Как решать дробные уравнения через дискриминант

Как решать квадратные уравнения? Дискриминант.

Поработаем с квадратными уравнениями. Это очень популярные уравнения! В самом общем виде квадратное уравнение выглядит так:

Как решать дробные уравнения через дискриминант

Как решать дробные уравнения через дискриминант

Как решать дробные уравнения через дискриминант

Как решать дробные уравнения через дискриминант

Как решать квадратные уравнения? Если перед вами квадратное уравнение именно в таком виде, дальше уже всё просто. Вспоминаем волшебное слово дискриминант. Редкий старшеклассник не слышал этого слова! Фраза «решаем через дискриминант» вселяет уверенность и обнадёживает. Потому что ждать подвохов от дискриминанта не приходится! Он прост и безотказен в обращении. Итак, формула для нахождения корней квадратного уравнения выглядит так:

Как решать дробные уравнения через дискриминант

Выражение под знаком корня – и есть тот самый дискриминант. Как видим, для нахождения икса, мы используем только a, b и с. Т.е. коэффициенты из квадратного уравнения. Просто аккуратно подставляем значения a, b и с в это формулу и считаем. Подставляем со своими знаками! Например, для первого уравнения а =1; b = 3; c = -4. Вот и записываем:

Как решать дробные уравнения через дискриминант

Пример практически решён:

Как решать дробные уравнения через дискриминант

Как решать дробные уравнения через дискриминант

Какие случаи возможны при использовании этой формулы? Всего три случая.

1. Дискриминант положительный. Это значит, из него можно извлечь корень. Хорошо корень извлекается, или плохо – вопрос другой. Важно, что извлекается в принципе. Тогда у вашего квадратного уравнения – два корня. Два различных решения.

2. Дискриминант равен нулю. Тогда у вас одно решение. Строго говоря, это не один корень, а два одинаковых. Но это играет роль в неравенствах, там мы поподробнее вопрос изучим.

3. Дискриминант отрицательный. Из отрицательного числа квадратный корень не извлекается. Ну и ладно. Это означает, что решений нет.

Всё очень просто. И что, думаете, ошибиться нельзя? Ну да, как же…
Самые распространённые ошибки – путаница со знаками значений a, b и с. Вернее, не с их знаками (где там путаться?), а с подстановкой отрицательных значений в формулу для вычисления корней. Здесь спасает подробная запись формулы с конкретными числами. Если есть проблемы с вычислениями, так и делайте!

Предположим, надо вот такой примерчик решить:

Как решать дробные уравнения через дискриминант

Здесь a = -6; b = -5; c = -1

Допустим, вы знаете, что ответы у вас редко с первого раза получаются.

Ну и не ленитесь. Написать лишнюю строчку займёт секунд 30. А количество ошибок резко сократится. Вот и пишем подробно, со всеми скобочками и знаками:

Как решать дробные уравнения через дискриминант

Как решать дробные уравнения через дискриминант

Как решать дробные уравнения через дискриминант

Это кажется невероятно трудным, так тщательно расписывать. Но это только кажется. Попробуйте. Ну, или выбирайте. Что лучше, быстро, или правильно? Кроме того, я вас обрадую. Через некоторое время отпадёт нужда так тщательно всё расписывать. Само будет правильно получаться. Особенно, если будете применять практические приёмы, что описаны чуть ниже. Этот злой пример с кучей минусов решится запросто и без ошибок!

Итак, как решать квадратные уравнения через дискриминант мы вспомнили. Или научились, что тоже неплохо. Умеете правильно определять a, b и с. Умеете внимательно подставлять их в формулу корней и внимательно считать результат. Вы поняли, что ключевое слово здесь – внимательно?

Однако частенько квадратные уравнения выглядят слегка иначе. Например, вот так:

Как решать дробные уравнения через дискриминант

Как решать дробные уравнения через дискриминант

Это неполные квадратные уравнения. Их тоже можно решать через дискриминант. Надо только правильно сообразить, чему здесь равняются a, b и с.

Сообразили? В первом примере a = 1; b = -4; а c? Его вообще нет! Ну да, правильно. В математике это означает, что c = 0! Вот и всё. Подставляем в формулу ноль вместо c, и всё у нас получится. Аналогично и со вторым примером. Только ноль у нас здесь не с, а b !

Но неполные квадратные уравнения можно решать гораздо проще. Безо всякого дискриминанта. Рассмотрим первое неполное уравнение. Что там можно сделать в левой части? Можно икс вынести за скобки! Давайте вынесем.

Как решать дробные уравнения через дискриминант

И что из этого? А то, что произведение равняется нулю тогда, и только тогда, когда какой-нибудь из множителей равняется нулю! Не верите? Хорошо, придумайте тогда два ненулевых числа, которые при перемножении ноль дадут!
Не получается? То-то…
Следовательно, можно уверенно записать: х = 0, или х = 4

Всё. Это и будут корни нашего уравнения. Оба подходят. При подстановке любого из них в исходное уравнение, мы получим верное тождество 0 = 0. Как видите, решение куда проще, чем через дискриминант.

Второе уравнение тоже можно решить просто. Переносим 9 в правую часть. Получим:

Как решать дробные уравнения через дискриминант

Остаётся корень извлечь из 9, и всё. Получится:

Как решать дробные уравнения через дискриминант

Тоже два корня. х = +3 и х = -3.

Так решаются все неполные квадратные уравнения. Либо с помощью вынесения икса за скобки, либо простым переносом числа вправо с последующим извлечением корня.
Спутать эти приёмы крайне сложно. Просто потому, что в первом случае вам придется корень из икса извлекать, что как-то непонятно, а во втором случае выносить за скобки нечего…

А теперь примите к сведению практические приёмы, которые резко снижают количество ошибок. Тех самых, что из-за невнимательности.… За которые потом бывает больно и обидно…

Приём первый. Не ленитесь перед решением квадратного уравнения привести его к стандартному виду. Что это означает?
Допустим, после всяких преобразований вы получили вот такое уравнение:

Как решать дробные уравнения через дискриминант

Не бросайтесь писать формулу корней! Почти наверняка, вы перепутаете коэффициенты a, b и с. Постройте пример правильно. Сначала икс в квадрате, потом без квадрата, потом свободный член. Вот так:

Как решать дробные уравнения через дискриминант

И опять не бросайтесь! Минус перед иксом в квадрате может здорово вас огорчить. Забыть его легко… Избавьтесь от минуса. Как? Да как учили в предыдущей теме! Надо умножить всё уравнение на -1. Получим:

Как решать дробные уравнения через дискриминант

А вот теперь можно смело записывать формулу для корней, считать дискриминант и дорешивать пример. Дорешайте самостоятельно. У вас должны получиться корни 2 и -1.

Приём второй. Проверяйте корни! По теореме Виета. Не пугайтесь, я всё объясню! Проверяем последнее уравнение. Т.е. то, по которому мы записывали формулу корней. Если (как в этом примере) коэффициент а = 1, проверить корни легко. Достаточно их перемножить. Должен получиться свободный член, т.е. в нашем случае -2. Обратите внимание, не 2, а -2! Свободный член со своим знаком. Если не получилось – значит уже где-то накосячили. Ищите ошибку. Если получилось — надо сложить корни. Последняя и окончательная проверка. Должен получиться коэффициент b с противоположным знаком. В нашем случае -1+2 = +1. А коэффициент b, который перед иксом, равен -1. Значит, всё верно!
Жаль, что это так просто только для примеров, где икс в квадрате чистый, с коэффициентом а = 1. Но хоть в таких уравнениях проверяйте! Всё меньше ошибок будет.

Приём третий. Если в вашем уравнении есть дробные коэффициенты, — избавьтесь от дробей! Домножьте уравнение на общий знаменатель, как описано в предыдущем разделе. При работе с дробями ошибки, почему-то так и лезут…

Кстати, я обещал злой пример с кучей минусов упростить. Пожалуйста! Вот он.

Как решать дробные уравнения через дискриминант

Чтобы не путаться в минусах, домножаем уравнение на -1. Получаем:

Как решать дробные уравнения через дискриминант

Вот и всё! Решать – одно удовольствие!

Итак, подытожим тему.

1. Перед решением приводим квадратное уравнение к стандартному виду, выстраиваем его правильно.

2. Если перед иксом в квадрате стоит отрицательный коэффициент, ликвидируем его умножением всего уравнения на -1.

3. Если коэффициенты дробные – ликвидируем дроби умножением всего уравнения на соответствующий множитель.

4. Если икс в квадрате – чистый, коэффициент при нём равен единице, решение можно легко проверить по теореме Виета. Делайте это!

Дробные уравнения. ОДЗ.

Продолжаем осваивать уравнения. Мы уже в курсе, как работать с линейными уравнениями и квадратными. Остался последний вид – дробные уравнения. Или их ещё называют гораздо солиднее – дробные рациональные уравнения. Это одно и то же.

Дробные уравнения.

Как ясно из названия, в этих уравнениях обязательно присутствуют дроби. Но не просто дроби, а дроби, у которых есть неизвестное в знаменателе. Хотя бы в одном. Например:

Как решать дробные уравнения через дискриминант

Как решать дробные уравнения через дискриминант

Напомню, если в знаменателях только числа, это линейные уравнения.

Как решать дробные уравнения? Прежде всего – избавиться от дробей! После этого уравнение, чаще всего, превращается в линейное или квадратное. А дальше мы знаем, что делать… В некоторых случаях оно может превратиться в тождество, типа 5=5 или неверное выражение, типа 7=2. Но это редко случается. Ниже я про это упомяну.

Но как избавиться от дробей!? Очень просто. Применяя всё те же тождественные преобразования.

Нам надо умножить всё уравнение на одно и то же выражение. Так, чтобы все знаменатели посокращались! Всё сразу станет проще. Поясняю на примере. Пусть нам требуется решить уравнение:

Как решать дробные уравнения через дискриминант

Как учили в младших классах? Переносим все в одну сторону, приводим к общему знаменателю и т.д. Забудьте, как страшный сон! Так нужно делать, когда вы складываете или вычитаете дробные выражения. Или работаете с неравенствами. А в уравнениях мы сразу умножаем обе части на выражение, которое даст нам возможность сократить все знаменатели (т.е., в сущности, на общий знаменатель). И какое же это выражение?

В левой части для сокращения знаменателя требуется умножение на х+2 . А в правой требуется умножение на 2. Значит, уравнение надо умножать на 2(х+2). Умножаем:

Как решать дробные уравнения через дискриминант

Это обычное умножение дробей, но распишу подробно:

Как решать дробные уравнения через дискриминант

Обратите внимание, я пока не раскрываю скобку (х + 2)! Так, целиком, её и пишу:

Как решать дробные уравнения через дискриминант

В левой части сокращается целиком (х+2), а в правой 2. Что и требовалось! После сокращения получаем линейное уравнение:

Как решать дробные уравнения через дискриминант

А это уравнение уже решит всякий! х = 2.

Решим ещё один пример, чуть посложнее:

Как решать дробные уравнения через дискриминант

Если вспомнить, что 3 = 3/1, а 2х = 2х/1, можно записать:

Как решать дробные уравнения через дискриминант

И опять избавляемся от того, что нам не очень нравится – от дробей.

Видим, что для сокращения знаменателя с иксом, надо умножить дробь на (х – 2). А единицы нам не помеха. Ну и умножаем. Всю левую часть и всю правую часть:

Как решать дробные уравнения через дискриминант

Опять скобки (х – 2) я не раскрываю. Работаю со скобкой в целом, как будто это одно число! Так надо делать всегда, иначе ничего не сократится.

Как решать дробные уравнения через дискриминант

С чувством глубокого удовлетворения сокращаем (х – 2) и получаем уравнение безо всяких дробей, в линеечку!

Как решать дробные уравнения через дискриминант

А вот теперь уже раскрываем скобки:

Как решать дробные уравнения через дискриминант

Приводим подобные, переносим всё в левую часть и получаем:

Как решать дробные уравнения через дискриминант

Классическое квадратное уравнение. Но минус впереди – нехорош. От него можно всегда избавиться, умножением или делением на -1. Но если присмотреться к примеру, можно заметить, что лучше всего это уравнение разделить на -2! Одним махом и минус исчезнет, и коэффициенты посимпатичнее станут! Делим на -2. В левой части – почленно, а в правой – просто ноль делим на -2, ноль и получим:

Как решать дробные уравнения через дискриминант

Решаем через дискриминант и проверяем по теореме Виета. Получаем х = 1 и х = 3. Два корня.

Как видим, в первом случае уравнение после преобразования стало линейным, а здесь – квадратным. Бывает так, что после избавления от дробей, все иксы сокращаются. Остаётся что-нибудь, типа 5=5. Это означает, что икс может быть любым. Каким бы он не был, всё равно сократится. И получится чистая правда, 5=5. Но, после избавления от дробей, может получиться и совсем неправда, типа 2=7. А это означает, что решений нет! При любом иксе получается неправда.

Осознали главный способ решения дробных уравнений? Он прост и логичен. Мы меняем исходное выражение так, чтобы исчезло всё то, что нам не нравится. Или мешает. В данном случае это – дроби. Точно так же мы будем поступать и со всякими сложными примерами с логарифмами, синусами и прочими ужасами. Мы всегда будем от всего этого избавляться.

Однако менять исходное выражение в нужную нам сторону надо по правилам, да… Освоение которых и есть подготовка к ЕГЭ по математике. Вот и осваиваем.

Сейчас мы с вами научимся обходить одну из главных засад на ЕГЭ! Но для начала посмотрим, попадаете вы в неё, или нет?

Разберём простой пример:

Как решать дробные уравнения через дискриминант

Дело уже знакомое, умножаем обе части на (х – 2), получаем:

Как решать дробные уравнения через дискриминант

Напоминаю, со скобками (х – 2) работаем как с одним, цельным выражением!

Как решать дробные уравнения через дискриминант

Здесь я уже не писал единичку в знаменателях, несолидно… И скобки в знаменателях рисовать не стал, там кроме х – 2 ничего нет, можно и не рисовать. Сокращаем:

Как решать дробные уравнения через дискриминант

Раскрываем скобки, переносим всё влево, приводим подобные:

Как решать дробные уравнения через дискриминант

Решаем, проверяем, получаем два корня. х = 2 и х = 3. Отлично.

Предположим в задании сказано записать корень, или их сумму, если корней больше одного. Что писать будем?

Если решите, что ответ 5, – вы попали в засаду. И задание вам не засчитают. Зря трудились… Правильный ответ 3.

В чём дело?! А вы попробуйте проверку сделать. Подставить значения неизвестного в исходный пример. И если при х = 3 у нас всё чудненько срастётся, получим 9 = 9, то при х = 2 получится деление на ноль! Чего делать нельзя категорически. Значит х = 2 решением не является, и в ответе никак не учитывается. Это так называемый посторонний или лишний корень. Мы его просто отбрасываем. Окончательный корень один. х = 3.

Как так?! – слышу возмущённые возгласы. Нас учили, что уравнение можно умножать на выражение! Это тождественное преобразование!

Да, тождественное. При маленьком условии – выражение, на которое умножаем (делим) – отлично от нуля. А х – 2 при х = 2 равно нулю! Так что всё честно.

И что теперь делать?! Не умножать на выражение? Каждый раз проверку делать? Опять непонятно!

Спокойно! Без паники!

В этой тяжелой ситуации нас спасут три магических буквы. Я знаю, о чем вы подумали. Правильно! Это ОДЗ. Область Допустимых Значений.

Видео:Алгебра 8. Урок 11 - Дробно-рациональные уравненияСкачать

Алгебра 8. Урок 11 - Дробно-рациональные уравнения

Решение дробных уравнений с преобразованием в квадратные уравнения

Дробным уравнением называется уравнение, в котором хотя бы одно из слагаемых — дробь, в знаменателе которой присутствует неизвестное. Например, дробным уравнением является уравнение Как решать дробные уравнения через дискриминант.

Решать дробные уравнения удобно в следующем порядке:

  • найти общий знаменатель дробей, входящих в уравнение, если каждая дробь имеет смысл,
  • заменить данное уравнение целым, умножив обе его часть на общий знаменатель,
  • решить получившееся целое уравнение,
  • исключить из его корней те, которые обращают в нуль общий знаменатель.

Пример 1. Решить дробное уравнение:

Как решать дробные уравнения через дискриминант.

Решение. Воспользуемся основным свойством дроби с представим левую и правую части этого уравнения в виде дробей с одинаковым знаменателем:

Как решать дробные уравнения через дискриминант.

Эти дроби равны при тех и только тех значениях, при которых равны их числители, а знаменатель отличен от нуля. Если знаменатель равен нулю, то дроби, а следовательно, и уравнение не имеет смысла.

Таким образом, чтобы найти корни данного уравнения, нужно решить уравнение

Как решать дробные уравнения через дискриминант.

Упростив уравнение (раскрыв скобки и приведя подобные члены), получим квадратное уравнение

Как решать дробные уравнения через дискриминант.

Как решать дробные уравнения через дискриминант.

Найденные корни не обращают знаменатель в нуль, поэтому они являются корнями исходного дробного уравнения.

Пример 2. Решить дробное уравнение:

Как решать дробные уравнения через дискриминант.

Решение. Найдём общий знаменатель дробей, входящих в данное дробное уравнение. Общий знаменатель —

Как решать дробные уравнения через дискриминант.

Заменим исходное уравнение целым. Для этого умножим обе его части на общий знаменатель. Получим:

Как решать дробные уравнения через дискриминант

Выполним необходимые преобразования в полученном уравнении и придём к квадратному уравнению

Как решать дробные уравнения через дискриминант.

Как решать дробные уравнения через дискриминант.

Если x = -3 , то найденный на первом шаге знаменатель обращается в нуль:

Как решать дробные уравнения через дискриминант,

то же самое, если x = 3 .

Следовательно, числа -3 и 3 не являются корнями исходного уравнения, а, поскольку никакие другие корни не найдены, данное уравнение не имеет решения.

Пример 3. Решить дробное уравнение:

Как решать дробные уравнения через дискриминант.

Решение. Найдём общий знаменатель дробей, входящих в данное уравнение. Для этого знаменатели дробей разложим на множители:

Как решать дробные уравнения через дискриминант.

Общий знаменатель — выражение

Как решать дробные уравнения через дискриминант

Заменим исходное уравнение целым, умножив обе его части на общий знаменатель. Получим:

Как решать дробные уравнения через дискриминант

Выполнив преобразования, придём к квадратному уравнению

Как решать дробные уравнения через дискриминант.

Как решать дробные уравнения через дискриминант.

Ни один из корней не обращает общий знаменатель в нуль. Следовательно, числа -4 и 9 — корни данного уравнения.

Пример 4. Решить дробное уравнение:

Как решать дробные уравнения через дискриминант.

Решение. Введём новую переменную, обозначив Как решать дробные уравнения через дискриминант. Получим уравнение с переменной y :

Как решать дробные уравнения через дискриминант.

Корни этого уравнения:

Как решать дробные уравнения через дискриминант

Как решать дробные уравнения через дискриминантили Как решать дробные уравнения через дискриминант.

Из уравнения Как решать дробные уравнения через дискриминантнаходим, что

Как решать дробные уравнения через дискриминант.

Из уравнения Как решать дробные уравнения через дискриминантнаходим, что

Как решать дробные уравнения через дискриминант.

Итак, данное уравнение имеет четыре корня:

Как решать дробные уравнения через дискриминант, Как решать дробные уравнения через дискриминант.

Видео:Как решать дробно-рациональные уравнения? | МатематикаСкачать

Как решать дробно-рациональные уравнения? | Математика

Решение уравнений с дробями

Как решать дробные уравнения через дискриминант

О чем эта статья:

5 класс, 6 класс, 7 класс

Видео:Дробно-рациональные уравнения. 8 класс.Скачать

Дробно-рациональные уравнения. 8 класс.

Понятие дроби

Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.

Дробь — это рациональное число, представленное в виде a/b, где a — числитель дроби, b — знаменатель. Есть два формата записи:

  • обыкновенный вид — ½ или a/b,
  • десятичный вид — 0,5.

Дробь — это одна из форм деления, записываемая с помощью дробной черты. Над чертой принято писать делимое (число, которое делим) — числитель. А под чертой всегда находится делитель (на сколько делим), его называют знаменателем. Черта между числителем и знаменателем означает деление.

Дроби бывают двух видов:

  1. Числовые — состоят из чисел. Например, 2/7 или (1,8 − 0,3)/5.
  2. Алгебраические — состоят из переменных. Например, (x + y)/(x − y). Значение дроби зависит от данных значений букв.

Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 4/9 и 23/57.

Неправильная дробь — та, у которой числитель больше знаменателя или равен ему. Например, 13/5. Такое число называют смешанным — читается так: «две целых три пятых», а записывается — 2 3/5.

Видео:Дробно рациональное уравнение. ОГЭ математика задача 4 (тип 4) 🔴Скачать

Дробно рациональное уравнение. ОГЭ математика задача 4 (тип 4) 🔴

Основные свойства дробей

Дробь не имеет значения, если делитель равен нулю.

Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.

Дроби a/b и c/d называют равными, если a × d = b × c.

Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

Действия с дробями можно выполнять те же, что и с обычными числами: складывать, вычитать, умножать и делить. Также, дроби можно сравнивать между собой и возводить в степень.

Видео:ЭТО НУЖНО ЗНАТЬ — Как решать Дробно Рациональные уравнения?Скачать

ЭТО НУЖНО ЗНАТЬ — Как решать Дробно Рациональные уравнения?

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Наша задача — найти неизвестные числа так, чтобы при их подстановке в пример получилось верное числовое равенство. Давайте на примере:

  • Возьмем выражение 4 + 5 = 9. Это верное равенство, потому что 4+5 действительно 9. Если бы вместо 9 стояло любое другое число — мы бы сказали, что числовое равенство неверное.
  • Уравнением можно назвать выражение 4 + x = 9, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое уравнивает выражения справа и слева, когда мы подставляем его на место неизвестной. В таком случае афоризм «зри в корень» — очень кстати при усердном решении уравнений.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Решить уравнение значит найти все его корни или убедиться, что корней нет.

Алгебраические уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные. Расскажем и про них.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = −b : а;
  • если а равно нулю, а b не равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Видео:Как решать квадратные уравнения без дискриминантаСкачать

Как решать квадратные уравнения без дискриминанта

Понятие дробного уравнения

Дробное уравнение — это уравнение с дробями. Да, вот так просто. Но это еще не все. Чаще всего неизвестная стоит в знаменателе. Например, вот так:

Как решать дробные уравнения через дискриминант Как решать дробные уравнения через дискриминант

Такие уравнения еще называют дробно-рациональными. В них всегда есть хотя бы одна дробь с переменной в знаменателе.

Если вы видите в знаменателях числа, то это уравнения либо линейные, либо квадратные. Решать все равно нужно, поэтому идем дальше. Примеры:

Как решать дробные уравнения через дискриминант Как решать дробные уравнения через дискриминант

На алгебре в 8 классе можно встретить такое понятие, как область допустимых значений — это множество значений переменной, при которых это уравнение имеет смысл. Его используют, чтобы проверить корни и убедиться, что решение правильное.

Мы уже знаем все важные термины, их определения и наконец подошли к самому главному — сейчас узнаем как решить дробное уравнение.

Видео:ДРОБНО-РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ ЧАСТЬ I #shorts #егэ #огэ #математика #профильныйегэСкачать

ДРОБНО-РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ ЧАСТЬ I #shorts #егэ #огэ #математика #профильныйегэ

Как решать уравнения с дробями

1. Метод пропорции

Чтобы решить уравнение методом пропорции, нужно привести дроби к общему знаменателю. А само правило звучит так: произведение крайних членов пропорции равно произведению средних. Проверим, как это работает.

Итак, у нас есть линейное уравнение с дробями:

Как решать дробные уравнения через дискриминант

В левой части стоит одна дробь — оставим без преобразований. В правой части видим сумму, которую нужно упростить так, чтобы осталась одна дробь.

Как решать дробные уравнения через дискриминант

После того, как в левой и правой части осталась одна дробь, можно применить метод пропорции и перемножить крест-накрест числители и знаменатели.

Как решать дробные уравнения через дискриминант

2. Метод избавления от дробей

Возьмем то же самое уравнение, но попробуем решить его по-другому.

Как решать дробные уравнения через дискриминант

В уравнении есть две дроби, от которых мы очень хотим избавиться. Вот, как это сделать:

  • подобрать число, которое можно разделить на каждый из знаменателей без остатка;
  • умножить на это число каждый член уравнения.

Ищем самое маленькое число, которое делится на 5 и 9 и без остатка — 45 как раз подходит. Умножаем каждый член уравнения на 45 и избавляемся от знаменателей. Вуаля!

Как решать дробные уравнения через дискриминант

Вот так просто мы получили тот же ответ, что и в прошлый раз.

Что еще важно учитывать при решении

  • если значение переменной обращает знаменатель в 0, значит это неверное значение;
  • делить и умножать уравнение на 0 нельзя.

Универсальный алгоритм решения

Определить область допустимых значений.

Найти общий знаменатель.

Умножить каждый член уравнения на общий знаменатель и сократить полученные дроби. Знаменатели при этом пропадут.

Раскрыть скобки, если нужно и привести подобные слагаемые.

Решить полученное уравнение.

Сравнить полученные корни с областью допустимых значений.

Записать ответ, который прошел проверку.

Курсы по математике от Skysmart помогут закрепить материал и разобраться в сложных темах.

Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

Решение квадратных уравнений. Дискриминант. 8 класс.

Примеры решения дробных уравнений

Чтобы стать успешным в любом деле, нужно чаще практиковаться. Мы уже знаем, как решаются дробные уравнения — давайте перейдем к решению задачек.

Пример 1. Решить дробное уравнение: 1/x + 2 = 5.

  1. Вспомним правило х ≠ 0. Это значит, что область допустимых значений: х — любое число, кроме нуля.
  2. Отсчитываем справа налево в числителе дробной части три знака и ставим запятую.
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Решим обычное уравнение.

Пример 2. Найти корень уравненияКак решать дробные уравнения через дискриминант

  1. Область допустимых значений: х ≠ −2.
  2. Умножим обе части уравнения на выражение, которое сократит оба знаменателя: 2(х+2)
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Как решать дробные уравнения через дискриминант

Переведем новый множитель в числитель..

Как решать дробные уравнения через дискриминант

Сократим левую часть на (х+2), а правую на 2.

Пример 3. Решить дробное уравнение: Как решать дробные уравнения через дискриминант

    Найти общий знаменатель:

Умножим обе части уравнения на общий знаменатель. Сократим. Получилось:

Выполним возможные преобразования. Получилось квадратное уравнение:

Решим полученное квадратное уравнение:

Получили два возможных корня:

Если x = −3, то знаменатель равен нулю:

Если x = 3 — знаменатель тоже равен нулю.

  • Вывод: числа −3 и 3 не являются корнями уравнения, значит у данного уравнения нет решения.
  • 📹 Видео

    Дробно рациональные уравнения. Алгебра, 9 классСкачать

    Дробно рациональные уравнения. Алгебра, 9 класс

    Дробно-рациональные уравнения. Подготовка к экзаменам. 64 часть. 9 класс.Скачать

    Дробно-рациональные уравнения. Подготовка к экзаменам. 64 часть. 9 класс.

    дробное уравнение как решать для 6 классаСкачать

    дробное уравнение как решать для 6 класса

    Дробно-рациональные уравнения. Подготовка к экзаменам. 60 часть. 9 класс.Скачать

    Дробно-рациональные уравнения. Подготовка к экзаменам. 60 часть. 9 класс.

    Как решают уравнения в России и США!?Скачать

    Как решают уравнения в России и США!?

    Как решить уравнение #россия #сша #америка #уравненияСкачать

    Как решить уравнение #россия #сша #америка #уравнения

    Решить уравнение с дробями - Математика - 6 классСкачать

    Решить уравнение с дробями - Математика - 6 класс

    #136 Урок 61. Дробно-рациональные уравнения. Рациональные уравнения, приводящиеся к квадратным.Скачать

    #136 Урок 61. Дробно-рациональные уравнения. Рациональные уравнения, приводящиеся к квадратным.

    Дробно-рациональные уравнения + Бонус: треугольник Паскаля | МатематикаСкачать

    Дробно-рациональные уравнения + Бонус: треугольник Паскаля | Математика

    Решение дробных рациональных уравнений. Алгебра, 8 классСкачать

    Решение дробных рациональных уравнений. Алгебра, 8 класс

    8 класс, 5 урок, Первые представления о решении рациональных уравненийСкачать

    8 класс, 5 урок, Первые представления о решении рациональных уравнений

    как решать дробиСкачать

    как решать дроби
    Поделиться или сохранить к себе: