Как решать дробные уравнения которые равны нулю

Дробь равна нулю

Когда дробь равна нулю?

Дробная черта — это знак деления. При делении нуля на любое число, кроме нуля, получим нуль. На нуль делить нельзя.

Таким образом, дробь равна нулю, если числитель равен нулю, а знаменатель отличен от нуля.

Решение многих задач в алгебре сводится к решению дробно рациональных уравнений, которые, в свою очередь, сводятся к уравнению типа «дробь равна нулю».

Схематически решение уравнения типа «дробь равна нулю» можно изобразить так:

Как решать дробные уравнения которые равны нулю

Таким образом, чтобы решить уравнение типа «дробь равна нулю», надо:

1) Найти значения переменной, при которых знаменатель обращается в нуль.

2) Приравнять к нулю числитель и решить получившееся уравнение.

3) Проверить, нет ли среди корней уравнения «числитель равен нулю» значений, при которых знаменатель обращается в нуль. Если есть, их следует исключить.

4) Записать ответ.

Как решать дробные уравнения которые равны нулю

Дробь равна нулю, если числитель равен нулю, а знаменатель — отличен от нуля, поэтому это уравнение равносильно системе

Как решать дробные уравнения которые равны нулю

Находим значения переменной, при которых знаменатель обращается в нуль:

Как решать дробные уравнения которые равны нулю

Можно приравнять выражение, стоящее в левой части неравенства, к нулю, и решать как обычное неполное квадратное уравнение. Можно решать как уравнение, только вместо знака равенства каждый раз писать «≠».

Как решать дробные уравнения которые равны нулю

Как решать дробные уравнения которые равны нулю

Как решать дробные уравнения которые равны нулю

При этих значениях переменной выражение, стоящее в левой части уравнения, не имеет смысла (так как на нуль делить нельзя).

Решаем уравнение, в котором числитель равен нулю.

Как решать дробные уравнения которые равны нулю

Как решать дробные уравнения которые равны нулю

Ищем дискриминант. Так как b= -10 — чётное число, здесь удобнее воспользоваться формулой для D/4:

Как решать дробные уравнения которые равны нулю

Так как D/4>0, уравнение имеет два корня:

Как решать дробные уравнения которые равны нулю

Как решать дробные уравнения которые равны нулю

Первый из корней — посторонний (он не удовлетворяет условию x≠7), поэтому в ответ записывает только корень 3. Ответ: 3.

Как решать дробные уравнения которые равны нулю

Это уравнение равносильно системе

Как решать дробные уравнения которые равны нулю

Как решать дробные уравнения которые равны нулю

Как решать дробные уравнения которые равны нулю

Его корни — значения переменной, при котором выражение, стоящее в левой части уравнения, не имеет смысла.

Как решать дробные уравнения которые равны нулю

Как решать дробные уравнения которые равны нулю

Как решать дробные уравнения которые равны нулю

Как решать дробные уравнения которые равны нулю

Как решать дробные уравнения которые равны нулю

Как решать дробные уравнения которые равны нулю

Общий множитель 4x выносим за скобки

Как решать дробные уравнения которые равны нулю

Как решать дробные уравнения которые равны нулю

Как решать дробные уравнения которые равны нулю

Второй корень не подходит (он не удовлетворяет условию x≠0,5).

Как решать дробные уравнения которые равны нулю

Как решать дробные уравнения которые равны нулю

Как решать дробные уравнения которые равны нулю

Как решать дробные уравнения которые равны нулю

Как решать дробные уравнения которые равны нулю

Переходим к решению уравнения 3x-12=0. Это — линейное уравнение. Неизвестное — в одну сторону, известное — в другую с противоположным знаком:

Как решать дробные уравнения которые равны нулю

Как решать дробные уравнения которые равны нулю

Полученный корень является посторонним, так как не удовлетворяет условию x≠4. Значит, исходное уравнение типа «дробь равна 0» корней не имеет.

Ответ: нет корней.

Как решать дробные уравнения которые равны нулю

Как решать дробные уравнения которые равны нулю

Как решать дробные уравнения которые равны нулю

Решаем квадратное уравнение

Как решать дробные уравнения которые равны нулю

Как решать дробные уравнения которые равны нулю

Как решать дробные уравнения которые равны нулю

Так как D/4=0, квадратное уравнение имеет один корень

Как решать дробные уравнения которые равны нулю

Как решать дробные уравнения которые равны нулю

Теперь решаем уравнение

Как решать дробные уравнения которые равны нулю

Как решать дробные уравнения которые равны нулю

Как решать дробные уравнения которые равны нулю

Как решать дробные уравнения которые равны нулю

Как решать дробные уравнения которые равны нулю

Посторонних корней нет (оба корня удовлетворяют условию x≠1/4).

Видео:Дробно-рациональные уравнения. 8 класс.Скачать

Дробно-рациональные уравнения. 8 класс.

Урок по теме «Решение дробных рациональных уравнений». 8-й класс

Разделы: Математика

Класс: 8

Цели урока:

  • формирование понятия дробных рационального уравнения;
  • рассмотреть различные способы решения дробных рациональных уравнений;
  • рассмотреть алгоритм решения дробных рациональных уравнений, включающий условие равенства дроби нулю;
  • обучить решению дробных рациональных уравнений по алгоритму;
  • проверка уровня усвоения темы путем проведения тестовой работы.
  • развитие умения правильно оперировать полученными знаниями, логически мыслить;
  • развитие интеллектуальных умений и мыслительных операций — анализ, синтез, сравнение и обобщение;
  • развитие инициативы, умения принимать решения, не останавливаться на достигнутом;
  • развитие критического мышления;
  • развитие навыков исследовательской работы.
  • воспитание познавательного интереса к предмету;
  • воспитание самостоятельности при решении учебных задач;
  • воспитание воли и упорства для достижения конечных результатов.

Тип урока: урок – объяснение нового материала.

Ход урока

1. Организационный момент.

Здравствуйте, ребята! На доске написаны уравнения посмотрите на них внимательно. Все ли из этих уравнений вы сможете решить? Какие нет и почему?

Как решать дробные уравнения которые равны нулю

Уравнения, в которых левая и правя часть, являются дробно-рациональными выражениями, называются дробные рациональные уравнения. Как вы думаете, что мы будем изучать сегодня на уроке? Сформулируйте тему урока. Итак, открываем тетради и записываем тему урока «Решение дробных рациональных уравнений».

2. Актуализация знаний. Фронтальный опрос, устная работа с классом.

А сейчас мы повторим основной теоретический материл, который понадобиться нам для изучения новой темы. Ответьте, пожалуйста, на следующие вопросы:

  1. Что такое уравнение? (Равенство с переменной или переменными.)
  2. Как называется уравнение №1? (Линейное.) Способ решения линейных уравнений. (Все с неизвестным перенести в левую часть уравнения, все числа — в правую. Привести подобные слагаемые. Найти неизвестный множитель).
  3. Как называется уравнение №3? (Квадратное.) Способы решения квадратных уравнений. (Выделение полного квадрата, по формулам, используя теорему Виета и ее следствия.)
  4. Что такое пропорция? (Равенство двух отношений.) Основное свойство пропорции. (Если пропорция верна, то произведение ее крайних членов равно произведению средних членов.)
  5. Какие свойства используются при решении уравнений? (1. Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение, равносильное данному. 2. Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.)
  6. Когда дробь равна нулю? (Дробь равна нулю, когда числитель равен нулю, а знаменатель не равен нулю.)

3. Объяснение нового материала.

Решить в тетрадях и на доске уравнение №2.

Как решать дробные уравнения которые равны нулю

Какое дробно-рациональное уравнение можно попробовать решить, используя основное свойство пропорции? (№5).

Как решать дробные уравнения которые равны нулю

х 2 -4х-2х+8 = х 2 +3х+2х+6

х 2 -6х-х 2 -5х = 6-8

Как решать дробные уравнения которые равны нулю

Решить в тетрадях и на доске уравнение №4.

Как решать дробные уравнения которые равны нулю

Какое дробно-рациональное уравнение можно попробовать решить, умножая обе части уравнения на знаменатель? (№6).

Как решать дробные уравнения которые равны нулю

Теперь попытайтесь решить уравнение №7 одним из способов.

Видео:Как решать дробно-рациональные уравнения? | МатематикаСкачать

Как решать дробно-рациональные уравнения? | Математика

Решение уравнений с дробями

Как решать дробные уравнения которые равны нулю

О чем эта статья:

5 класс, 6 класс, 7 класс

Видео:ЭТО НУЖНО ЗНАТЬ — Как решать Дробно Рациональные уравнения?Скачать

ЭТО НУЖНО ЗНАТЬ — Как решать Дробно Рациональные уравнения?

Понятие дроби

Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.

Дробь — это рациональное число, представленное в виде a/b, где a — числитель дроби, b — знаменатель. Есть два формата записи:

  • обыкновенный вид — ½ или a/b,
  • десятичный вид — 0,5.

Дробь — это одна из форм деления, записываемая с помощью дробной черты. Над чертой принято писать делимое (число, которое делим) — числитель. А под чертой всегда находится делитель (на сколько делим), его называют знаменателем. Черта между числителем и знаменателем означает деление.

Дроби бывают двух видов:

  1. Числовые — состоят из чисел. Например, 2/7 или (1,8 − 0,3)/5.
  2. Алгебраические — состоят из переменных. Например, (x + y)/(x − y). Значение дроби зависит от данных значений букв.

Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 4/9 и 23/57.

Неправильная дробь — та, у которой числитель больше знаменателя или равен ему. Например, 13/5. Такое число называют смешанным — читается так: «две целых три пятых», а записывается — 2 3/5.

Видео:Решение дробных рациональных уравнений. Алгебра, 8 классСкачать

Решение дробных рациональных уравнений. Алгебра, 8 класс

Основные свойства дробей

Дробь не имеет значения, если делитель равен нулю.

Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.

Дроби a/b и c/d называют равными, если a × d = b × c.

Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

Действия с дробями можно выполнять те же, что и с обычными числами: складывать, вычитать, умножать и делить. Также, дроби можно сравнивать между собой и возводить в степень.

Видео:Уравнения с дробями. Алгебра 7 класс.Скачать

Уравнения с дробями. Алгебра 7 класс.

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Наша задача — найти неизвестные числа так, чтобы при их подстановке в пример получилось верное числовое равенство. Давайте на примере:

  • Возьмем выражение 4 + 5 = 9. Это верное равенство, потому что 4+5 действительно 9. Если бы вместо 9 стояло любое другое число — мы бы сказали, что числовое равенство неверное.
  • Уравнением можно назвать выражение 4 + x = 9, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое уравнивает выражения справа и слева, когда мы подставляем его на место неизвестной. В таком случае афоризм «зри в корень» — очень кстати при усердном решении уравнений.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Решить уравнение значит найти все его корни или убедиться, что корней нет.

Алгебраические уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные. Расскажем и про них.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = −b : а;
  • если а равно нулю, а b не равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Видео:Уравнение в котором произведение множителей равно нулю. Алгебра 7 класс.Скачать

Уравнение в котором произведение множителей равно нулю. Алгебра 7 класс.

Понятие дробного уравнения

Дробное уравнение — это уравнение с дробями. Да, вот так просто. Но это еще не все. Чаще всего неизвестная стоит в знаменателе. Например, вот так:

Как решать дробные уравнения которые равны нулю Как решать дробные уравнения которые равны нулю

Такие уравнения еще называют дробно-рациональными. В них всегда есть хотя бы одна дробь с переменной в знаменателе.

Если вы видите в знаменателях числа, то это уравнения либо линейные, либо квадратные. Решать все равно нужно, поэтому идем дальше. Примеры:

Как решать дробные уравнения которые равны нулю Как решать дробные уравнения которые равны нулю

На алгебре в 8 классе можно встретить такое понятие, как область допустимых значений — это множество значений переменной, при которых это уравнение имеет смысл. Его используют, чтобы проверить корни и убедиться, что решение правильное.

Мы уже знаем все важные термины, их определения и наконец подошли к самому главному — сейчас узнаем как решить дробное уравнение.

Видео:Когда алгебраическая дробь равна 0?Скачать

Когда алгебраическая дробь равна 0?

Как решать уравнения с дробями

1. Метод пропорции

Чтобы решить уравнение методом пропорции, нужно привести дроби к общему знаменателю. А само правило звучит так: произведение крайних членов пропорции равно произведению средних. Проверим, как это работает.

Итак, у нас есть линейное уравнение с дробями:

Как решать дробные уравнения которые равны нулю

В левой части стоит одна дробь — оставим без преобразований. В правой части видим сумму, которую нужно упростить так, чтобы осталась одна дробь.

Как решать дробные уравнения которые равны нулю

После того, как в левой и правой части осталась одна дробь, можно применить метод пропорции и перемножить крест-накрест числители и знаменатели.

Как решать дробные уравнения которые равны нулю

2. Метод избавления от дробей

Возьмем то же самое уравнение, но попробуем решить его по-другому.

Как решать дробные уравнения которые равны нулю

В уравнении есть две дроби, от которых мы очень хотим избавиться. Вот, как это сделать:

  • подобрать число, которое можно разделить на каждый из знаменателей без остатка;
  • умножить на это число каждый член уравнения.

Ищем самое маленькое число, которое делится на 5 и 9 и без остатка — 45 как раз подходит. Умножаем каждый член уравнения на 45 и избавляемся от знаменателей. Вуаля!

Как решать дробные уравнения которые равны нулю

Вот так просто мы получили тот же ответ, что и в прошлый раз.

Что еще важно учитывать при решении

  • если значение переменной обращает знаменатель в 0, значит это неверное значение;
  • делить и умножать уравнение на 0 нельзя.

Универсальный алгоритм решения

Определить область допустимых значений.

Найти общий знаменатель.

Умножить каждый член уравнения на общий знаменатель и сократить полученные дроби. Знаменатели при этом пропадут.

Раскрыть скобки, если нужно и привести подобные слагаемые.

Решить полученное уравнение.

Сравнить полученные корни с областью допустимых значений.

Записать ответ, который прошел проверку.

Курсы по математике от Skysmart помогут закрепить материал и разобраться в сложных темах.

Видео:Дробно рациональные уравнения. Алгебра, 9 классСкачать

Дробно рациональные уравнения. Алгебра, 9 класс

Примеры решения дробных уравнений

Чтобы стать успешным в любом деле, нужно чаще практиковаться. Мы уже знаем, как решаются дробные уравнения — давайте перейдем к решению задачек.

Пример 1. Решить дробное уравнение: 1/x + 2 = 5.

  1. Вспомним правило х ≠ 0. Это значит, что область допустимых значений: х — любое число, кроме нуля.
  2. Отсчитываем справа налево в числителе дробной части три знака и ставим запятую.
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Решим обычное уравнение.

Пример 2. Найти корень уравненияКак решать дробные уравнения которые равны нулю

  1. Область допустимых значений: х ≠ −2.
  2. Умножим обе части уравнения на выражение, которое сократит оба знаменателя: 2(х+2)
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Как решать дробные уравнения которые равны нулю

Переведем новый множитель в числитель..

Как решать дробные уравнения которые равны нулю

Сократим левую часть на (х+2), а правую на 2.

Пример 3. Решить дробное уравнение: Как решать дробные уравнения которые равны нулю

    Найти общий знаменатель:

Умножим обе части уравнения на общий знаменатель. Сократим. Получилось:

Выполним возможные преобразования. Получилось квадратное уравнение:

Решим полученное квадратное уравнение:

Получили два возможных корня:

Если x = −3, то знаменатель равен нулю:

Если x = 3 — знаменатель тоже равен нулю.

  • Вывод: числа −3 и 3 не являются корнями уравнения, значит у данного уравнения нет решения.
  • 📸 Видео

    Дробно-рациональные уравнения + Бонус: треугольник Паскаля | МатематикаСкачать

    Дробно-рациональные уравнения + Бонус: треугольник Паскаля | Математика

    Алгебра 9 класс (Урок№17 - Дробные рациональные уравнения.)Скачать

    Алгебра 9 класс (Урок№17 - Дробные рациональные уравнения.)

    как решать дробиСкачать

    как решать дроби

    Подготовка к ОГЭ . Рациональные неравенства | Математика | TutorOnlineСкачать

    Подготовка к ОГЭ . Рациональные неравенства | Математика | TutorOnline

    Как решать уравнение с дробями Уравнение вида Дробь=0 Дробное уравнение Числитель=0 знаменатель не=0Скачать

    Как решать уравнение с дробями Уравнение вида Дробь=0 Дробное уравнение Числитель=0 знаменатель не=0

    Уравнение алгебраическая дробь равная нулю. Алгебра 8 класс.Скачать

    Уравнение  алгебраическая дробь равная нулю. Алгебра 8 класс.

    №7 Линейное уравнение (5х+4)/2+3=9x/5 Простое уравнение с дробями Решите уравнение с дробью ОГЭ ЕГЭСкачать

    №7 Линейное уравнение (5х+4)/2+3=9x/5 Простое уравнение с дробями Решите уравнение с дробью  ОГЭ ЕГЭ

    Дробно рациональное уравнение. ОГЭ математика задача 4 (тип 4) 🔴Скачать

    Дробно рациональное уравнение. ОГЭ математика задача 4 (тип 4) 🔴

    Как решают уравнения в России и СШАСкачать

    Как решают уравнения в России и США

    Уравнения, одна часть которого алгебраическая дробь, а другая - ноль.Скачать

    Уравнения, одна часть которого алгебраическая дробь, а другая -  ноль.

    Как решают уравнения в России и США!?Скачать

    Как решают уравнения в России и США!?

    Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать

    Как решать уравнения? уравнение 7 класс. Линейное уравнение
    Поделиться или сохранить к себе: