- Попробуйте решить приведенные ниже дифференциальные уравнения.
- Нажмите на изображение уравнения, и вы попадете на страницу с подробным решением.
- Примеры решений дифференциальных уравнений первого порядка
- Примеры решений дифференциальных уравнений второго и высших порядков
- Примеры решений линейных дифференциальных уравнений с постоянными коэффициентами
- Примеры решений линейных уравнений в частных производных первого порядка
- Дифференциальные уравнения высших порядков: ЛОДУ, примеры решения.
- Примеры решения дифференциальных уравнений с ответами
- Алгоритм решения дифференциальных уравнений
- Примеры решения дифференциальных уравнений
- 📽️ Видео
Видео:Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентамиСкачать
Примеры решений дифференциальных уравнений первого порядка
Видео:ЛОДУ 2 порядка c постоянными коэффициентамиСкачать
Примеры решений дифференциальных уравнений второго и высших порядков
Найти общее решение дифференциального уравнения, или решение с заданными начальными условиями.
Видео:16. Линейные неоднородные дифференциальные уравнения 2-го порядка с постоянными коэффициентамиСкачать
Примеры решений линейных дифференциальных уравнений с постоянными коэффициентами
Видео:18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать
Примеры решений линейных уравнений в частных производных первого порядка
Найти общее решение линейного однородного уравнения в частных производных первого порядка и решить задачу Коши с указанным граничным условием:
,
при .
Найти поверхность, удовлетворяющую данному уравнению
,
и проходящую через данную окружность
, .
Автор: Олег Одинцов . Опубликовано: 28-01-2016 Изменено: 26-11-2021
Видео:13. Как решить дифференциальное уравнение первого порядка?Скачать
Дифференциальные уравнения высших порядков: ЛОДУ, примеры решения.
Можно выделить 5 возможных метода для определения y0 — общего решения линейного однородного дифференциального уравнения n-ого порядка с постоянными коэффициентами:
1. В случае, когда все решения характеристического уравнения являются действительными и различными, значит, линейно независимые частные решения принимают вид:
,
а общее решение линейного однородного дифференциального уравнения n-ого порядка с постоянными коэффициентами записывают так:
.
Найти общее решение ЛОДУ 3-го порядка с постоянными коэффициентами:
.
Для начала записываем характеристическое уравнение и находим его корни, перед этим произведя разложение многочлена в левой части равенства на множители методом группировки:
Каждый из трех корней характеристического уравнения являются действительными и различными, значит, общее решение линейного однородного дифференциального уравнения 3-го порядка с постоянными коэффициентами принимает вид:
.
2. Когда каждое решение характеристического уравнения оказывается действительными и одинаковыми, т.е.,
,
значит, линейно независимые частные решения ЛОДУ n-ого порядка с постоянными коэффициентами принимают вид:
,
а общее решение линейного однородного дифференциального уравнения (ДУ) принимает вид:
Найти общее решение ДУ
.
Характеристическое уравнение этого линейного однородного дифференциального уравнения 4-го порядка выглядит так:
.
Обратившись к формуле бинома Ньютона, переписываем характеристическое уравнение как , из чего видим четырехкратный корень k0 = 2.
Т.о., общим решением заданного ЛОДУ с постоянными коэффициентами является:
.
3. Когда решениями характеристического уравнения ЛОДУ n-ого порядка с постоянными коэффициентами оказываются разные комплексно сопряженные пары , n=2m, тогда линейно независимые частные решения такого линейного однородного дифференциального уравнения принимает вид:
а общее решение записывается так:
Проинтегрировать ЛОДУ 4-го порядка с постоянными коэффициентами .
Характеристическое уравнение этого линейного однородного дифференциального уравнения:
.
Произведя некоторые несложные преобразования и группирования имеем:
Откуда находим 2 пары комплексно сопряженных корней характеристического уравнения и . Тогда, общим решением заданного ЛОДУ n-ого порядка с постоянными коэффициентами является:
4. Когда решениями характеристического уравнения оказываются совпадающие комплексно сопряженные пары , тогда линейно независимые частные решения ЛОДУ n-ого порядка с постоянными коэффициентами выглядят так:
,
а общим решением этого линейного однородного дифференциального уравнения является:
Найти общее решение линейного однородного дифференциального уравнения с постоянными коэффициентами:
.
Первым шагом записываем характеристическое уравнение этого ЛОДУ с постоянными коэффициентами и определяем его корни:
Т.е., решением характеристического уравнения является двукратная комплексно сопряженная пара . Тогда общее решение заданного ЛОДУ с постоянными коэффициентами будет:
.
5. Могут возникнуть любые комбинации случаев, описанных выше, т.е., некоторые корни характеристического уравнения ЛОДУ n-ого порядка с постоянными коэффициентами являются действительными и различными, некоторые являются действительными и совпадающими, некоторые являются различными комплексно сопряженными парами и некоторые совпадающими комплексно сопряженными парами.
Найти общее решение ДУ
.
Характеристическое уравнение этого ЛОДУ с постоянными коэффициентами выглядит так:
.
Многочлен в левой части равенства можно разложить на множители. Из делителей свободного члена вычисляем двукратный корень k1=k2=2 и корень k3=-3. Далее, применяя схему Горнера, приходим к разложению:
.
Из квадратного уравнения находим оставшиеся корни .
Т.о., общее решение заданного ЛОДУ с постоянными коэффициентами выглядит как:
.
Видео:Как решать уравнение с корнями Иррациональное уравнение Как решать уравнение с корнем х под корнемСкачать
Примеры решения дифференциальных уравнений с ответами
Простое объяснение принципов решения дифференциальных уравнений и 10 наглядных примеров. В каждом примере поэтапный ход решения и ответ.
Видео:Линейное неоднородное дифференциальное уравнение с постоянными коэффициентами 4y''-y=x^3-24x #1Скачать
Алгоритм решения дифференциальных уравнений
Дифференциальные уравнения не так сильно отличаются от привычных уравнений, где необходимо найти переменную x , как кажется на первый взгляд. Всё различие лишь в том, что в дифференциальных уравнениях мы ищем не переменную, а функцию у(х) , с помощью которой можно обратить уравнение в равенство.
Дифференциальное уравнение – это уравнение, содержащее саму функцию (y=y(x)), производные функции или дифференциалы (y′, y″) и независимые переменные (наиболее распространённая – х). Обыкновенным дифференциальным уравнением называют уравнение, в котором содержится неизвестная функция под знаком производной или под знаком дифференциала.
Чтобы решить ДУ, необходимо найти множество всех функций, которые удовлетворяют данному уравнению. Это множество в большинстве случаев выглядит следующим образом:y=f(x; С), где С – произвольная постоянная.
Проверить решённое ДУ можно, подставив найденную функцию в изначальное уравнение и убедившись, что уравнение обращается в тождество (равенство).
Видео:15. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентамиСкачать
Примеры решения дифференциальных уравнений
Задание
Решить дифференциальное уравнение xy’=y.
Решение
В первую очередь, необходимо переписать уравнение в другой вид. Пользуясь
переписываем дифференциальное уравнение, получаем
Дальше смотрим, насколько реально разделить переменные, то есть путем обычных манипуляций (перенос слагаемых из части в часть, вынесение за скобки и пр.) получить выражение, где «иксы» с одной стороны, а «игреки» с другой. В данном уравнении разделить переменные вполне реально, и после переноса множителей по правилу пропорции получаем
Далее интегрируем полученное уравнение:
В данном случае интегралы берём из таблицы:
После того, как взяты интегралы, дифференциальное уравнение считается решённым. Решение дифференциального уравнения в неявном виде называется общим интегралом дифференциального уравнения.
– это общий интеграл. Также для удобства и красоты, его можно переписать в другом виде: y=Cx, где С=Const
Ответ
Задание
Найти частное решение дифференциального уравнения
Решение
Действуем по тому же алгоритму, что и в предыдущем решении.
Переписываем производную в нужном виде, разделяем переменные и интегрируем полученное уравнение:
Получили общий интеграл.Далее, воспользуемся свойством степеней, выразим у в «общем» виде и перепишем функцию:
Если – это константа, то
0]» title=»Rendered by QuickLaTeX.com» />
– тоже некоторая константа, заменим её буквой С:
– убираем модуль и теперь константа может принимать и положительные, и отрицательные значения.
Получаем общее решение:
Ответ
Задание
Решить дифференциальное уравнение
Решение
В первую очередь необходимо переписать производную в необходимом виде:
Второй шаг – разделение переменных и перенос со сменой знака второго слагаемого в правую часть:
После разделения переменных, интегрируем уравнение, как в примерах выше.
Чтобы решить интегралы из левой части, применим метод подведения функции под знак дифференциала:
В ответе мы получили одни логарифмы и константу, их тоже определяем под логарифм.
Далее упрощаем общий интеграл:
Приводим полученный общий интеграл к виду: F(x,y)=C:
Чтобы ответ смотрелся красивее, обе части необходимо возвести в квадрат.
Ответ
Задание
Найти частное решение дифференциального уравнения
удовлетворяющее начальному условию y(0)=ln2.
Решение
Первый шаг – нахождение общего решения. То, что в исходном уравнении уже находятся готовые дифференциалы dy и dx значительно упрощает нам решение.
Начинаем разделять переменные и интегрировать уравнение:
Мы получили общий интеграл и следующий шаг – выразить общее решение. Для этого необходимо прологарифмировать обе части. Знак модуля не ставим, т.к. обе части уравнения положительные.
Получаем общее решение:
Далее необходимо найти частное решение, которое соответствует заданному начальному условию y(0)=ln2.
В общее решение вместо «икса» подставляем ноль, а вместо «игрека» логарифм двух:
Подставляем найденное значение константы C=1 в общее решение.
Ответ
Задание
Решить дифференциальное уравнение
Решение
При внимательном разборе данного уравнения видно, что можно разделить переменные, что и делаем, после интегрируем:
В данном случае константу C считается не обязательным определять под логарифм.
Ответ
Задание
Найти частное решение дифференциального уравнения
удовлетворяющее начальному условию y(1)=e. Выполнить проверку.
Решение
Как и в предыдущих примерах первым шагом будет нахождение общего решения. Для этого начинаем разделять переменные:
Общий интеграл получен, осталось упростить его. Упаковываем логарифмы и избавляемся от них:
можно выразить функцию в явном виде.
Осталось найти частное решение, удовлетворяющее начальному условию y(1)=e.
Подставляем найденное значение константы C=1 в общее решение.
Ответ
Проверка
Необходимо проверить, выполняется ли начальное условие:
Из равенства выше видно, что начальное условие y(1)=e выполнено.
Далее проводим следующую проверку: удовлетворяет ли вообще частное решение
дифференциальному уравнению. Для этого находим производную:
Подставим полученное частное решение
и найденную производную в исходное уравнение
Получено верное равенство, значит, решение найдено правильно.
Задание
Найти общий интеграл уравнения
Решение
Данное уравнение допускает разделение переменных. Разделяем переменные и интегрируем:
Ответ
Задание
Найти частное решение ДУ.
Решение
Данное ДУ допускает разделение переменных. Разделяем переменные:
Найдем частное решение (частный интеграл), соответствующий заданному начальному условию
Подставляем в общее решение
Ответ
Задание
Решить дифференциальное уравнение
Решение
Данное уравнение допускает разделение переменных. Разделяем переменные и интегрируем:
Левую часть интегрируем по частям:
В интеграле правой части проведем замену:
(здесь дробь раскладывается методом неопределенных коэффициентов)
Ответ
Задание
Решить дифференциальное уравнение
Решение
Данное уравнение допускает разделение переменных.
Разделяем переменные и интегрируем:
Методом неопределенных коэффициентов разложим подынтегральную функцию в сумму элементарных дробей:
📽️ Видео
Дифференциальные уравнения, 8 урок, Линейные дифференциальные уравнения с const коэф-ами 2 порядкаСкачать
Дифференциальные уравнения, 3 урок, Однородные уравненияСкачать
Линейные однородные дифференциальные уравнения n-го порядка с постоянными коэффициентамСкачать
Дифференциальные уравнения, 9 урок, Линейные дифференциальные уравнения высших порядковСкачать
Задача Коши ➜ Частное решение линейного однородного дифференциального уравненияСкачать
Дифференциальные уравнения. 11 класс.Скачать
19. Метод вариации произвольных постоянных. Линейные неоднородные диф уравнения 2-го порядкаСкачать
Линейное однородное дифференциальное уравнение 2-го порядка с постоянными коэффициентами.Скачать
Решение системы дифференциальных уравнений методом ЭйлераСкачать
Как решают уравнения в России и СШАСкачать