Решение уравнений в целых числах является одной из древнейших математических задач. Уже в начале 2 тысячелетия до н. э. Вавилоняне умели решать системы таких уравнений с двумя переменными. Наибольшего расцвета эта область математики достигла в Древней Греции. Основным источником для нас является «Арифметика» Диофанта, содержащая различные типы уравнений. В ней Диофант (по его имени и название уравнений – диофантовы уравнения) предвосхищает ряд методов исследования уравнений 2-ой и 3-ой степеней, развившихся только в 19 веке.
Простейшие диофантовы уравнения ах + ву = 1( уравнение с двумя переменными, первой степени) х2 + у2 = z2 ( уравнение с тремя переменными, второй степени)
Наиболее полно изучены алгебраические уравнения, их решение было одной из важнейших задач алгебры в 16-17 вв.
К началу 19 века трудами П. Ферма, Л. Эйлера, К. Гаусса было исследовано диофантово уравнение вида: ах2 + вху + су2 + dx + ey + f = 0, где a, в, с, d, e, f числа; х, у неизвестные переменные.
Это уравнение 2-ой степени с двумя неизвестными.
К. Гаусс построил общую теорию квадратичных форм, являющуюся основой решения некоторых типов уравнений с двумя переменными (диофантовых уравнений). Существует большое число конкретных диофантовых уравнений, решаемых элементарными способами. /p>
В этой части работы будут описаны основные математические понятия, даны определения терминов, сформулирована теорема о разложении с использованием метода неопределенных коэффициентов, которые были изучены и рассмотрены при решении уравнений с двумя переменными.
Определение 1: Уравнение вида ах2 + вху + су2 + dx + ey + f = 0, где a, в, с, d, e, f числа; х, у неизвестные переменные называется уравнением второй степени с двумя переменными.
В школьном курсе математики изучается квадратное уравнение ах2+вх +с=0 , где а,в,с числа х переменная, с одной переменной. Существует много способов решения такого уравнения:
1. Нахождение корней, используя дискриминант;
2. Нахождение корней для четного коэффициента в (по Д1=);
3. Нахождение корней по теореме Виета;
4. Нахождение корней с помощью выделения полного квадрата двучлена.
Решить уравнение – значит, найти все его корни или доказать, что их нет.
Определение 2: Корень уравнения – это число, которое при подстановке в уравнение образует верное равенство.
Определение 3: Решение уравнения с двумя переменными называется пара чисел (х,у) при подстановки которых в уравнение, оно превращается в верное равенство.
Процесс разыскивания решений уравнения очень часто заключается обычно в замене уравнения равносильным уравнением, но более простым при решении. Такие уравнения называются равносильными.
Определение 4: Два уравнения называются равносильными, если каждое решение одного уравнения является решением другого уравнения, и наоборот, причем оба уравнения рассматриваются в одной и той же области.
Для решения уравнений с двумя переменными используют теорему о разложении уравнения на сумму полных квадратов (методом неопределенных коэффициентов).
Для уравнения второго порядка ах2 + вху + су2 + dx + ey + f = 0 (1) имеет место разложение а(х +ру +q)2 + r(y+s)2 +h (2)
Сформулируем условия, при которых имеет место разложение (2) для уравнения (1) двух переменных.
Теорема: Если коэффициенты а,в,с уравнения (1) удовлетворяют условиям а0 и 4ав – с20, то разложение (2) определяется единственным способом.
Другими словами уравнение (1) с двумя переменными можно с помощью метода неопределенных коэффициентов привести к виду (2), если выполнены условия теоремы.
Рассмотрим на примере, как реализуется метод неопределенных коэффициентов.
СПОСОБ №1. Решить уравнение методом неопределенных коэффициентов
2 х2 + у2 + 2ху + 2х +1= 0.
1. Проверим выполнение условия теоремы, а=2, в=1, с=2, значит, а=2,4ав – с2= 4∙2∙1- 22= 40.
2. Условия теоремы выполнены, можно разложить по формуле (2).
3. 2 х2 + у2 + 2ху + 2х +1= 2(х + py + q)2 + r(y +s)2 +h, исходя из условий теоремы обе части тождества равносильны. Упростим правую часть тождества.
4. 2(х + py + q)2 + r(y +s)2 +h =
= 2(х2+ p2y2 + q2 + 2pxy + 2pqy + 2qx) + r(y2 + 2sy + s2) + h =
= 2х2+ 2p2y2 + 2q2 + 4pxy + 4pqy + 4qx + ry2 + 2rsy + rs2 + h =
= x2(2) + y2(2p2 + r) + xy(4p) + x(4q) + y(4pq + 2rs) + (2q2 + rs2 + h).
5. Приравниваем коэффициенты при одинаковых переменных с их степенями.
х2 2 = 2 у21 = 2p2 + r) ху2 = 4p х2 = 4q у0 = 4pq + 2rs х01 = 2q2 + rs2 + h
6. Получим систему уравнений, решим ее и найдем значения коэффициентов.
7. Подставим коэффициенты в (2), тогда уравнение примет вид
2 х2 + у2 + 2ху + 2х +1= 2(х + 0,5y + 0,5)2 + 0,5(y -1)2 +0
Таким образом, исходное уравнение равносильно уравнению
2(х + 0,5y + 0,5)2 + 0,5(y -1)2 = 0 (3), это уравнение равносильно системе двух линейных уравнений.
Если обратить внимание на вид разложения (3), то можно заметить, что оно по форме идентично выделению полного квадрата из квадратного уравнения с одной переменной: ах2 + вх + с = а(х +)2 +.
Применим этот прием при решении уравнения с двумя переменными. Решим с помощью выделения полного квадрата уже решенное с использованием теоремы квадратное уравнение с двумя переменными.
СПОСОБ №2: Решить уравнение 2 х2 + у2 + 2ху + 2х +1= 0.
Решение: 1. Представим 2х2 в виде суммы двух слагаемых х2 + х2 + у2 + 2ху + 2х +1= 0.
2. Сгруппируем слагаемые таким образом, чтобы можно было свернуть по формуле полного квадрата.
(х2 + у2 + 2ху) + (х2 + 2х +1)= 0.
3. Выделим полные квадраты из выражений в скобках.
(х + у)2 + (х + 1)2 = 0.
4. Данное уравнение равносильно системе линейных уравнений.
Если сравнить результаты, то видно, что уравнение, решенное способом №1 с использованием теоремы и методом неопределенных коэффициентов и уравнение, решенное способом №2, с помощью выделения полного квадрата имеют одинаковые корни.
Вывод: Квадратное уравнение с двумя переменными можно разлагать на сумму квадратов двумя способами:
➢ Первый способ – это метод неопределенных коэффициентов, в основе которого лежит теорема и разложение (2).
➢ Второй способ – с помощью тождественных преобразований, позволяющих выделить последовательно полные квадраты.
Конечно же, при решении задач второй способ является предпочтительнее, т. к. не требует запоминания разложения (2) и условия.
Этот метод можно применять и для квадратных уравнений с тремя переменными. Выделение полного квадрата в таких уравнениях более трудоемко. Такого вида преобразованиями я буду заниматься в следующем году.
Интересно заметить, что функцию, имеющую вид: f(х,у)= ах2 + вху + су2 + dx + ey + f, называют квадратичной функцией двух переменных. Квадратичным функциям принадлежит важная роль в различных разделах математики:
• В математическом программировании (квадратичное программирование)
• В линейной алгебре и геометрии (квадратичные формы)
• В теории дифференциальных уравнений ( приведение линейного уравнения второго порядка к каноническому виду).
При решении этих различных задач, приходится, по сути, применять процедуру выделения полного квадрата из квадратного уравнения (одной, двух и более переменных).
Линии, уравнения которых, описываются квадратным уравнением двух переменных, называются кривыми второго порядка.
Это окружность, эллипс, гипербола.
При построении графиков этих кривых так же используется метод последовательного выделения полного квадрата.
Рассмотрим, как работает метод последовательного выделения полного квадрата на конкретных примерах.
Решить уравнения, методом последовательного выделения полного квадрата.
1. 2х2 + у2 + 2ху + 2х + 1 = 0; х2 + х2 + у2 + 2ху + 2х + 1 = 0;
(х +1 )2 + (х + у)2 = 0;
2. х2 + 5у2 + 2ху + 4у + 1 = 0; х2 + 4у2 + у2 + 2ху + 4у + 1 = 0;
(х + у)2 + (2у + 1)2 = 0;
3. 3х2 + 4у2 — 6ху — 2у + 1 = 0;
3х2 + 3у2 + у2 – 6ху – 2у +1 = 0;
3х2 +3у2 – 6ху + у2 –2у +1 = 0;
3(х2 — 2ху +у2) + у2 — 2у + 1 = 0;
3(х2 — 2ху + у2)+(у2 — 2у + 1)=0;
1. 2х2 + 3у2 – 4ху + 6у +9 =0
(привести к виду: 2(х-у)2 + (у +3)2 = 0)
2. – 3х2 – 2у2 – 6ху –2у + 1=0
( привести к виду: -3(х+у)2 + (у –1)2= 0)
3. х2 + 3у2+2ху + 28у +98 =0
( привести к виду: (х+у)2 +2(у+7)2 =0)
В данной научной работе были изучены уравнения с двумя переменными второй степени, рассмотрены способы их решения. Поставленная задача выполнена, сформулирован и описан более краткий способ решения, основанный на выделении полного квадрата и замене уравнения на равносильную систему уравнений, в результате упрощена процедура нахождения корней уравнения с двумя переменными.
Важным моментом работы является то, что рассматриваемый прием применяется при решении различных математических задач связанных с квадратичной функцией, построением кривых второго порядка, нахождением наибольшего (наименьшего) значения выражений.
Таким образом, прием разложения уравнения второго порядка с двумя переменными на сумму квадратов имеет самые многочисленные применения в математике.
- Как решать квадратные уравнения
- Понятие квадратного уравнения
- Приведенные и неприведенные квадратные уравнения
- Полные и неполные квадратные уравнения
- Решение неполных квадратных уравнений
- Как решить уравнение ax 2 = 0
- Как решить уравнение ax 2 + с = 0
- Как решить уравнение ax 2 + bx = 0
- Как разложить квадратное уравнение
- Дискриминант: формула корней квадратного уравнения
- Алгоритм решения квадратных уравнений по формулам корней
- Примеры решения квадратных уравнений
- Формула корней для четных вторых коэффициентов
- Формула Виета
- Упрощаем вид квадратных уравнений
- Связь между корнями и коэффициентами
- Уравнения с двумя переменными (неопределенные уравнения)
- Урок 1.
- Ход урока.
- 1) Орг. момент.
- 2) Актуализация опорных знаний. Определение. Линейным уравнением с двумя переменными называется уравнение вида mx + ny = k, где m, n, k – числа, x, y – переменные. Определение. Решением уравнения с двумя переменными называется пара значений переменных, обращающая это уравнение в верное равенство. Уравнения с двумя переменными, имеющими одни и те же решения, называются равносильными. 1. 5x+2y=12 (2)y = -2.5x+6 Данное уравнение может иметь сколько угодно решений. Для этого достаточно взять любое значение x и найти соответствующее ему значение y. Пусть x = 2, y = -2.5•2+6 = 1 x = 4, y = -2.5•4+6 =- 4 Пары чисел (2;1); (4;-4) – решения уравнения (1). Данное уравнение имеет бесконечно много решений. 3) Историческая справка Неопределенные (диофантовы) уравнения – это уравнения, содержащие более одной переменной. В III в. н.э. – Диофант Александрийский написал “Арифметику”, в которой расширил множество чисел до рациональных, ввел алгебраическую символику. Так же Диофант рассмотрел проблемы решения неопределенных уравнений и им даны методы решения неопределенных уравнений второй и третьей степени. 4) Изучение нового материала. Определение: Неоднородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = k, где m, n, k, x, y Z k0 Если свободный член k в уравнении (1) не делится на наибольший общий делитель (НОД) чисел m и n, то уравнение (1) не имеет целых решений. Пример: 34x – 17y = 3. НОД (34; 17) = 17, 3 не делится нацело на 17, в целых числах решения нет. Пусть k делится на НОД (m, n). Делением всех коэффициентов можно добиться, что m и n станут взаимно простыми. Если m и n уравнения (1) взаимно простые числа, то это уравнение имеет по крайней мере одно решение. Если коэффициенты m и n уравнения (1) являются взаимно простыми числами, то это уравнение имеет бесконечно много решений: где (; ) – какое-либо решение уравнения (1), t Z Определение. Однородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = 0, где (2) m, n, x, y Z Если m и n – взаимно простые числа, то всякое решение уравнения (2) имеет вид 5) Домашнее задание. Решить уравнение в целых числах: 9x – 18y = 5 x + y= xy Несколько детей собирали яблоки. Каждый мальчик собрал по 21 кг, а девочка по 15 кг. Всего они собрали 174 кг. Сколько мальчиков и сколько девочек собирали яблоки?
- 📸 Видео
Видео:Линейное уравнение с двумя переменными. 7 класс.Скачать
Как решать квадратные уравнения
О чем эта статья:
Видео:ЛИНЕЙНОЕ УРАНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ — Как решать линейное уравнение // Алгебра 7 классСкачать
Понятие квадратного уравнения
Уравнение — это равенство, содержащее переменную, значение которой нужно найти.
Например, х + 8 = 12 — это уравнение, которое содержит переменную х.
Корень уравнения — это такое значение переменной, которое при подстановке в уравнение обращает его в верное числовое равенство.
Например, если х = 5, то при подстановке в уравнение мы получим 5 + 8 = 12. 13 = 12 — противоречие. Значит, х = 5 не является корнем уравнения.
А вот если х = 4, то при подстановке в уравнение мы получим 4 + 8 = 12. 12 = 12 — верное равенство. Значит, х = 4 является корнем уравнения.
Решить уравнение — значит найти все его корни или доказать, что их не существует.
Квадратное уравнение — это уравнение вида ax 2 + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.
Чтобы запомнить месторасположение коэффициентов, давайте потренируемся определять их.
Квадратные уравнения могут иметь два корня, один корень или не иметь корней.
Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Чтобы его найти, берем формулу: D = b 2 − 4ac. А вот свойства дискриминанта:
- если D 0, есть два различных корня.
С этим разобрались. А сейчас посмотрим подробнее на различные виды квадратных уравнений.
Разобраться в теме еще быстрее с помощью опытного преподавателя можно на курсах по математике в онлайн-школе Skysmart.
Видео:9 класс, 8 урок, Уравнения с двумя переменнымиСкачать
Приведенные и неприведенные квадратные уравнения
Квадратное уравнение может быть приведенным или неприведенным — все зависит от от значения первого коэффициента.
Приведенное квадратное уравнение — это уравнение, где старший коэффициент, тот который стоит при одночлене высшей степени, равен единице.
Неприведенным называют квадратное уравнение, где старший коэффициент отличается от единицы.
Давайте-ка на примерах — вот у нас есть два уравнения:
- x 2 — 2x + 6 = 0
- x 2 — x — 1/4 = 0
В каждом из них старший коэффициент равен единице (которую мы мысленно представляем при x 2 ), а значит уравнение называется приведенным.
- 2x 2 − 4x — 12 = 0 — первый коэффициент отличен от единицы (2), значит это неприведенное квадратное уравнение.
Каждое неприведенное квадратное уравнение можно преобразовать в приведенное, если произвести равносильное преобразование — разделить обе его части на первый коэффициент.
Пример 1. Превратим неприведенное уравнение: 8x 2 + 20x — 9 = 0 — в приведенное.
Для этого разделим обе части исходного уравнения на старший коэффициент 8:
Ответ: равносильное данному приведенное уравнение x 2 + 2,5x — 1,125 = 0.
Видео:Решите уравнение с двумя переменными ★ 5x^2+y^2+4xy+2x+1=0 ★ Два быстрых способа решения уравненияСкачать
Полные и неполные квадратные уравнения
В определении квадратного уравнения есть условие: a ≠ 0. Оно нужно, чтобы уравнение ax 2 + bx + c = 0 было именно квадратным. Если a = 0, то уравнение обретет вид линейного: bx + c = 0.
Что касается коэффициентов b и c, то они могут быть равны нулю, как по отдельности, так и вместе. В таком случае квадратное уравнение принято называть неполным.
Неполное квадратное уравнение —— это квадратное уравнение вида ax 2 + bx + c = 0, где оба или хотя бы один из коэффициентов b и c равен нулю.
Полное квадратное уравнение — это уравнение, у которого все коэффициенты отличны от нуля.
Для самых любопытных объясняем откуда появились такие названия: | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Такие уравнения отличны от полного квадратного тем, что их левые части не содержат либо слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения. Видео:Нелинейные уравнения с двумя переменными и их геометрический смысл. 9 класс.Скачать Решение неполных квадратных уравненийКак мы уже знаем, есть три вида неполных квадратных уравнений:
Давайте рассмотрим по шагам, как решать неполные квадратные уравнения по видам. Как решить уравнение ax 2 = 0Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax 2 = 0. Уравнение ax 2 = 0 равносильно x 2 = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x 2 = 0 является нуль, так как 0 2 = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней. Таким образом, неполное квадратное уравнение ax 2 = 0 имеет единственный корень x = 0. Пример 1. Решить −6x 2 = 0.
Как решить уравнение ax 2 + с = 0Обратим внимание на неполные квадратные уравнения вида ax 2 + c = 0, в которых b = 0, c ≠ 0. Мы давно знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный. Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. Ну есть одно и то же, только с другими цифрами. Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax 2 + c = 0:
Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи. Если — c/а 2 = — c/а не имеет корней. Все потому, что квадрат любого числа всегда равен неотрицательному числу. Из этого следует, что при — c/а 0, то корни уравнения x 2 = — c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а) 2 = — c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а) 2 = — c/а. Ура, больше у этого уравнения нет корней.
Пример 1. Найти решение уравнения 8x 2 + 5 = 0.
Разделим обе части на 8: Ответ: уравнение 8x 2 + 5 = 0 не имеет корней. Как решить уравнение ax 2 + bx = 0Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0. Неполное квадратное уравнение ax 2 + bx = 0 можно решить методом разложения на множители. Как разложить квадратное уравнение: Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x. Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a. Таким образом, неполное квадратное уравнение ax 2 + bx = 0 имеет два корня: Пример 1. Решить уравнение 0,5x 2 + 0,125x = 0 0,5x = 0,125, Ответ: х = 0 и х = 0,25. Как разложить квадратное уравнениеС помощью теоремы Виета можно получить формулу разложения квадратного трехчлена на множители. Выглядит она так: Формула разложения квадратного трехчлена Если x1 и x2 — корни квадратного трехчлена ax 2 + bx + c, то справедливо равенство ax 2 + bx + c = a (x − x1) (x − x2). Видео:Как решать квадратные уравнения с двумя переменными в целых числах! Лёгкий способСкачать Дискриминант: формула корней квадратного уравненияЧтобы найти результат квадратного уравнения, придумали формулу корней. Выглядит она так:
где D = b 2 − 4ac — дискриминант квадратного уравнения. Эта запись означает: Чтобы легко применять эту формулу, нужно понять, как она получилась. Давайте разбираться. Алгоритм решения квадратных уравнений по формулам корнейТеперь мы знаем, что при решении квадратных уравнения можно использовать универсальную формулу корней — это помогает находить комплексные корни. В 8 классе на алгебре можно встретить задачу по поиску действительных корней квадратного уравнения. Для этого важно перед использованием формул найти дискриминант и убедиться, что он неотрицательный, и только после этого вычислять значения корней. Если дискриминант отрицательный, значит уравнение не имеет действительных корней. Алгоритм решения квадратного уравнения ax 2 + bx + c = 0:
Чтобы запомнить алгоритм решения квадратных уравнений и с легкостью его использовать, давайте тренироваться! Примеры решения квадратных уравненийКак решать квадратные уравнения мы уже знаем, осталось закрепить знания на практике. Пример 1. Решить уравнение −4x 2 + 28x — 49 = 0.
Ответ: единственный корень 3,5. Пример 2. Решить уравнение 54 — 6x 2 = 0.
Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую Ответ: два корня 3 и — 3. Пример 3. Решить уравнение x 2 — х = 0.
Ответ: два корня 0 и 1. Пример 4. Решить уравнение x 2 — 10 = 39.
Ответ: два корня 7 и −7. Пример 5. Решить уравнение 3x 2 — 4x+94 = 0.
D = (-4) 2 — 4 * 3 * 94 = 16 — 1128 = −1112 Ответ: корней нет. В школьной программе за 8 класс нет обязательного требования искать комплексные корни, но такой подход может ускорить ход решения. Если дискриминант отрицательный — сразу пишем ответ, что действительных корней нет и не мучаемся. Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать Формула корней для четных вторых коэффициентовРассмотрим частный случай. Формула решения корней квадратного уравнения , где D = b 2 — 4ac, помогает получить еще одну формулу, более компактную, при помощи которой можно решать квадратные уравнения с четным коэффициентом при x. Рассмотрим, как появилась эта формула. Например, нам нужно решить квадратное уравнение ax 2 + 2nx + c = 0. Сначала найдем его корни по известной нам формуле. Вычислим дискриминант D = (2n) 2 — 4ac = 4n 2 — 4ac = 4(n 2 — ac) и подставим в формулу корней: 2 + 2nx + c = 0″ height=»705″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc11a460e2f8354381151.png» width=»588″> Для удобства вычислений обозначим выражение n 2 -ac как D1. Тогда формула корней квадратного уравнения со вторым коэффициентом 2·n примет вид:
где D1 = n 2 — ac. Самые внимательные уже заметили, что D = 4D1, или D1= D/4. Проще говоря, D1 — это четверть дискриминанта. И получается, что знак D1 является индикатором наличия или отсутствия корней квадратного уравнения. Сформулируем правило. Чтобы найти решение квадратного уравнения со вторым коэффициентом 2n, нужно:
Видео:Уравнение с двумя переменными и его график. Алгебра, 9 классСкачать Формула ВиетаЕсли в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так: Сумма корней x 2 + bx + c = 0 равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену. Если дано x 2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства: Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам. Рассмотрим теорему Виета на примере: x 2 + 4x + 3 = 0. Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре: Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит: Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x 2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента: Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное. Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется: Результат проделанных вычислений в том, что мы убедились в справедливости выражения: Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Вот она: Обратная теорема Виета Если числа x1 и x2 таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа и есть корни x 2 + bx + c = 0. Обычно вся суть обратных теорем в том самом выводе, которое дает первая теорема. Так, при доказательстве теоремы Виета стало понятно, что сумма x1 и x2 равна −b, а их произведение равно c. В обратной теореме это и есть утверждение. Пример 1. Решить при помощи теоремы Виета: x 2 − 6x + 8 = 0.
2 − 6x + 8 = 0″ height=»59″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc101ce2e346034751939.png» width=»117″> Когда у нас есть эти два равенства, можно подобрать подходящие корни, которые будут удовлетворять обоим равенствам системы. Чтобы проще подобрать корни, нужно их перемножить. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x1 и x2 надо подбирать так, чтобы они удовлетворяли и второму равенству тоже. Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x1 + x2 = 6. А значения 4 и 2 подходят обоим равенствам: Значит числа 4 и 2 — корни уравнения x 2 − 6x + 8 = 0. p> Упрощаем вид квадратных уравненийЕсли мы ходили в школу всегда одной тропинкой, а потом вдруг обнаружили путь короче — это значит теперь у нас есть выбор: упростить себе задачу и сократить время на дорогу или прогуляться по привычному маршруту. Так же и при вычислении корней квадратного уравнения. Ведь проще посчитать уравнение 11x 2 — 4 x — 6 = 0, чем 1100x 2 — 400x — 600 = 0. Часто упрощение вида квадратного уравнения можно получить через умножение или деление обеих частей на некоторое число. Например, в предыдущем абзаце мы упростили уравнение 1100x 2 — 400x — 600 = 0, просто разделив обе части на 100. Такое преобразование возможно, когда коэффициенты не являются взаимно простыми числами. Тогда принято делить обе части уравнения на наибольший общий делитель абсолютных величин его коэффициентов. Покажем, как это работает на примере 12x 2 — 42x + 48 = 0. Найдем наибольший общий делитель абсолютных величин его коэффициентов: НОД (12, 42, 48) = 6. Разделим обе части исходного квадратного уравнения на 6, и придем к равносильному уравнению 2x 2 — 7x + 8 = 0. Вот так просто. А умножение обеих частей квадратного уравнения отлично помогает избавиться от дробных коэффициентов. Умножать в данном случае лучше на наименьшее общее кратное знаменателей его коэффициентов. Например, если обе части квадратного уравнения
умножить на НОК (6, 3, 1) = 6, то оно примет более простой вид x 2 + 4x — 18 = 0. Также для удобства вычислений можно избавиться от минуса при старшем коэффициенте квадратного уравнения — для этого умножим или разделим обе части на −1. Например, удобно от квадратного уравнения −2x 2 — 3x + 7 = 0 перейти к решению 2x 2 + 3x — 7 = 0. Связь между корнями и коэффициентамиМы уже запомнили, что формула корней квадратного уравнения выражает корни уравнения через его коэффициенты:
Из этой формулы, можно получить другие зависимости между корнями и коэффициентами. Например, можно применить формулы из теоремы Виета: Для приведенного квадратного уравнения сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней — свободному члену. Например, по виду уравнения 3x 2 — 7x + 22 = 0 можно сразу сказать, что сумма его корней равна 7/3, а произведение корней равно 22/3. Можно активно использовать уже записанные формулы и с их помощью получить ряд других связей между корнями и коэффициентами квадратного уравнения. Таким образом можно выразить сумму квадратов корней квадратного уравнения через его коэффициенты: Видео:5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать Уравнения с двумя переменными (неопределенные уравнения)Разделы: Математика Обращение автора к данной теме не является случайным. Уравнения с двумя переменными впервые встречаются в курсе 7-го класса. Одно уравнение с двумя переменными имеет бесконечное множество решений. Это наглядно демонстрирует график линейной функции, заданный в виде ax + by=c. В школьном курсе учащиеся изучают системы двух уравнений с двумя переменными. В результате из поля зрения учителя и, поэтому ученика, выпадает целый ряд задач, с ограниченными условиями на коэффициент уравнения, а также методы их решения. Речь идет о решении уравнения с двумя неизвестными в целых или натуральных числах. В школе натуральные и целые числа изучаются в 4-6-х классах. К моменту окончания школы не все ученики помнят различия между множествами этих чисел. Однако задача типа “решить уравнение вида ax + by=c в целых числах” все чаще встречается на вступительных экзаменах в ВУЗы и в материалах ЕГЭ. Решение неопределенных уравнений развивает логическое мышление, сообразительность, внимание анализировать. Я предлагаю разработку нескольких уроков по данной теме. У меня нет однозначных рекомендаций по срокам проведения этих уроков. Отдельные элементы можно использовать и в 7-м классе (для сильного класса). Данные уроки можно взять за основу и разработать небольшой элективный курс по предпрофильной подготовке в 9-м классе. И, конечно, этот материал можно использовать в 10-11 классах для подготовки к экзаменам. Цель урока:
Урок 1.Ход урока.1) Орг. момент.2) Актуализация опорных знаний.Определение. Линейным уравнением с двумя переменными называется уравнение вида mx + ny = k, где m, n, k – числа, x, y – переменные. Определение. Решением уравнения с двумя переменными называется пара значений переменных, обращающая это уравнение в верное равенство. Уравнения с двумя переменными, имеющими одни и те же решения, называются равносильными. 1. 5x+2y=12 (2)y = -2.5x+6 Данное уравнение может иметь сколько угодно решений. Для этого достаточно взять любое значение x и найти соответствующее ему значение y. Пусть x = 2, y = -2.5•2+6 = 1 x = 4, y = -2.5•4+6 =- 4 Пары чисел (2;1); (4;-4) – решения уравнения (1). Данное уравнение имеет бесконечно много решений. 3) Историческая справкаНеопределенные (диофантовы) уравнения – это уравнения, содержащие более одной переменной. В III в. н.э. – Диофант Александрийский написал “Арифметику”, в которой расширил множество чисел до рациональных, ввел алгебраическую символику. Так же Диофант рассмотрел проблемы решения неопределенных уравнений и им даны методы решения неопределенных уравнений второй и третьей степени. 4) Изучение нового материала.Определение: Неоднородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = k, где m, n, k, x, y Z k0 Если свободный член k в уравнении (1) не делится на наибольший общий делитель (НОД) чисел m и n, то уравнение (1) не имеет целых решений. Пример: 34x – 17y = 3. НОД (34; 17) = 17, 3 не делится нацело на 17, в целых числах решения нет. Пусть k делится на НОД (m, n). Делением всех коэффициентов можно добиться, что m и n станут взаимно простыми. Если m и n уравнения (1) взаимно простые числа, то это уравнение имеет по крайней мере одно решение. Если коэффициенты m и n уравнения (1) являются взаимно простыми числами, то это уравнение имеет бесконечно много решений: где (; ) – какое-либо решение уравнения (1), t Z Определение. Однородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = 0, где (2) m, n, x, y Z Если m и n – взаимно простые числа, то всякое решение уравнения (2) имеет вид 5) Домашнее задание. Решить уравнение в целых числах: Замечание. На данном уроке не представлены примеры решения уравнений в целых числах. Поэтому домашнее задание дети решают исходя из утверждения 1 и подбором. Урок 2.1) Организационный момент2) Проверка домашнего задания5 не делится нацело на 9, в целых числах решений нет. Методом подбора можно найти решение 3) Составим уравнение: Пусть мальчиков x, x Z, а девочек у, y Z, то можно составить уравнение 21x + 15y = 174 Многие учащиеся, составив уравнение, не смогут его решить. Ответ: мальчиков 4, девочек 6. 3) Изучение нового материалаСтолкнувшись с трудностями при выполнении домашнего задания, учащиеся убедились в необходимости изучения их методов решений неопределенных уравнений. Рассмотрим некоторые из них. I. Метод рассмотрения остатков от деления. Пример. Решить уравнение в целых числах 3x – 4y = 1. Левая часть уравнения делится на 3, следовательно, должна делиться и правая часть. Рассмотрим три случая.
Ответ: где m Z. Описанный метод удобно применять в случае, если числа m и n не малы, но зато разлагаются на простые сомножители. Пример: Решить уравнения в целых числах. Пусть y = 4n, тогда 16 — 7y = 16 – 7•4n = 16 – 28n = 4*(4-7n) делится на 4. y = 4n+1, тогда 16 – 7y = 16 – 7• (4n + 1) = 16 – 28n – 7 = 9 – 28n не делится на 4. y = 4n+2, тогда 16 – 7y = 16 – 7• (4n + 2) = 16 – 28n – 14 = 2 – 28n не делится на 4. y = 4n+3, тогда 16 – 7y = 16 – 7• (4n + 3) = 16 – 28n – 21 = -5 – 28n не делится на 4. Следовательно, y = 4n, тогда 4x = 16 – 7•4n = 16 – 28n, x = 4 – 7n Ответ: , где n Z. II. Неопределенные уравнения 2-ой степени Сегодня на уроке мы лишь коснемся решения диофантовых уравнений второго порядка. И из всех типов уравнений рассмотрим случай, когда можно применить формулу разности квадратов или другой способ разложения на множители. Пример: Решить уравнение в целых числах. 13 – простое число, поэтому оно может быть разложено на множители лишь четырьмя способами: 13 = 13•1 = 1•13 = (-1)(-13) = (-13)(-1) Рассмотрим эти случаи а) => б) => в) => г) => 4) Домашнее задание.Примеры. Решить уравнение в целых числах: а)
б) в) Итоги. Что значит решить уравнение в целых числах? Какие методы решения неопределенных уравнений вы знаете? Упражнения для тренировки. 1) Решите в целых числах.
2) Найти целые неотрицательные решения уравнения:
3) Найти все пары целых чисел (x; y), удовлетворяющие следующим условиям
Число 3 можно разложить на множители:
4) Решить уравнения в целых числах
5) Решить уравнения в целых числах.
📸 ВидеоРешение систем уравнений второй степени. Алгебра, 9 классСкачать Системы уравнений с двумя переменными - 9 класс алгебраСкачать Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать Как решить квадратное уравнение за 30 секунд#математика #алгебра #уравнение #дискриминант #репетиторСкачать Решение системы неравенств с двумя переменными. 9 класс.Скачать Уравнение с X и Y #shortsСкачать Неравенства с двумя переменными. 9 класс.Скачать Решение систем уравнений второго порядка. 8 класс.Скачать Как решать квадратные уравнения без дискриминантаСкачать СИСТЕМЫ УРАВНЕНИЙ В ЕГЭ ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэСкачать |