Разделы: Математика
- Некоторые методы решения логарифмических уравнений.
- Решение логарифмических уравнений.
- Уравнения, часть С
- Теория к заданию 13 из ЕГЭ по математике (профильной)
- Уравнения, часть $С$
- Схема решения сложных уравнений:
- ОДЗ различных выражений (под выражением будем понимать буквенно — числовую запись):
- Логарифмические уравнения
- Дробно рациональные уравнения
- Показательные уравнения
- Виды показательных уравнений:
- Применение формул сокращенного умножения
- Метод группировки
- С помощью формулы квадратного трехчлена.
- Как решать логарифмические уравнения подробный разбор примеров
- Сложение и вычитание логарифмов.
- Что такое логарифм и как его посчитать
- Два очевидных следствия определения логарифма
- Свойства логарифмов
- Степень можно выносить за знак логарифма
- Логарифм произведения и логарифм частного
- Формула перехода к новому основанию
- Сумма логарифмов. Разница логарифмов
- Логарифмический ноль и логарифмическая единица
- Как решать уравнения с логарифмами: 2 способа с примерами
- Сравнение логарифмов
- Пример Найдите корень уравнения.
- Логарифмы со специальным обозначением
- Десятичный логарифм
- Натуральный логарифм
- Пример решения логарифмического уравнения с разными основаниями
- Пример решения логарифмического уравнения с переменными основаниями
- Использование свойств логарифмов при решении логарифмических уравнений и неравенств
Некоторые методы решения логарифмических уравнений.
Настоящая статья содержит систематическое изложение методов решения логарифмических уравнений с одной переменной. Это поможет учителю, прежде всего в дидактическом смысле: подбор упражнений позволяет составить для учащихся индивидуальные задания с учетом их возможностей. Данные упражнения могут быть использованы для урока обобщения и для подготовки к ЕГЭ.
Краткие теоретические сведения и решения задач позволяют учащимся самостоятельно развивать умения и навыки решения логарифмических уравнений.
Решение логарифмических уравнений.
Логарифмические уравнения – уравнения, содержащие неизвестное под знаком логарифма. При решении логарифмических уравнений часто используются теоретические сведения:
Обычно решение логарифмических уравнений начинается с определения ОДЗ. В логарифмических уравнениях рекомендуется все логарифмы преобразовать так, чтобы их основания были равны. Затем уравнения либо выражают через один какой – либо логарифм, который обозначается новой переменной, либо уравнение преобразовывают к виду, удобному для потенцирования.
Преобразования логарифмических выражений не должны приводить к сужению ОДЗ, если же примененный метод решения сужает ОДЗ, выпуская из рассмотрения отдельные числа, то эти числа в конце задачи необходимо проверить подстановкой в исходное уравнение, т.к. при сужении ОДЗ возможна потеря корней.
1. Уравнения вида – выражение, содержащее неизвестное число, а число .
Для решения таких уравнений надо:
1) воспользоваться определением логарифма: ;
2) сделать проверку или найти область допустимых значений для неизвестного числа и отобрать соответствующие им корни (решения).
Если ) .
2. Уравнения первой степени относительно логарифма, при решении которых используются свойства логарифмов.
Для решения таких уравнений надо:
1) используя свойства логарифмов, преобразовать уравнение;
2) решить полученное уравнение;
3) сделать проверку или найти область допустимых значений для неизвестного числа и отобрать соответствующие им корни (решения).
).
3. Уравнение второй и выше степени относительно логарифма.
Для решения таких уравнений надо:
- сделать замену переменной;
- решить полученное уравнение;
- сделать обратную замену;
- решить полученное уравнение;
- сделать проверку или найти область допустимых значений для неизвестного числа и отобрать соответствующие им корни (решения).
4.Уравнения, содержащие неизвестное в основании и в показателе степени.
Для решения таких уравнений надо:
- прологарифмировать уравнение;
- решить полученное уравнение;
- сделать проверку или найти область допустимых значений для неизвестного числа и отобрать соответствующие им
корни (решения).
5. Уравнения, которые не имеют решения.
- Для решения таких уравнений надо найти ОДЗ уравнения.
- Проанализировать левую и правую часть уравнения.
- Сделать соответствующие выводы.
Исходное уравнение равносильно системе:
Доказать, что уравнение не имеет решения.
ОДЗ уравнения определяется неравенством х ≥ 0. На ОДЗ имеем
Сумма положительного числа и неотрицательного числа не равна нулю, поэтому исходное уравнение решений не имеет.
Ответ : решений нет.
В ОДЗ попадает только один корень х = 0. Ответ: 0.
Произведем обратную замену.
Найденные корни принадлежат ОДЗ.
ОДЗ уравнения – множество всех положительных чисел.
Аналогично решаются данные уравнения:
Задачи для самостоятельного решения:
Используемая литература.
- Бесчетнов В.М. Математика. Москва Демиург 1994
- Бородуля И.Т. Показательная и логарифмическая функции. ( задачи и упражнения). Москва «Просвещение» 1984
- Вавилов В.В., Мельников И.И., Олехник С.Н., Пасиченко П.И. Задачи по математике. Уравнения и неравенства. Москва «Наука» 1987
- Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебраический тренажер. Москва «Илекса»2007
- Саакян С.М., Гольдман А.М., Денисов Д.В.. Задачи по алгебре и началам анализа. Москва «Просвещение» 2003
Видео:Логарифмические уравнения. 11 класс.Скачать
Уравнения, часть С
Видео:ЛОГАРИФМИЧЕСКОЕ УРАВНЕНИЕ: ОДЗ ИЛИ НЕ ОДЗ?Скачать
Теория к заданию 13 из ЕГЭ по математике (профильной)
Уравнения, часть $С$
Равенство, содержащее неизвестное число, обозначенное буквой, называется уравнением. Выражение, стоящее слева от знака равенства, называется левой частью уравнения, а выражение, стоящее справа, — правой частью уравнения.
Схема решения сложных уравнений:
- Перед решением уравнения надо для него записать область допустимых значений (ОДЗ).
- Решить уравнение.
- Выбрать из полученных корней уравнения то, которые удовлетворяют ОДЗ.
ОДЗ различных выражений (под выражением будем понимать буквенно — числовую запись):
1. Выражение, стоящее в знаменателе, не должно равняться нулю.
2. Подкоренное выражение, должно быть не отрицательным.
3. Подкоренное выражение, стоящее в знаменателе, должно быть положительным.
4. У логарифма: подлогарифмическое выражение должно быть положительным; основание должно быть положительным; основание не может равняться единице.
Видео:Логарифмы с нуля за 20 МИНУТ! Introduction to logarithms.Скачать
Логарифмические уравнения
Для решения логарифмических уравнений необходимо знать свойства логарифмов: все свойства логарифмов мы будем рассматривать для $a > 0, a≠ 1, b> 0, c> 0, m$ – любое действительное число.
1. Для любых действительных чисел $m$ и $n$ справедливы равенства:
2. Логарифм произведения равен сумме логарифмов по тому же основанию от каждого множителя.
3. Логарифм частного равен разности логарифмов от числителя и знаменателя по тему же основанию
4. При умножении двух логарифмов можно поменять местами их основания
6. Формула перехода к новому основанию
7. В частности, если необходимо поменять местами основание и подлогарифмическое выражение
Можно выделить несколько основных видов логарифмических уравнений:
Представим обе части уравнения в виде логарифма по основанию $2$
Если логарифмы по одинаковому основанию равны, то подлогарифмические выражения тоже равны.
Т.к. основания одинаковые, то приравниваем подлогарифмические выражения
Перенесем все слагаемые в левую часть уравнения и приводим подобные слагаемые
Проверим найденные корни по условиям $table0; 7-2x>0;$
При подстановке во второе неравенство корень $х=4$ не удовлетворяет условию, следовательно, он посторонний корень
- Метод замены переменной.
В данном методе надо:
Решите уравнение $log_√x+2log_2-3=0$
1. Запишем ОДЗ уравнения:
$table0,text»так как стоит под знаком корня и логарифма»; √х≠1→х≠1;$
2. Сделаем логарифмы по основанию $2$, для этого воспользуемся во втором слагаемом правилом перехода к новому основанию:
3. Далее сделаем замену переменной $log_√x=t$
4. Получим дробно — рациональное уравнение относительно переменной t
Приведем все слагаемые к общему знаменателю $t$.
Дробь равна нулю, когда числитель равен нулю, а знаменатель не равен нулю.
5. Решим полученное квадратное уравнение по теореме Виета:
6. Вернемся в п.3, сделаем обратную замену и получим два простых логарифмических уравнения:
Прологарифмируем правые части уравнений
Приравняем подлогарифмические выражения
Чтобы избавиться от корня, возведем обе части уравнения в квадрат
7. Подставим корни логарифмического уравнения в п.1 и проверим условие ОДЗ.
Первый корень удовлетворяет ОДЗ.
$
( формула перехода к новому основанию логарифмов ), | |||||||||||||||
Видео:Логарифмы в ЕГЭ⚡️что получилось?!Скачать Степень можно выносить за знак логарифмаИ вновь хотелось бы призвать к аккуратности. Рассмотрим следующий пример: log a ( f ( x ) 2 = 2 log a f ( x ) Левая часть равенства определена, очевидно, при всех значениях f(х), кроме нуля. Правая часть – только при f(x)>0! Вынося степень из логарифма, мы вновь сужаем ОДЗ. Обратная процедура приводит к расширению области допустимых значений. Все эти замечания относятся не только к степени 2, но и к любой четной степени. Видео:ПОКАЗАТЕЛЬНОЕ УРАВНЕНИЕ С ЛОГАРИФМОМ ЧАСТЬ I. Готовимся к ЕГЭ вместе #shorts #математика #егэ #огэСкачать Логарифм произведения и логарифм частногоlog a b c = log a b − log a c ( a > 0, a ≠ 1, b > 0, c > 0 ) Хотелось бы предостеречь школьников от бездумного применения данных формул при решении логарифмических уравнений и неравенств. При их использовании “слева направо” происходит сужение ОДЗ, а при переходе от суммы или разности логарифмов к логарифму произведения или частного – расширение ОДЗ. log a ( f ( x ) g ( x ) ) определено в двух случаях: когда обе функции строго положительны либо когда f(x) и g(x) обе меньше нуля. Преобразуя данное выражение в сумму log a f ( x ) + log a g ( x ) , мы вынуждены ограничиваться только случаем, когда f(x)>0 и g(x)>0. Налицо сужение области допустимых значений, а это категорически недопустимо, т. к. может привести к потере решений. Аналогичная проблема существует и для формулы (6). Видео:ЛОГАРИФМИЧЕСКИЕ УРАВНЕНИЯСкачать Формула перехода к новому основаниюТот редкий случай, когда ОДЗ не изменяется при преобразовании. Если вы разумно выбрали основание с (положительное и не равное 1), формула перехода к новому основанию является абсолютно безопасной. Если в качестве нового основания с выбрать число b, получим важный частный случай формулы (8): log a b = 1 log b a ( a > 0, a ≠ 1, b > 0, b ≠ 1 ) Видео:✓ Как решать логарифмические уравнения и неравенства, не помня свойства логарифмов | Борис ТрушинСкачать Сумма логарифмов. Разница логарифмовЛогарифмы с одинаковыми основаниями можно складывать: Логарифмы с одинаковыми основаниями можно вычитать: Мы видим, что исходные выражения состояли из логарифмов, которые по отдельности не вычисляются, а при применении свойств логарифмов у нас получились нормальные числа. Поэтому повторим, что основные свойства логарифмов нужно знать обязательно! Обратите внимание, что формулы суммы и разности логарифмов верны только для логарифмов с одинаковыми основаниями! Если основания разные, то данные свойства применять нельзя! Видео:Умножаем логарифмы В УМЕ🧠Скачать Логарифмический ноль и логарифмическая единицаЭто следствия из определения логарифма. И их нужно обязательно запомнить. Эти простейшие свойства нередко вводят учеников в ступор. Запомните, что логарифм от a по основанию а всегда равен единице: loga a = 1 – это логарифмическая единица. Если же в аргументе стоит единица, то такой логарифм всегда равен нулю независимо от основания, так как a 0 = 1: loga 1 = 0 – логарифмический ноль. Видео:Проще простого! Как решить Логарифмическое Уравнение?Скачать Как решать уравнения с логарифмами: 2 способа с примерамиРешить логарифмическое уравнение можно разными способами. Чаще всего в школе учат решать логарифмическое уравнение с помощью определения логарифма. То есть мы имеем уравнение вида: Вспоминаем определение логарифма и получаем следующее: Вспоминаем определение логарифма и получаем следующее: Таким образом мы получаем простое уравнение, которое сможем легко решить. При решении логарифмических уравнений важно помнить об области определения логарифма, т.к. аргумент f(x) должен быть больше ноля. Поэтому после решения логарифмического уравнения мы всегда делаем проверку! Давайте посмотрим, как это работает на примере: Воспользуемся определением логарифма и получим: Теперь перед нами простейшее уравнение, решить которое не составит труда: Сделаем проверку. Подставим найденный Х в исходное уравнение:Так как 3 2 = 9, то последнее выражение верно. Следовательно, х = 3 является корнем уравнения. Основной минус данного метода решения логарифмических уравнений в том, что многие ребята путают, что именно нужно возводить в степень. То есть при преобразовании logaf(x) = b, многие возводят не a в степень b, а наоборот b в степень a. Такая досадная ошибка может лишить вас драгоценных баллов на ЕГЭ. Поэтому мы покажем еще один способ решения логарифмических уравнений. Чтобы решить логарифмическое уравнение, нам нужно привести его к такому виду, когда и в правой, и в левой части уравнения будут стоять логарифмы с одинаковыми основаниями. Это выглядит вот так: Когда уравнение приведено к такому виду, то мы можем «зачеркнуть» логарифмы и решить простое уравнение. Давайте разбираться на примере. Решим еще раз то же самое уравнение, но теперь этим способом: В левой части у нас логарифм с основанием 2. Следовательно, правую часть логарифма нам нужно преобразовать так, чтобы она тоже содержала логарифм с основанием 2. Для этого вспоминаем свойства логарифмов. Первое свойство, которое нам здесь понадобится – это логарифмическая единица. Напомним его: То есть в нашем случае: То есть в нашем случае: Возьмем правую часть нашего уравнения и начнем ее преобразовывать:Теперь нам нужно 2 тоже внести в логарифмическое выражение. Для этого вспоминаем еще одно свойство логарифма:
Воспользуемся этим свойством в нашем случае, получим: Мы преобразовали правую часть нашего уравнения в тот вид, который нам был нужен и получили:Теперь в левой и в правой частях уравнения у нас стоят логарифмы с одинаковыми основаниями, поэтому мы можем их зачеркнуть. В результате, получим такое уравнение: Да, действий в этом способе больше, чем при решении с помощью определения логарифма. Но все действия логичны и последовательны, в результате чего шансов ошибиться меньше. К тому же данный способ дает больше возможностей для решения более сложных логарифмических уравнений. Разберем другой пример: Итак, как и в предыдущем примере применяем свойства логарифмов и преобразовываем правую часть уравнения следующим образом: Итак, как и в предыдущем примере применяем свойства логарифмов и преобразовываем правую часть уравнения следующим образом: После преобразования правой части наше уравнение принимает следующий вид: Теперь можно зачеркнуть логарифмы и тогда получим: Теперь можно зачеркнуть логарифмы и тогда получим: Вспоминаем свойства степеней: Теперь делаем проверку:то последнее выражение верно. Следовательно, х = 3 является корнем уравнения. Еще один пример решения логарифмического уравнения: Преобразуем сначала левую часть нашего уравнения. Здесь мы видим сумму логарифмов с одинаковыми основаниями. Воспользуемся свойством суммы логарифмов и получим: Преобразуем сначала левую часть нашего уравнения. Здесь мы видим сумму логарифмов с одинаковыми основаниями. Воспользуемся свойством суммы логарифмов и получим: Теперь преобразуем правую часть уравнения: Выполнив преобразования правой и левой частей уравнения, мы получили: Выполнив преобразования правой и левой частей уравнения, мы получили: Теперь мы можем зачеркнуть логарифмы: Решим данное квадратное уравнение, найдем дискриминант: Сделаем проверку, подставим х1 = 1 в исходное уравнение: Сделаем проверку, подставим х1 = 1 в исходное уравнение: Верно, следовательно, х1 = 1 является корнем уравнения. Теперь подставим х2 = -5 в исходное уравнение:Так как аргумент логарифма должен быть положительным, выражение не является верным. Следовательно, х2 = -5 – посторонний корень. Видео:11 класс, 18 урок, Логарифмические неравенстваСкачать Сравнение логарифмов
| |||||||||||||||
| |||||||||||||||
| |||||||||||||||
| |||||||||||||||
| |||||||||||||||
| |||||||||||||||
| |||||||||||||||
|