Как решать графические уравнения с картинками

Графический метод решения задач с параметрами

Теперь вы узнали, что такое параметр, и увидели решение самых простых задач.

Но подождите — рано успокаиваться и говорить, что вы все знаете. Есть множество типов задач с параметрами и приемов их решения. Чтобы чувствовать себя уверенно, мало посмотреть решения трех незатейливых задач.

Вот список тем, которые стоит повторить:

1. Элементарные функции и их графики. Парабола, синус, логарифм, арктангенс и все остальные — всех их надо знать «в лицо».

Только после этого можно переходить к самому простому и наглядному способу решения задач с параметрами — графическому. Конечно, он не единственный. Но начинать лучше всего именно с него.

Мы разберем несколько самых простых задач, решаемых графическим методом. Больше задач — в видеокурсе «Графический метод решения задач с параметрами» (бесплатно).

1. При каких значениях параметра a уравнение имеет ровно 2 различных решения?

Дробь равна нулю тогда и только тогда, когда ее числитель равен нулю, а знаменатель не равен нулю.

В первом уравнении выделим полный квадрат:

Это уравнение окружности с центром в точке и радиусом равным 2. Обратите внимание — графики будем строить в координатах х; а.

Уравнение задает прямую, проходящую через начало координат. Нам нужны ординаты точек, лежащих на окружности и не лежащих на этой прямой.

Как решать графические уравнения с картинками

Для того чтобы точка лежала на окружности, ее ордината а должна быть не меньше 0 и не больше 4.

Кроме того, точка не должна лежать на прямой , которая пересекает окружность в точках и Координаты этих точек легко найти, подставим в уравнение окружности.

Точка С также не подходит нам, поскольку при мы получим единственную точку, лежащую на окружности, и единственное решение уравнения.

2. Найдите все значения a, при которых уравнение имеет единственное решение.

Уравнение равносильно системе:

Мы возвели обе части уравнения в квадрат при условии, что (смотри тему «Иррациональные уравнения»).

Раскроем скобки в правой части уравнения, применяя формулу квадрата трехчлена. Получаем систему.

Приводим подобные слагаемые в уравнении.

Заметим, что при прибавлении к правой и левой части числа 49 можно выделить полные квадраты:

Решим систему графически:

Уравнение задает окружность с центром в точке , где радиус

Неравенство задает полуплоскость, которая расположена выше прямой , вместе с самой этой прямой.

Как решать графические уравнения с картинками

Исходное уравнение имеет единственное решение, если окружность имеет единственную общую точку с полуплоскостью. Другими словами, окружность касается прямой, заданной уравнением

Пусть С — точка касания.

На координатной плоскости отметим точки и , в которых прямая пересекает оси Y и Х.

Рассмотрим треугольник ABP. Он прямоугольный, и радиус окружности PC является медианой этого треугольника. Значит по свойству медианы прямоугольного треугольника, проведенной к гипотенузе.

Из треугольника ABP найдем длину гипотенузы AB по теореме Пифагора.

Решая это уравнение, получаем, что

3. Найдите все положительные значения параметра а, при каждом из которых система имеет единственное решение.

График уравнения — окружность с центром и радиусом равным 2.

График уравнения — две симметричные окружности и радиуса 2 c центрами в точках и

Второе уравнение при задает окружность с центром в точке и радиусом a.

Как решать графические уравнения с картинками

Вот такая картинка, похожая на злую птицу. Или на хрюшку. Кому что нравится.

Система имеет единственное решение в случаях, когда окружность , задаваемая вторым уравнением, касается только левой окружности или только правой

Если a — радиус окружности , то это значит, что (только правая) или (только левая).

Пусть А — точка касания окружности и окружности

, (как гипотенуза прямоугольного треугольника МNР с катетами 3 и 4),

В — точка касания окружности и окружности

длину MQ найдем как гипотенузу прямоугольного треугольника KMQ с катетами 7 и 4; Тогда для точки В получим:

Есть еще точки С и D, в которых окружность касается окружности или окружности соответственно. Однако эти точки нам не подходят. В самом деле, для точки С:

, но и это значит, что окружность с центром в точке М, проходящая через точку С, будет пересекать левую окружность и система будет иметь не одно, а три решения.

