Урок: как построить параболу или квадратичную функцию?
- ТЕОРЕТИЧЕСКАЯ ЧАСТЬ
- ПРАКТИЧЕСКАЯ ЧАСТЬ
- Урок алгебры в 8-м классе по теме «Графический способ решения уравнений»
- Квадратичная функция. Построение параболы
- Основные понятия
- Построение квадратичной функции
- Алгоритм построения параболы
- Уравнение квадратичной функции имеет вид y = ax 2 + bx + c.
- Уравнение квадратичной функции имеет вид y = a * (x — x₀) 2 + y₀
- Уравнение квадратичной функции имеет вид y = (x + a) × (x + b)
- 📺 Видео
ТЕОРЕТИЧЕСКАЯ ЧАСТЬ
Парабола — это график функции описанный формулой ax 2 +bx+c=0.
Чтобы построить параболу нужно следовать простому алгоритму действий:
1 ) Формула параболы y=ax 2 +bx+c,
если а>0 то ветви параболы направленны вверх,
а 2 +bx+c=0;
a) Полное квадратное уравнение имеет вид ax 2 +bx+c=0 и решается по дискриминанту;
b) Неполное квадратное уравнение вида ax 2 +bx=0. Чтобы его решить нужно вынести х за скобки, потом каждый множитель приравнять к 0:
ax 2 +bx=0,
х(ax+b)=0,
х=0 и ax+b=0;
c)Неполное квадратное уравнение вида ax 2 +c=0. Чтобы его решить нужно неизвестные перенести в одну сторону, а известные в другую. x =±√(c/a);
4) Найти несколько дополнительных точек для построения функции.
ПРАКТИЧЕСКАЯ ЧАСТЬ
И так теперь на примере разберем все по действиям:
Пример №1:
y=x 2 +4x+3
c=3 значит парабола пересекает OY в точке х=0 у=3. Ветви параболы смотрят вверх так как а=1 1>0.
a=1 b=4 c=3 x=(-b)/2a=(-4)/(2*1)=-2 y= (-2) 2 +4*(-2)+3=4-8+3=-1 вершина находится в точке (-2;-1)
Найдем корни уравнения x 2 +4x+3=0
По дискриминанту находим корни
a=1 b=4 c=3
D=b 2 -4ac=16-12=4
x=(-b±√(D))/2a
x1=(-4+2)/2=-1
x2=(-4-2)/2=-3
Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=-2
х -4 -3 -1 0
у 3 0 0 3
Подставляем вместо х в уравнение y=x 2 +4x+3 значения
y=(-4) 2 +4*(-4)+3=16-16+3=3
y=(-3) 2 +4*(-3)+3=9-12+3=0
y=(-1) 2 +4*(-1)+3=1-4+3=0
y=(0) 2 +4*(0)+3=0-0+3=3
Видно по значениям функции,что парабола симметрична относительно прямой х=-2
Пример №2:
y=-x 2 +4x
c=0 значит парабола пересекает OY в точке х=0 у=0. Ветви параболы смотрят вниз так как а=-1 -1 2 +4*2=-4+8=4 вершина находится в точке (2;4)
Найдем корни уравнения -x 2 +4x=0
Неполное квадратное уравнение вида ax 2 +bx=0. Чтобы его решить нужно вынести х за скобки, потом каждый множитель приравнять к 0.
х(-x+4)=0, х=0 и x=4.
Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=2
х 0 1 3 4
у 0 3 3 0
Подставляем вместо х в уравнение y=-x 2 +4x значения
y=0 2 +4*0=0
y=-(1) 2 +4*1=-1+4=3
y=-(3) 2 +4*3=-9+13=3
y=-(4) 2 +4*4=-16+16=0
Видно по значениям функции,что парабола симметрична относительно прямой х=2
Пример №3
y=x 2 -4
c=4 значит парабола пересекает OY в точке х=0 у=4. Ветви параболы смотрят вверх так как а=1 1>0.
a=1 b=0 c=-4 x=(-b)/2a=0/(2*(1))=0 y=(0) 2 -4=-4 вершина находится в точке (0;-4)
Найдем корни уравнения x 2 -4=0
Неполное квадратное уравнение вида ax 2 +c=0. Чтобы его решить нужно неизвестные перенести в одну сторону, а известные в другую. x =±√(c/a)
x 2 =4
x1=2
x2=-2
Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=0
х -2 -1 1 2
у 0 -3 -3 0
Подставляем вместо х в уравнение y= x 2 -4 значения
y=(-2) 2 -4=4-4=0
y=(-1) 2 -4=1-4=-3
y=1 2 -4=1-4=-3
y=2 2 -4=4-4=0
Видно по значениям функции,что парабола симметрична относительно прямой х=0
Подписывайтесь на канал на YOUTUBE, чтобы быть в курсе всех новинок и готовится с нами к экзаменам.
Видео:Всё о квадратичной функции. Парабола | Математика TutorOnlineСкачать
Урок алгебры в 8-м классе по теме «Графический способ решения уравнений»
Разделы: Математика
Всякое учение и всякое обучение основано на некотором уже ранее имеющемся знании.
Цели:
- обобщить и систематизировать свойства графиков некоторых функций, алгоритмы их построения;
- научить решать уравнения графическим способом, в частности используя возможности компьютерных программ;
- учить анализировать, выделять главное, сравнивать.
Формирование компетенций: компетенции самосовершенствования – саморегулирование и саморазвитие, речевое развитие (через устную и самостоятельную работу, формулировка выводов); компетенции социального взаимодействия – сотрудничество; компетенции в общении – устном, письменном; компетенции познавательной деятельности – постановка и решение познавательных задач, проблемные ситуации (их создание и разрешение), прогнозирование деятельности; компетенции информационных технологий – приём, переработка и выдача информации, компьютерная грамотность.
Тип урока: урок изучения нового материала.
Средства обучения: компьютер, медиапроектор, презентация (Приложение 1).
Формы организации учебной деятельности: индивидуальная, коллективная, диалог, работа с текстом слайда, работа в тетради, парная.
Методы: наглядный, словесный, графический (практический).
Методы мотивации: поощрение, порицание; создание проблемной ситуации, побуждение к поиску решения; предъявление учебных требований, прогнозирование будущей деятельности, самооценка деятельности; создание ситуации взаимопомощи, заинтересованность в результатах коллективной работы.
1. Оргмомент (1 мин.)
2. Актуализация знаний (12 мин.)
А). По карточкам (на доске):
№1. Решите уравнение 4х + 8 = –17 + 9х.
№2. Решите уравнение х 2 + х – 2 = 0.
№3. Решите уравнение х 2 = .
№4. Заполните таблицу:
х | –3 | –2 | –1 | 0 | 1 | 2 | 3 |
у = х 2 | 9 | 4 | 1 | 0 | 1 | 4 | 9 |
х | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
у = | -1 | -2 | -3 | -6 | 6 | 3 | 2 | 1 |
(На этом этапе можно организовать взаимопроверку и взаимопомощь, если возникнет такая необходимость).
Б). Устная фронтальная работа. (Здесь и далее: подчёркивание – моменты управления презентацией)
Что называется функцией?
С какими функциями уже знакомы? (На партах – памятка, по которой учащиеся вспоминают связь между графиком и формулой, задающих функцию: Приложение 2).
Я предлагаю вашему вниманию формулы, задающие некоторые функции. Из этих функций нужно выбрать линейные. Но перед этим давайте вспомним определение линейной функции. (Работаем со слайдом 2).
Давайте вспомним, что является графиком (гиперссылка) линейной функции.
Среди выбранных нами линейных функций есть особенные. Что это за функции? Чем отличаются графики? (Разбейте линейные функции на две группы). (Работаем со слайдом 3).
Остались функции, о которых мы ничего ещё не сказали. Давайте дадим им название, и название их графикам. (Работаем со слайдом 4).
Что называется уравнением? Корнем уравнения? Что значит решить уравнение? Какие уравнения мы уже можем решать?
В) Проверяется работа по карточкам №1; №2; №3.
1) 4х + 8 = –17 + 9х,
4х – 9х = – 17 – 8,
– 5х = – 25,
х = 5.
Ответ: 5.
2) х 3 + х – 2 = 0,
D = в 3 – 4ас = 12 – 4 . 1 . (– 2) = 9 > 0, уравнение имеет два корня.
х1 = 1;
х2 = – 2.
Ответ: 1; – 2. (Могут решать по свойству корней: а + в + с = 0).
3) х 2 = ,
х 3 = 6,
х 3 – 6 = 0. – Мы не располагаем никакими формулами для решения уравнений третьей степени. Как быть?
Значит, нужен другой способ решения таких уравнений. Как вы думаете, что это может быть за способ (исходя из устной работы). Одним из способов является графический способ. Записывается тема урока, (слайд 5).
Г). Давайте поставим цель урока. (Научиться решать уравнения с помощью графиков, слайд 6).
3. Изучение новой темы и первичное закрепление (15 мин.)
Мы получили уравнение х 3 – 6 = 0. Но строить график функции у = х 3 – 6 мы ещё не умеем. Т.е., что получается: это уравнение и графическим способом мы не можем решить? А может быть, нужно вернуться к первоначальному уравнению: х 2 = (слайд 7). Что мы видим внутри этого уравнения? Есть ли выражения, из которых мы можем составить знакомые нам функции? (Да: у = х 2 и у = ). Что нужно сделать?
– Построить их графики.
– В одной координатной плоскости.
– Дальше найдём координаты точки пересечения.
– Нет, только значение х.
Итак, давайте ещё раз выработаем алгоритм решения уравнений графическим способом (каждый этап подтверждается показом в «Живой геометрии», Приложение 3). Используются результаты индивидуальной работы по заполнению таблицы (карточка №4). Учащиеся работают в тетрадях. Некоторые этапы в тетради записываются подробно, (слайд 7).
- Из уравнения выделяем знакомые нам функции.
- Строим графики функций в одной координатной плоскости.
- Находим координаты точек пересечения графиков.
- Из найденных координат выбираем значение абсциссы, т.е. х.
- Записываем ответ.
4. Физминутка (1 мин.)
5. Закрепление (5 мин.)
- Сколько корней имеет уравнение? (Гиперссылка – слайд 8, в «Живую геометрию», 3 страницы. Приложение 4). а) б) х + 2 = х 2 ; в) = х 2 .
- Попади в цель! (Слайд 9. Работа со слайдом показана на рисунке 1)
6. Домакшнее задание (слайд 10): (1 мин)
- п.26;
- № 623 (а), № 624(а);
- №4.10 на стр.117 (сборник Л.В.Кузнецовой): Наташа, Настя, Кирилл, Сергей.
7. Применение в образовательной области (1 мин)
Умения строить графики, читать графики, находить точки пересечения графиков нужны не только при изучении алгебры, но и при изучении физики, когда вы изучаете, н-р, зависимость плавления тела от температуры, зависимость скорости от времени движения двух тел. На уроках информатики, работая в электронных таблицах Excel, вы будете учиться строить графики, решать уравнения. На уроках химии скорость химических реакций также можно описать графически. Умение строить графики, диаграммы нужны и в повседневной жизни: для описания результатов голосования, удоя молока; в инженерных специальностях это умение очень важно.
8. Проверочная работа в виде теста (6 мин)
В – 1:
1. Какая из функций, приведённых ниже, является линейной:
а) у = – 2; б) у = х – 2; в) у = х 2 – 2.
2. График функции у = называется:
а) прямой; б) гиперболой; в) параболой.
3. Установите соответствие между функциями и их графиками:
1) у = ; 2) у = 2х 2 ; 3) у = х – 2; 4) у = 2х.
А. Б. В. Г.
4. На рисунке 3 изображены графики функций у = х 3 и у = –2 х – 3. Используя графики, решите уравнение: х 3 = – 2х – 3.
В – 2:
1. Какая из функций, приведённых ниже, является линейной:
а) у = + 1; б) у = + 1; в) у = х 5 + 1.
2. График функции у = 3х 2 называется:
а) прямой; б) гиперболой; в) параболой.
3. Установите соответствие между функциями и их графиками:
1) у = – ; 2) у = х 2 – 1; 3) у = – х; 4) у = 1 – х.
А. Б. В. Г.
4. На рисунке 5 изображены графики функций у = – х 2 + 2 и у = . Используя графики, решите уравнение: – х 2 + 2 = .
Ответы:
В – 1: 1. б 2. б 3. 1 – Б; 2 – А; 3 – В; 4 – Г 4. б
В – 2: 1. а 2. в 3. 1 – В; 2 – Г; 3 – А; 4 – Б 4. а
9. Рефлексивно-оценочный этап (отвечают письменно в тетради после выполнения теста) (2 мин.) (Слайд 11)
а) за теоретический опрос;
б) за фронтальную работу;
в) за самостоятельную работу.
Видео:Алгебра 8 класс (Урок№6 - Решение уравнений графическим способом.)Скачать
Квадратичная функция. Построение параболы
О чем эта статья:
8 класс, 9 класс, ЕГЭ/ОГЭ
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Видео:ЭЛЕМЕНТАРНО, ВАТСОН! Квадратичная Функция и ее график ПараболаСкачать
Основные понятия
Функция — это зависимость «y» от «x», при которой «x» является переменной или аргументом функции, а «y» — зависимой переменной или значением функции.
Задать функцию означает определить правило в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:
- Табличный способ. Помогает быстро определить конкретные значения без дополнительных измерений или вычислений.
- Графический способ: наглядно.
- Аналитический способ, через формулы. Компактно и можно посчитать функцию при произвольном значении аргумента из области определения.
- Словесный способ.
График функции — это объединение всех точек, когда вместо «x» можно подставить в функцию произвольные значения и найти координаты этих точек.
Еще быстрее разобраться в теме и научиться строить график квадратичной функции можно на курсах по математике в онлайн-школе Skysmart.
Видео:8 класс, 21 урок, Графическое решение уравненийСкачать
Построение квадратичной функции
Квадратичная функция задается формулой y = ax 2 + bx + c, где x и y — переменные, a, b, c — заданные числа, обязательное условие — a ≠ 0. В уравнении существует следующее распределение:
|
График квадратичной функции — парабола, которая имеет следующий вид для y = x 2 :
Точки, обозначенные зелеными кружками называют базовыми точками. Чтобы найти их координаты для функции y = x 2 , нужно составить таблицу:
x
y
Если в уравнении квадратичной функции старший коэффициент равен единице, то график имеет ту же форму, как y = x 2 при любых значениях остальных коэффициентов.
График функции y = –x 2 выглядит, как перевернутая парабола:
Зафиксируем координаты базовых точек в таблице:
x
y
Посмотрев на оба графика можно заметить их симметричность относительно оси ОХ. Отметим важные выводы:
- Если старший коэффициент больше нуля a > 0, то ветви параболы напрaвлены вверх.
- Если старший коэффициент меньше нуля a 2 + bx + c, для построения которой нужно решить квадратное уравнение ax 2 + bx + c = 0. В процессе найдем дискриминант D = b 2 — 4ac, который даст нам информацию о количестве корней квадратного уравнения.
Рассмотрим три случая:
- Если D 0,то график выглядит так:
- Если D = 0, то уравнение имеет одно решение, а парабола пересекает ось ОХ в одной точке. Если a > 0, то график имеет такой вид:
- Если D > 0, то уравнение имеет два решения, а парабола пересекает ось ОХ в двух точках, которые можно найти следующим образом:
Если a > 0, то график выглядит как-то так:
0″ height=»671″ src=»https://lh6.googleusercontent.com/8ryBuyxmK9S2EbnsNc4AE5PEl_NpIg0RAM_Y_V8wUP-zREEHNgi9QoQTl8FXxoujjWRAvf3s-MPRsXsoepaLLSTHDX-ReGtrsnLQp4dW3WaEyPF2ywjVpYFXlDIpAEHoIiwlxiB7″ width=»602″>
На основе вышеизложенного ясно, что зная направление ветвей параболы и знак дискриминанта, у нас есть понимание, как будет выглядеть график конкретной функции.
Координаты вершины параболы также являются важным параметром графика квадратичной функции и находятся следующим способом:
Ось симметрии параболы — прямая, которая проходит через вершину параболы параллельно оси OY.
Чтобы построить график, нам нужна точка пересечения параболы с осью OY. Так как абсцисса каждой точки оси OY равна нулю, чтобы найти точку пересечения параболы y = ax 2 + bx + c с осью OY, нужно в уравнение вместо х подставить ноль: y(0) = c. То есть координаты этой точки будут соответствовать: (0; c).
На изображении отмечены основные параметры графика квадратичной функции:
Видео:Квадратичная функция и ее график. 8 класс.Скачать
Алгоритм построения параболы
Рассмотрим несколько способов построения квадратичной параболы. Наиболее удобный способ можно выбрать в соответствии с тем, как задана квадратичная функция.
Видео:Решение квадратных неравенств графическим методом. 8 класс.Скачать
Уравнение квадратичной функции имеет вид y = ax 2 + bx + c.
Разберем общий алгоритм на примере y = 2x 2 + 3x — 5.
Как строим:
- Определим направление ветвей параболы. Так как а = 2 > 0, ветви параболы направлены вверх.
- Найдем дискриминант квадратного трехчлена 2x 2 + 3x — 5.
D = b 2 — 4ac = 9 — 4 * 2 * (-5) = 49 > 0
В данном случае дискриминант больше нуля, поэтому парабола имеет две точки пересечения с осью ОХ. Чтобы найти их координаты, решим уравнение:
2x 2 + 3x — 5 = 0 2 + 3x — 5 = 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAPoAAAAyCAYAAAB1V8bkAAAJyElEQVR4Ae2c16sUwRLGfdRX/wXFB30QFFQUQUyIKCIGBEEQzCCoKIgB01ExZwVz4JpzztljwJxzzjlnrcuvL33unD2zOzO7OzvuThU0u5N6uuvrr7u6unrKiYpqQDVQ8BooV/A11AqqBlQDokTXRqAaiIEGlOgxAFmrqBpQomsbUA3EQANK9BiArFVUDSjRtQ2oBmKgASV6DEDWKqoGlOjaBlQDMdBAQRH9z58/8vv3b5P+/v2bMXy/fv0S8kxMGWesGRgNpIMXz7jhkg28CxmWgiH69+/f5dSpU7JixQpZtmyZXLx4UX7+/JkUOxoGjSaVTJw4UVatWiUbNmwoSYcPH071iF7zqYGgeNlsT58+LZMnTy7BA2y2bNkib9++tbfor4sGCobogD19+nR5/fq1nDx5Upo0aSLHjh2TZD39x48f5ebNmy4q+d8pRo327dtLo0aNTF6NGzeWevXqCeRXyVwDQfHijXTMmzZtMjiAL6lu3brSuXNnuXfvXuaFKuAcCobojOQDBgwwgD948EAg5ubNm42Z54bfjRs3ZMqUKW6XzDk6jP379wsjD/LmzRtZt26dvHr1KukzesG/BoLiRc5gceXKFZM4/vbtmxw6dEguXbokP3788P/yGN5ZMET/8uWLvHv3Tt6/f2/Muh49esj169eTQupF9MQHIfm1a9cST+txmhoIipfba86fPy9Hjx4VrDOV1BooGKJTTYh++fJlGTt2rCxevNgcJ6t+EKIz3587d26yrPR8mhoIglfiK549e2Y6dHBU8dZA3hH9+PHjYhNmnFO+fv1qTOwDBw5Ily5dhF+nQ47ndu/ebdLChQule/fuJcecp9E477d5d+zYUW7fvm0P9TeABixW/AbBCz+LffbChQtl3rh69WpZsmSJjuZlNON+Iu+IDkGZW+N427Ztm6nVp0+f5MiRI6Zh2Dl1hw4dZOjQoaVGdebc1oM+a9Ys48Sxx/y6zfUePnwoVapUcdeenvXUQLp4LV261OA8bdo0g5nzRR8+fJBhw4YJeav400DeEf3Ro0dmZGD+/fLlS1NLzLjhw4fLmDFjhEaA4DHv16+fGeHdVOHXdKczqVy5slsWes6HBtLF6/HjxwZn/CLPnz8v9aZbt25Jt27dlOiltJL6IO+I7lYdTPY1a9bIjBkz5M6dO7Jjxw5hRN++fXtSb6xfos+ZM0cqVark9trQzrEmXFxc7LnOH1oBQs44HbycRTpz5oy0a9funyA6DkGW/NavX19mauIsc+J/OkCmJliRL168ME7FVM7jxOeDHhcE0ak05KD3P3v2rFkWO3HihHz+/DmpPlh3XbRoUdLr9gL5LF++3B6G+nv//n3ZuHGjDBw4UDp16pS0kwq1EDnKPChezmI9efJEtm7dmnJVxXl/WP8PHjxopoxXr141RG3Tpo0JsPLzPqaaLVq0kDp16kjDhg2lb9++JgbEz7Pp3FMwRKfyBLkwX2fpxivqjbm8Nf1TKY77WK/NhVBuGvGoUaNMHID1N+Ti3VG8IwhezvIR5gwm/EYlrBgMGTJE9u3bZxy4YDV69Gjf/py9e/fKypUrjSVKLEDYqwcFRfSoQM/2e2fOnGmivgqd6NnWWy7zI3CqefPmUlRUVOIXgrzly5cXfEZewr2Y/XTuyaI3vfIIcj1tolM4lpyIBZ83b56MGzdO9uzZY0YjwkSfPn0apBx6r0MDYRBd8XIoOAt/sRiZU0N4az2OHz9eKlSo4MvSgOgs6RKIBYdIYUraRMfsYpkL84m5cc+ePY1DYv78+dKnTx/B2eAlmKldu3b1TISy5luII8s/XnWbNGmSMC9PlDCIrniJcXB6YcJ15s9+JHEkrlq1qixYsMDPowLRcRqzSgSHiOkI0xeUNtHpxXBUIQQ3tGrVKnLniC8N58FNYRBd8QoOPES2Php8Agw2dvR25gZRcaaNHDnSeTrlf/JxdhTsuMQacJ5LmUHAi2kT3b6HyrNBoXXr1uYUBXVThr3f+YuCcGp4JZRsFYAV8K8lt1hremqveuE4RAeJEgbR7Tvigpfb1JG6e2HCde5DCJbCM16rVi2T2D9BiLVT6Agwv3GsgSXPumHqfAZ+sLqCNWfbNQ455ve8MwxJm+gsXeF0YFcXPRlRaAiebD/OCO5l/XDQoEGeCTPHhqZWq1ZN/rVElF2iTJ061bNemHkEhiRKGESPG141atRIVKtZevXT3tjz7kcYgIioZDRmtyM6Zk09sf0zbYIndkBgabFt27ZmeZeYAgQzvmLFimWe9VMOP/ekTXTWMXv37m16uF69esmECRNMZdgDzgcgVIJrwLm8Vr9+fSECjM4wG6J4ZUOL/8+DgQdSwwGccIRkk4jITBRGaZZM8V/ZlRRGdIJlwJzBsX///gKPwpK0iY7HkArSgKgwu8XYMnju3LmkgSr0ZNZUCatCfvLFtKIHtj2sn2dycY8NmCGcF6cQIwXx+dmQfMMLfEj/qjA1Yx29ZcuWpRLmfaLcvXtXBg8eLCNGjChxUoM1mBAdt3btWmP9ZatTT3w/x2kTHcKytAB5EeYmyYiDecpWz9mzZyf9EIRb4cI6Rw/KikGcLI98w4vlWkKYC0Uw5xkEMeGt4A/Akc28P+wBMG2i28L6+WV7IruRmjVrVmK6+HkujHuYL+3atcuUhbm/SlkNRI0Xn/iqWbOmaTNlS5d/ZzDzITOhslFJTohO5Rg98WDaOUoUFabXpBExV2JThBI9OQpR4YX1x3SQb/UxOBSCYO2yA48RPCqJFdGZmxN8w/q/Ej11k4uK6ERXMqflw4+FQvTUms7N1VgRnYgndq2RlOipG1gURCf2myhLpldNmzZVoqeGKNDV2BAdj+bOnTuNcpTo3m0k10THrCVohCAiRInujVGQO2JDdJYA8bQTpIJHt3bt2mZtk1FEpawGck10PrRB4BEf4QQjgqIIK2UbqErmGsgJ0fE2AmL16tWFj/oRwpprYcRgVCcR+URsPkELBCyolNZAFHgRVcZyrcWoQYMGwtd97KfBSpdQj4JqICdEZ3kBkwwQIZZXLHDQSvi9H687G/wJgyREkl+7McdvHnG4L0q8WG9mUOCDnASf4DxVyVwDOSF65sXMXg6QnYbMMh+/fjfgZK8EmlMqDYAPzji7WyyqQSFVGfPxWuyIno8gaZlVA5lqQImeqQb1edVAHmhAiZ4HIGkRVQOZakCJnqkGI3m+WIrKlZOi45G8XF+ahxpQouchaKbIx4uU6PmKXQTlVqJHoPTMX/lM/tOuSIozz0hziIkGlOgxAVqrGW8NKNHjjb/WPiYaUKLHBGitZrw1oESPN/5a+5hoQIkeE6C1mvHWwH8BSUfSiO3XWNEAAAAASUVORK5CYII=»>
- Координаты вершины параболы:
- Точка пересечения с осью OY находится: (0; -5) и ей симметричная.
- Нанести эти точки на координатную плоскость и построить график параболы:
2 + 3x — 5 = 0″ height=»671″ src=»https://lh6.googleusercontent.com/TYyA5dFfh0ZKINaPSps3Y_X1mCv8Mhv_8bNG3_dPbZud1AEsvo7UBFmVQNm1GcR1CQFo6HE1lNjYaAgepQUTQiK_ay_Fnuv7LEsB53woHkFO66W0R1PP8QfGsFcYzaR_h4AJdLxC» width=»602″>
Видео:Функция y=x2 и её график – 8 класс алгебраСкачать
Уравнение квадратичной функции имеет вид y = a * (x — x₀) 2 + y₀
Координаты его вершины: (x₀; y₀). В уравнении квадратичной функции y = 2x 2 + 3x — 5 при а = 1, то второй коэффициент является четным числом.
Рассмотрим пример: y = 2 * (x — 1) 2 + 4.
Как строим:
- Воспользуемся линейным преобразованием графиков функций. Для этого понадобится:
- построить y = x 2 ,
- умножить ординаты всех точек графика на 2,
- сдвинуть его вдоль оси ОХ на 1 единицу вправо,
- сдвинуть его вдоль оси OY на 4 единицы вверх.
- Построить график параболы для каждого случая. 2 + y₀» height=»431″ src=»https://lh5.googleusercontent.com/_zgF-CXWf4Yy0p2OnBYSJkUm0zO-mNetq5feU6LIPEbIgSrO9kdr2ti_tr7Gg3yTMOlJVnuZgG0HleAFfAzG7yr7ELHT6KSMqMrRHkHqt-VcgIiSZx80cVj0zlPMBzEM0wAWQ-L6″ width=»602″>
Видео:Графический метод решения уравнений 8 классСкачать
Уравнение квадратичной функции имеет вид y = (x + a) × (x + b)
Рассмотрим следующий пример: y = (x − 2) × (x + 1).
Как строим:
Данный вид уравнения позволяет быстро найти нули функции:
(x − 2) × (x + 1) = 0, отсюда х₁ = 2, х₂ = −1.
Определим координаты вершины параболы:
Найти точку пересечения с осью OY:
с = ab = (−2) × (1) = −2 и ей симметричная.
Отметим эти точки на координатной плоскости и соединим плавной прямой.
📺 Видео
Как запомнить графики функцийСкачать
Алгебра 8 класс (Урок№19 - Уравнение х² = а.)Скачать
Парабола. Квадратичная функцияСкачать
Графики функций|Парабола, прямая и гиперболаСкачать
Построить график функции y=x2. Парабола.Скачать
График функции y=x² (y=аx).Скачать
187 Алгебра 8 класс Решите графически уравнениеСкачать
АЛГЕБРА 8 класс : Графическое решение квадратных уравнений | ВидеоурокСкачать
Как строить параболу? | TutorOnlineСкачать
Графическое решение квадратных уравнений | Алгебра 8 класс #32 | ИнфоурокСкачать
Построение параболыСкачать