, например, при рассмотрении функций. Так, линейная функция задается формулой у = kx + b. Здесь числа k и b являются параметрами. Так как ур-ние у = kx + b задает на плоскости прямую линию, то величины k и b порою называют параметрами уравнения прямой.
Если при решении обычного ур-ния мы определяем значение его корней в виде конкретных чисел, то при решении ур-ний с параметром находят формулу, позволяющую при заданном значении параметра вычислить значение корня.
Пример. Решите ур-ние
и найдите его корни при значении параметра а, равном 3.
Решение. Вынесем множитель х за скобки:
х = 0 или х – 2а = 0
Получили, что при любом значении параметра а ур-ние имеет два корня. Один из них равен нулю при любом значении а, а второй вычисляется по формуле х = 2а:
при а = 3х = 2•3 = 6
Ответ: есть два корня – 0 и 2а. При а = 2 корни равны 0 и 6.
Пример. Решите ур-ние
р 2 х – 3рх = р 2 – 9
Решение. Слева вынесем за скобки множитель рх, а выр-ние справа преобразуем, используя формулу разности квадратов:
рх(р – 3) = (р – 3)(р + 3)
Возникает желание поделить обе части рав-ва на р(р – 3), чтобы выразить х. Однако сразу так делать нельзя, ведь если величина р(р – 3) равна нулю, то получится деление на ноль.
Поэтому сначала изучим случаи, когда один из множителей слева равен нулю. Если р = 0, то мы получим рав-во
0•х•(0 – 3) = (0 – 3) (3 – 0)
Это неверное тождество, а потому при р = 0 ур-ние корней не имеет.
Если р – 3 = 0, то есть р = 3, получится следующее
Это равенство верно при любом х. Значит, при р = 3 корнем ур-ния является любое число.
Если же р≠ 0 и р ≠ 3, то произведение р(р – 3) также не равно нулю, а потому обе части равенства можно поделить на р(р – 3). Тогда получим
В этом случае ур-ние имеет единственный корень.
Ответ: при р = 0 корней нет; при р = 3 корнем является любое число; при других рх = (р + 3)/р.
Часто в задаче требуется не выразить корень ур-ния через параметр, а лишь оценить количество корней ур-ния или диапазон их значений.
Пример. Сколько корней имеет ур-ние
при различных значениях параметра b.
Решение. Будем решать ур-ние графическим методом. Для этого сначала построим график у = |х 2 – 6х + 5|. В модульных скобках находится обычная квадратичная функция, чьи ветви смотрят вверх. Найдем нули функции:
D = b 2 – 4ас = (– 6) 2 – 4•1•5 = 36 + 20 = 16
Итак, нули ф-ции – это точки 1 и 5. Найдем координату х0 вершины параболы по формуле:
Подставив х0 в квадратичную ф-цию найдем координату у0 вершины параболы:
3 2 – 6•3 + 5 = 9 – 18 + 5 = – 4
Теперь построим квадратичную ф-цию:
Для построения графика, содержащего модуль функции, надо отобразить точки с отрицательными ординатами (они находятся ниже оси Ох) симметрично относительно оси Ох:
Мы построили график левой части ур-ния. График правой части представляет собой горизонтальную прямую у = b. Можно выделить 5 различных случаев взаимного расположения этих графиков:
При b 4 есть горизонтальная прямая пересекает график лишь в 2 точках, то есть получаем 2 корня.
Ответ: нет корней при b 4; 3 корня при b = 4; 4 корня при 0 4 – (а + 2)х 2 + 3а – 3 = 0
имеет ровно 4 корня?
Решение. Это ур-ние является биквадратным, то есть для его решения нужно произвести замену у = х 2 :
у 2 – (а + 2)у + 3а – 3 = 0 (1)
Для того, чтобы исходное ур-ние имело 4 корня, необходимо, чтобы у квадратного уравнения с параметром(1) было два положительных корня: у1 и у2. Тогда, проводя обратную замену х 2 = у1 и х 2 = у2, мы получим два разных квадратных ур-ния, корни которых будут равны
Если же хоть один из двух корней, например, у1, окажется равным нулю, то величины
Совпадут (они обе будут равны нулю), и останется лишь 3 корня. Если же у1 будет отрицательным числом, то ур-ние
вовсе не будет иметь решений, и тогда останется не более 2 корней.
Итак, решим ур-ние (1):
у 2 – (а + 2)у + 3а – 3 = 0
D = b 2 – 4ас = (– (а + 2)) 2 – 4•1•(3а – 3) = (а + 2) 2 – 12 а + 12 =
= а 2 + 4а + 4 – 12а + 12 = а 2 – 8а + 16 = а 2 – 2•4•а + 4 2 = (а – 4) 2
Чтобы у ур-ния (1) было два различных корня, дискриминант должен быть положительным. Величина (а – 4) 2 положительна при всех значениях а, кроме а = 4, которое обращает дискриминант в ноль. Значит, а ≠ 4.
Извлечем корень из дискриминанта:
Корни ур-ния (1) можно вычислить по формулам:
И у1, и у2 должны быть положительными величинами, однако у1 меньше, чем у2 (ведь для его вычисления дискриминант брали со знаком «минус», а не «плюс»). Поэтому достаточно записать нер-во:
Получили неравенство, содержащее модуль. Для избавления от модульных скобок в нер-ве рассмотрим 2 случая. Если а – 4>0, то есть а > 4, выполняется равенство
Это нер-во выполняется при любом допустимом значении а, поэтому при а >4 исходное ур-ние имеет 4 корня.
Итак, при условии, что а 1. Это значит, что а∊(1; 4). С учетом первого случая, при котором было получено решение
можно записать окончательный ответ: а∊(1; 4)∪(4; + ∞).
Пример. При каких параметрах а у ур-ния
х 2 – 2(а + 1)х + а 2 + 2а – 3 = 0
существует два корня, которые принадлежат интервалу (– 5; 5)?
Решение. Данное ур-ние является квадратным. Найдем его дискриминант:
D = b 2 – 4ас = (– 2(а + 1)) 2 – 4•1•( а 2 + 2а – 3) = 4(а 2 + 2а + 1) – 4(а 2 + 2а – 3) =
= 4(а 2 + 2а + 1 – а 2 – 2а + 3) = 4•4 = 16
Получаем, что при любом а дискриминант положителен, а потому уур-ния 2 корня. Вычислить их можно по формулам
Для того, чтобы оба решения уравнения с параметром принадлежали интервалу (– 5; 5), нужно, чтобы меньший из них (это х1) был больше – 5, больший (это х2) – меньше – 5:
Значит, должны выполняться два нер-ва
х1>– 5и х2 – 5 и а + 3 – 4 и а 1 (-1)
Видео:Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать
Решение уравнений с модулями и параметрами
Презентация к уроку
Загрузить презентацию (434 кБ)
Цель урока. Решение уравнений с параметрами и модулями, применяя свойства функций в неожиданных ситуациях и освоение геометрических приемов решения задач. Нестандарные уравнения.
Задачи:
- Образовательные: научить решать некоторые виды уравнений уравнений модулями и параметрами;
- Развивающие: развивать культуру мысли, культуру речи и умение работать с тетрадью и доской.
- Воспитательные: воспитывать самостоятельность и умение преодолевать трудности.
Оборудование: наглядный материал для устного счёта и объяснения новой темы. Интерактивная доска, мультимедийное оборудование урока.
Структура урока:
- Повторение изученного материала (устный счёт).
- Изучение нового материала.
- Закрепление изученного материала.
- Итог урока.
- Домашнее задание.
1. Повторение важнейшего теоретического материала по темам: «Уравнения, содержащие модуль», «Решение уравнений с параметрами»
1) «Уравнения, содержащие модуль»
Абсолютной величиной или модулем числа a называется число a, если a > 0, число – a, если a <
Неравенство | x | 0) равносильно двойному неравенству – a 0.
Неравенство | x | > a, (если a > 0) равносильно двум неравенствам
Неравенство | x | > a, (если a : | x + 3 | + | y – 2 | = 4;
Расcмотрим четыре случая
< | x + 3 > 0 | < | x > – 3 |
y – 2 > 0 | y > 2 | ||
x + 3 + y – 2 = 4 | y = – x + 3 |
< | x + 3 > 0 | < | x > – 3 |
y – 2 < | x + 3 < | x 0 | y > – 2 |
– x – 3 – y – 2 = 4 | y = x + 9 |
< | x + 3 < | x 2 – 1) х = а + 1. Нетрудно сообразить, что при решении этого уравнения достаточно рассмотреть такие случаи: 1) а = 1; тогда уравнение принимает вид ОX = 2 и не имеет решения 2) а = – 1; получаем ОX = О , и очевидно х – любое. Ответ: 3. Решения примеров (из вариантов С) 1. При каком значении параметра р уравнение | х 2 – 5х + 6 | + | х 2 – 5х + 4 | = р имеет четыре корня. Рассмотрим функцию у = | х 2 – 5х + 6 | + | х 2 – 5х + 4 | Так как х 2 – 5х + 6 = (х – 2)(х – 3) и х 2 – 5х + 4 = (х – 1)(х – 4), то y = | (х – 2)(х – 3) | + | (х – 1)(х – 4) |, корни квадратных трехчленов отметим на числовой прямой
Числовая прямая при этом разбивает на 5 промежутков
Для случая 3) х0 = – b | 2a = 2, y0 = 25 : 2 + 25 – 10 = 2,5 Итак, (2,5; 2,5) – координаты вершины параболы y = – 2x 2 + 10x – 10. Построим график функции, заданной равенством Как видно из рисунка, исходное уравнение имеет четыре корня, если 2 2 – | x | = 6 1. Решить уравнение: | x – 5 | – | 2x + 3 | = 10 1. Решить уравнение | x – 5 | – | 2x + 3| = 10 5. Итог урока 1. Определение модуля. 6. Задание на дом. C5 варианта №11 Ф.Ф. Лысенко. Математика, 2012 Видео:Уравнения с параметром. Алгебра, 8 классСкачать Уравнения с параметром, содержащие модульРешить в зависимости от значений параметра а. По свойству модуля при всех левая часть уравнения неотрицательна, следовательно, при a 0 x – 3 = ± a, откуда x = 3 ± a. уравнение будет иметь уравнение будет иметь единственное решение единственное решение на промежутке x ≥ 5. на промежутке x 1 уравнение имеет два корня ; ; При a 1, ; . Раскроем модуль на двух промежутках: уравнение имеет два корня при a + 9 ≥ 0, т.е. a ≥ – 9 . уравнение имеет два корня x ≥ – 3; a ≥ – 9 ; a ≤ 9 x 9, неравенство имеет решение Т.е. при a > 0 a ≤ 9; уравнение имеет один корень a ≥ 0; т.е. 0 ≤ a ≤ 9; Т.е. при 0 ≤ a ≤ 9 уравнение имеет два различных корня. , при a = 3 уравнение имеет два равных корня . Ответим на поставленный вопрос. 2) y = – a – линейная функция, график прямая, параллельная оси OY.
Эскиз графиков. y y = – a Найдем нули модуля: 2x + 6 = 0; x = –3; Раскроем модуль на двух промежутках: x ≥ –3 и x 3 /4 |
|
|
При и уравнение имеет одно решение.
Ответ: — единственное решение.
При каких значениях a уравнение имеет единственное решение? Ответ:
При каких значениях параметра a уравнение имеет два различных корня?
Так как то сделав замену где получим новое квадратное уравнение
Для того чтобы исходное уравнение имело два различных корня, новое уравнение должно иметь только один положительный корень. Это будет в двух следующих случаях:
а) один из корней положителен, другой отрицателен. Для этого достаточно, чтобы дискриминант был положительным, а произведение корней было отрицательным;
б) оба равных корня положительны. Для этого достаточно, чтобы дискриминант был равен нулю, а сумма корней была положительной.
Таким образом, получим совокупность двух систем.
1) Д > 0, 2) Д = 0,
Так как
то системы будут иметь вид:
Откуда или
Ответ: ;
При каких значениях с уравнение x 2 – ( 3c – 2 ) ∙ | x | + 2c 2 – c = 0 имеет 4 различных корня?
Для того чтобы исходное уравнение могло иметь четыре различных корня новое уравнение должно иметь два положительных корня. Это будет в том случае, когда дискриминант, произведение и сумма корней будут положительны.
Таким образом, получим систему неравенств:
Д > 0;
то система будет иметь вид:
c 2 – 8c +4 > 0;
3c – 2 > 0; Откуда имеем
2c 2 – c > 0;
Ответ:
1. М.Л. Галицкий, А.М. Гольдман, Л.И.Звавич. Сборник задач по алгебре 8-9.Москва, 2000
2. Г.А. Ястребинецкий. Задачи с параметрами. Москва, 1986
3. П.И.Горнштейн, В.Б.Полонский, М.С.Якир. Задачи с параметрами. Киев, 1992
4. В.В.Ткачук. Математика-абитуриенту,т1.Москва, 1994
5. С.Л.Попцов. Как решать задачи с параметром. Тверь, 1999
6. Сборник задач по математике для поступающих во втузы. Под редакцией М.И. Сканави, Москва, 2003
📺 Видео
8 класс, 39 урок, Задачи с параметрамиСкачать
Сможешь решить уравнение с параметром? Что делать с модулем и при чем тут гипербола?Скачать
Самая сложная тема из ЕГЭ. Задание с ПАРАМЕТРОМ | Математика TutorOnlineСкачать
✓ Четыре способа решить параметр с модулем | ЕГЭ-2018. Задание 17. Математика | Борис ТрушинСкачать
Алгебра 8 класс (Урок№33 - Уравнения с параметром. Контрольный урок.)Скачать
Уравнение с параметром | Математика TutorOnlineСкачать
Уравнения с модулемСкачать
✓ Параметр с модулями | ЕГЭ-2021. Задание 17. Математика. Профильный уровень | Борис ТрушинСкачать
Уравнения с параметром. Алгебра 7 класс.Скачать
9 класс, 7 урок, Задачи с параметрамиСкачать
Профильный ЕГЭ 2023 математика. Задача 17. Параметр. Аналитический методСкачать
✓ Параметр с тройным модулем | ЕГЭ. Задание 17. Математика. Профильный уровень | Борис ТрушинСкачать
✓ Пять способов решить задачу с параметром | ЕГЭ-2018. Задание 17. Математика | Борис ТрушинСкачать
11 класс, 34 урок, Задачи с параметрамиСкачать
Уравнение с параметром #4 (Хитрый модуль) ЕГЭ №507512Скачать
Задача 17 ЕГЭ профильный. Параметры с нуляСкачать