Аналогично, для точки D:

и значит, окружность с центром М, проходящая через точку D, будет пересекать правую окружность и система будет иметь три решения.

4. При каких значениях a система уравнений имеет 4 решения?

Конечно же, решаем графически. Только непуганый безумец возьмется решать такую систему аналитически : -)

И в первом, и во втором уравнении системы уже можно разглядеть известные «базовые элементы» (ссылка) — в первом ромбик, во втором окружность. Видите их? Как, еще нет? — Сейчас увидите!

Просто выделили полный квадрат во втором уравнении.

Сделаем замену Система примет вид:

Вот теперь все видно! Рисовать будем в координатах

Графиком первого уравнения является ромб, проходящий через точки с координатами и

Графиком второго уравнения является окружность с радиусом и центром в начале координат.

Как решать графические уравнения с картинками

Когда же система имеет ровно 4 решения?

1) В случае, когда окружность вписана в ромб, то есть касается всех сторон ромба.

Запишем площадь ромба двумя способами — как произведение диагоналей пополам и как произведение стороны на высоту, проведенную к этой стороне.

Диагонали нашего ромба равны 8 и 6. Значит, Как решать графические уравнения с картинками

Сторону ромба найдем по теореме Пифагора. Видите на рисунке прямоугольный треугольник со катетами 3 и 4? Да, это египетский треугольник, и его гипотенуза, то есть сторона ромба, равна 5. Если h — высота ромба, то

Как решать графические уравнения с картинками При этом Мы помним, что если окружность вписана в ромб, то диаметр этой окружности равен высоте ромба. Отсюда

Мы получили ответ:

2) Есть второй случай, и мы его найдем.

Давайте посмотрим — если уменьшить радиус окружности, сделав , окружность будет лежать внутри ромба, не касаясь его сторон. Система не будет иметь решений, и нам это не подходит.

Пусть радиус окружности больше, чем , но меньше 3. Окружность дважды пересекает каждую из четырех сторон ромба, и система имеет целых 8 решений. Опять не то.

Пусть радиус окружности равен 3. Тогда система имеет 6 решений.

А что, если ? Окружность пересекает каждую сторону ромба ровно 1 раз, всего 4 решения. Подходит!

Значит, Объединим случаи и запишем ответ:

Больше задач и методов решения — на онлайн-курсе Анны Малковой. И на интенсивах ЕГЭ-Студии в Москве.

Видео:Алгебра 8 класс (Урок№6 - Решение уравнений графическим способом.)Скачать

Алгебра 8 класс (Урок№6 - Решение уравнений графическим способом.)

Графический метод в задачах с параметром

Данный метод используется не только в задачах с параметром, но и для решения обыкновенных уравнений, систем уравнений или неравенств. Он входит в стандартный курс школьной программы и наверняка вы с ним сталкивались, но в несколько упрощенном варианте. Сначала я кратко напомню, в чем заключается этот метод. Затем разберем, как его применять для решения задач с параметром, и рассмотрим несколько типовых примеров.

Для начала рассмотрим уравнение с одной переменной (f(x)=0). Для того, чтобы решить его графическим методом, нужно построить график функции (y=f(x)). Точки пересечения графика с осью абсцисс (ось (х)) и будут решениями нашего уравнения.

Или рассмотрим уравнение (f(x)=g(x)). Точно так же строим на одной координатной плоскости графики функций (y=f(x)) и (y=g(x)), абсциссы точек их пересечения будут решениями уравнения.

Стоит отдельно отметить, что для решения графическим методом необходимо выполнять очень качественный и точный рисунок.

Решить графическим методом уравнение (x^2+3x=5x+3).

Решение: Построим на одной координатной плоскости графики функций (y=x^2+3x) и (y=5x+3). См. рис.1.

Как решать графические уравнения с картинками

(y=5x+3) – красный график; (y=x^2+3x) – синий график.

Из Рис.1 видно, что графики пересекаются в точках ((-1;2)) и ((3;18)). Таким образом, решением нашего уравнения будут: (_=-1; _=3).

Теперь рассмотрим уравнение с двумя переменными (f(x,y)=0). Решением этого уравнения будет множество пар точек ((x,y)), которые можно изобразить в виде графика на координатной плоскости ((xOy)). Если решать это уравнение аналитически, то, как правило, мы выражаем одну переменную через другую ((x,y=f(x))) или ((x=f(y),y)).

В качестве примера рассмотрим обыкновенное линейное уравнение (2x-5y=10). (1) Выражаем (x=frac) – это называется общим решением уравнения. Изобразим его на координатной плоскости, построив график (Рис. 2):

Видео:7 класс, 35 урок, Графическое решение уравненийСкачать

7 класс, 35 урок, Графическое решение уравнений

Решение систем уравнений

Содержание:

Графический метод решения систем уравнений

Вспоминаем то, что знаем

Что такое график уравнения с двумя неизвестными?

Что представляет собой график линейного уравнения с двумя неизвестными?

Решите графическим методом систему линейных уравнений:

Как решать графические уравнения с картинкамиОткрываем новые знания

Решите графическим методом систему уравнений:

Как решать графические уравнения с картинками

Как можно решить систему двух уравнений с двумя неизвестными с помощью графиков уравнений этой системы? Отвечаем, проверяем себя по тексту

В курсе алгебры 7-го класса вы изучали системы линейных уравнений.

Для их решения вы применяли три метода: графический, метод подстановки и метод алгебраического сложения. Эти же методы служат и для решения других систем двух уравнений с двумя неизвестными, в которых могут содержаться уравнения второй степени или другие рациональные уравнения — как целые, так и дробные.

По этой ссылке вы найдёте полный курс лекций по высшей математике:

Начнём с графического метода

Этот метод основан на том, что каждому уравнению с двумя неизвестными соответствует некоторое множество точек координатной плоскости (график этого уравнения). Построив графики уравнений, мы найдём точки пересечения этих графиков (если они есть), и пары чисел — координаты точек пересечения — будут представлять собой решения системы уравнений.

Найденные решения будут, вообще говоря, приближёнными, в зависимости от точности построений соответствующих графиков.

Таким образом, решить графически систему уравнений — значит найти общие точки графиков уравнений, входящих в систему.

Возможно вам будут полезны данные страницы:

Примеры с решением

Пример 1:

Решим систему уравнений:

Как решать графические уравнения с картинками

Построим графики уравнений Как решать графические уравнения с картинками

Графиком первого уравнения является парабола, с вершиной в точке (0; 1) и ветвями, направленными вверх, графиком второго — прямая, проходящая через точки (0; 3) и (-3; 0).

Как решать графические уравнения с картинкамиПарабола и прямая пересекаются в точках А(2; 5) и В(— 1; 2).

Проверкой убеждаемся, что найденные пары чисел действительно являются решениями системы.

Ответ: (2; 5) и (-1; 2).

Пример 2:

Выясним количество решений системы уравнений:

Как решать графические уравнения с картинками

Построим графики уравнений Как решать графические уравнения с картинками

Графики этих уравнений — окружности. Центр первой окружности — начало координат, а её радиус равен 2; центр второй окружности — точка Р(1; — 1), её радиус равен 3.

Как решать графические уравнения с картинкамиОкружности пересекаются в двух точках М и N, координаты которых можно найти приближённо. Поскольку нам нужно определить только количество решений, мы делать этого не будем.

Ответ: Два решения.

Решение систем уравнений методом подстановки

Вспоминаем то, что знаем

Расскажите, как решить систему двух линейных уравнений с двумя неизвестными методом подстановки.

Решите систему линейных уравнений методом подстановки:

Как решать графические уравнения с картинками

Открываем новые знания

Как вы думаете, можно ли применять метод подстановки при решении систем, где не все уравнения являются линейными? При каком условии это удастся сделать?

Решите систему уравнений методом подстановки:

Как решать графические уравнения с картинками

Как решить систему двух уравнений с двумя неизвестными методом подстановки?

Всякую ли систему двух уравнений с двумя неизвестными можно решить методом подстановки?

Ранее вы решали системы уравнений первой степени.

Теперь познакомимся с системами, в которых хотя бы одно уравнение не является линейным. Как и прежде, распространённым методом решения систем является метод подстановки.

Пример 3:

Как решать графические уравнения с картинками

Пусть (х; у) — решение системы.

Выразим х из уравнения Как решать графические уравнения с картинками

Как решать графические уравнения с картинками

Подставим найденное выражение в первое уравнение:

Как решать графические уравнения с картинками

Решим полученное уравнение:

Как решать графические уравнения с картинками

Как решать графические уравнения с картинками

Убедиться, что найденные пары чисел действительно являются решениями системы, можно подстановкой.

Чуть сложнее дело обстоит в следующем примере.

Пример 4:

Решим систему уравнений:

Как решать графические уравнения с картинками

Пусть (х; у) — решение системы.

Выразим у из линейного уравнения:

Как решать графические уравнения с картинками

Подставим найденное выражение в первое уравнение системы:

Как решать графические уравнения с картинками

После преобразований получим:

Как решать графические уравнения с картинками

Как решать графические уравнения с картинками

Ответ: (-0,5; 0,5), (4; 5).

Если это целесообразно, то можно осуществлять подстановку некоторого выражения «в целом».

Пример 5:

Как решать графические уравнения с картинками

Подставим во второе уравнение Как решать графические уравнения с картинкамитогда его можно переписать в виде:

Как решать графические уравнения с картинками

Теперь выразим х через у из первого уравнения системы:

Как решать графические уравнения с картинками

Подставим в полученное ранее уравнение ху = 2:

Как решать графические уравнения с картинками

Корни этого уравнения: Как решать графические уравнения с картинками

Как решать графические уравнения с картинками.

Иногда решить систему можно, используя метод алгебраического сложения.

Пример 6:

Как решать графические уравнения с картинками

Сложим уравнения, предварительно умножив первое уравнение на —1. В результате получим:

Как решать графические уравнения с картинками.

Корни этого уравнения: Как решать графические уравнения с картинками

Подставим найденные значения в первое уравнение. Рассмотрим два случая:

1) Как решать графические уравнения с картинками

2) Как решать графические уравнения с картинками, получим уравнение Как решать графические уравнения с картинкамикорней нет.

Иногда упростить решение удаётся, используя различные варианты замены неизвестных.

Пример 7:

Решим систему уравнений:

Как решать графические уравнения с картинками

Обозначим Как решать графические уравнения с картинками

Второе уравнение системы примет вид:

Как решать графические уравнения с картинками

Решим полученное уравнение. Получим, умножая обе части на 2а:

Как решать графические уравнения с картинками

Как решать графические уравнения с картинками

Осталось решить методом подстановки линейные системы:

Как решать графические уравнения с картинками

Ответ: (2; 1), (1; 2). Решение задач с помощью систем уравнений Знакомимся с новыми знаниями

Напомним, что при решении задач обычно действуют следующим образом:

1) обозначают буквами какие-нибудь неизвестные величины, выражают через них другие величины, составляют систему уравнений;

2) решают полученную систему;

3) отвечают на вопрос задачи.

Пример 8:

Периметр прямоугольника равен 34 см, а его диагональ 13 см. Найдите стороны прямоугольника.

Пусть х см — длина, у см — ширина (х у), тогда периметр прямоугольника — Как решать графические уравнения с картинкамисм.

Воспользуемся теоремой Пифагора: Как решать графические уравнения с картинками

Как решать графические уравнения с картинками

Решим систему. Выразим из первого уравнения у:

Как решать графические уравнения с картинками

Подставим во второе уравнение:

Как решать графические уравнения с картинками

Корни уравнения: Как решать графические уравнения с картинками

Найдём Как решать графические уравнения с картинками

С учётом условия Как решать графические уравнения с картинкамиполучим ответ: длина — 12 см, ширина — 5 см.

Пример 9:

Если произведение двух положительных чисел увеличить на первое из них, то получится 128. Если это же произведение увеличить на второе из них то получится 135. Найдите эти числа.

Пусть х — первое число, у — второе число.

Тогда: Как решать графические уравнения с картинками— произведение, увеличенное на первое число, ху 4-у — произведение, увеличенное на второе число.

Как решать графические уравнения с картинками

Вычтем из второго уравнения первое. Получим:

Как решать графические уравнения с картинками

Дальше будем решать методом подстановки:

Как решать графические уравнения с картинками

Подставим в первое уравнение выражение для у:

Как решать графические уравнения с картинками

Корни уравнения: Как решать графические уравнения с картинками(не подходит по смыслу задачи).

Найдём у из уравнения:

Как решать графические уравнения с картинками

Получим ответ: 16 и 7.

Симметричные системы уравнений с двумя неизвестными

Уравнение с двумя неизвестными называется симметричным, если при перестановке этих неизвестных местами уравнение не меняется. Например, уравнение Как решать графические уравнения с картинкамисимметричное, так как при перестановке входящих в него неизвестных оно приобретает вид Как решать графические уравнения с картинками, то есть не меняется. А вот уравнение Как решать графические уравнения с картинкамине симметричное, так как при перестановке входящих в него неизвестных оно приобретает вид Как решать графические уравнения с картинками, то есть меняется.

Система двух уравнений с двумя неизвестными называется симметричной, если каждое уравнение этой системы симметричное.

ПРЕДУПРЕЖДЕНИЕ. В определении симметричной системы уравнений требуется, чтобы каждое уравнение в отдельности не менялось.

Например, если в системе уравнений

Как решать графические уравнения с картинками

переставить местами неизвестные х и у, то получим систему:

Как решать графические уравнения с картинками

Видно, что система в целом не изменилась (уравнения поменялись местами по сравнению с первоначальной системой). Но такая система не является симметричной, так как каждое из уравнений в отдельности изменилось.

Убедитесь, что симметричные системы с двумя неизвестными х и у можно решать с помощью замены неизвестных:

Как решать графические уравнения с картинками

Сначала научитесь выражать через неизвестные Как решать графические уравнения с картинкамивыражения:

Как решать графические уравнения с картинками

Как решать графические уравнения с картинками

Как решать графические уравнения с картинками

Присылайте задания в любое время дня и ночи в ➔ Как решать графические уравнения с картинкамиКак решать графические уравнения с картинками

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

🌟 Видео

Решение системы линейных уравнений графическим методом. 7 класс.Скачать

Решение системы линейных уравнений графическим методом. 7 класс.

Графический метод решения систем линейных уравнений 7 классСкачать

Графический метод решения систем линейных уравнений 7 класс

Урок по теме ГРАФИЧЕСКИЙ СПОСОБ РЕШЕНИЯ СИСТЕМ УРАВНЕНИЙ 7 КЛАСССкачать

Урок по теме ГРАФИЧЕСКИЙ СПОСОБ РЕШЕНИЯ СИСТЕМ УРАВНЕНИЙ 7 КЛАСС

Графический метод решения уравнений 8 классСкачать

Графический метод решения уравнений   8 класс

8 класс, 21 урок, Графическое решение уравненийСкачать

8 класс, 21 урок, Графическое решение уравнений

Как решать систему уравнений графическим методом? | Математика | TutorOnlineСкачать

Как решать систему уравнений графическим методом? | Математика | TutorOnline

187 Алгебра 8 класс Решите графически уравнениеСкачать

187 Алгебра 8 класс Решите графически уравнение

Графический способ решения систем уравнений. Алгебра, 9 классСкачать

Графический способ решения систем уравнений. Алгебра, 9 класс

Решение системы уравнений графическим методомСкачать

Решение системы уравнений графическим методом

Алгебра 9 класс. Графическое решение систем уравненийСкачать

Алгебра 9 класс. Графическое решение систем уравнений

Решение системы линейных уравнений графическим способом. 7 классСкачать

Решение системы линейных уравнений графическим способом. 7 класс

Построить график ЛИНЕЙНОЙ функции и найти:Скачать

Построить график  ЛИНЕЙНОЙ функции и найти:

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Решение системы линейных уравнений графическим методом. Практическая часть. 7 класс.Скачать

Решение системы линейных уравнений графическим методом. Практическая часть. 7 класс.

Графический способ решения уравнений и неравенств | Алгебра 10 классСкачать

Графический способ решения уравнений и неравенств | Алгебра 10 класс

Графический метод решения показательных уравнений и неравенств Алгебра 10 (база)Скачать

Графический метод решения показательных уравнений и неравенств   Алгебра 10 (база)

АЛГЕБРА 8 класс : Графическое решение квадратных уравнений | ВидеоурокСкачать

АЛГЕБРА 8 класс : Графическое решение квадратных уравнений | Видеоурок

Графический способ решения систем уравнений | Алгебра 9 класс #18 | ИнфоурокСкачать

Графический способ решения систем уравнений | Алгебра 9 класс #18 | Инфоурок
Поделиться или сохранить к себе: