Как раскрывается знак модуля в уравнении

Решение уравнений с модулем

Как раскрывается знак модуля в уравненииРешение уравнений и неравенств с модулем часто вызывает затруднения. Однако, если хорошо понимать, что такое модуль числа, и как правильно раскрывать выражения, содержащие знак модуля, то наличие в уравнении выражения, стоящего под знаком модуля, перестает быть препятствием для его решения.

Немного теории. Каждое число имеет две характеристики: абсолютное значение числа, и его знак.

Например, число +5, или просто 5 имеет знак «+» и абсолютное значение 5.

Число -5 имеет знак «-» и абсолютное значение 5.

Абсолютные значения чисел 5 и -5 равны 5.

Абсолютное значение числа х называется модулем числа и обозначается |x|.

Как мы видим, модуль числа равен самому числу, если это число больше или равно нуля, и этому числу с противоположным знаком, если это число отрицательно.

Это же касается любых выражений, которые стоят под знаком модуля.

Правило раскрытия модуля выглядит так:

|f(x)|= f(x), если f(x) ≥ 0, и

|f(x)|= — f(x), если f(x)

Например |x-3|=x-3, если x-3≥0 и |x-3|=-(x-3)=3-x, если x-3 2 +4x-3

1. Раскроем модуль.

|x-3|=x-3, если x-3≥0, т.е. если х≥3

|x-3|=-(x-3)=3-x, если x-3 2 +4x-3

Внимание! Это уравнение существует только на промежутке х≥3!

Раскроем скобки, приведем подобные члены:

и решим это уравнение.

Это уравнение имеет корни:

Внимание! поскольку уравнение x-3=-x 2 +4x-3 существует только на промежутке х≥3, нас интересуют только те корни, которые принадлежат этому промежутку. Этому условию удовлетворяет только х2=3.

Внимание! Это уравнение существует только на промежутке х 2 -5х+6=0

Внимание! поскольку уравнение 3-х=-x 2 +4x-3 существует только на промежутке x

Для вас другие записи этой рубрики:

Как раскрывается знак модуля в уравнении

Отзывов ( 179 )

Здравствуйте,Инна.Как умножить модуль на квадратное уравнение?
Спасибо.

Нужно раскрыть модуль: рассмотреть случаи, когда подмодульное выражение больше нуля и когда меньше нуля.

Если модуль в модуле. ||x| — 1| * |x| / x^2 — 1 ==> x -(x + 1) * (-x) / (x^2 — 1) ==> x(x + 1) / (x — 1)(x + 1) = ==> x/ x — 1.

-1 -(x + 1) * (-x) / (x^2 — 1) ==> x(x + 1) / (x — 1)(x + 1) = ==> x/ x — 1.

0 -x(x — 1) / (x^2 — 1) ==> x(x + 1) / (x — 1)(x + 1) = ==> x/ x — 1.

Не до конца понимаю, как правильно раскрыть модуль в модуле, и, соответственно, какой знак внутри модуля в который вложен другой модуль…

В этом примере проще ввести замену: Как раскрывается знак модуля в уравнении, тогда получится выражение с одним модулем. В общем случае сначала раскрываем внутренний модуль, потом внешний. При раскрытии модуля необходимо указывать промежуток, на котором мы находимся. Например: Как раскрывается знак модуля в уравнении. Cначала рассматриваем случай Как раскрывается знак модуля в уравнении, Получаем систему: Как раскрывается знак модуля в уравнении. И теперь система разбивается на совокупность двух систем: Как раскрывается знак модуля в уравнениии Как раскрывается знак модуля в уравнении. Так же рассматриваем второй случай, когда Как раскрывается знак модуля в уравнении.

Видео:Как решать уравнение с модулем Уравнение с модулями как решать Как раскрыть модуль в уравненииСкачать

Как решать уравнение с модулем Уравнение с модулями как решать Как раскрыть модуль в уравнении

Обобщённое понятие модуля числа

В данном уроке мы рассмотрим понятие модуля числа более подробно.

Видео:МодульСкачать

Модуль

Что такое модуль?

Модуль — это расстояние от начала координат до какого-нибудь числа на координатной прямой. Поскольку расстояние не бывает отрицательным, то и модуль всегда неотрицателен. Так, модуль числа 3 равен 3, как и модуль числа −3 равен 3

Предстáвим, что на координатной прямой расстояние между целыми числами равно одному шагу. Теперь если отметить числа −3 и 3, то расстояние до них от начала координат будет одинаково равно трём шагам:

Как раскрывается знак модуля в уравнении

Модуль это не только расстояние от начала координат до какого-нибудь числа. Модуль это также расстояние между любыми двумя числами на координатной прямой. Такое расстояние выражается в виде разности между этими числами, заключенной под знак модуля:

Где x1 и x2 — числа на координатной прямой.

Например, отметим на координатной прямой числа 2 и 5.

Как раскрывается знак модуля в уравнении

Расстояние между числами 2 и 5 можно записать с помощью модуля. Для этого запишем разность из чисел 2 и 5 и заключим эту разность под знак модуля:

Видим, что расстояние от числа 2 до числа 5 равно трём шагам:

Как раскрывается знак модуля в уравнении

Если расстояние от 2 до 5 равно 3, то и расстояние от 5 до 2 тоже равно 3

Как раскрывается знак модуля в уравнении

То есть, если в выражении |5 − 2| поменять числа местами, то результат не изменится:

Тогда можно записать, что |2 − 5| = |5 − 2|. Вообще, справедливо следующее равенство:

Это равенство можно прочитать так: Расстояние от x1 до x2 равно расстоянию от x2 до x1.

Видео:Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать

Как решать уравнения с модулем или Математический торт с кремом (часть 1) | Математика

Раскрытие модуля

Когда мы говорим, что |3|= 3 или |−3|= 3 мы выполняем действие называемое раскрытием модуля.

Правило раскрытия модуля выглядит так:

Как раскрывается знак модуля в уравнении

Такую запись мы ранее не использовали. Дело в том, что равенство можно задавать несколькими формулами. Фигурная скобка указывает, что возможны два случая в зависимости от условия. В данном случае условиями являются записи «если x ≥ 0» и «если x .

В зависимости от того что будет подставлено вместо x, выражение |x| будет равно x, если подставленное число больше или равно нулю. А если вместо x подставлено число меньшее нуля, то выражение |x| будет равно −x.

Второй случай на первый взгляд может показаться противоречивым, поскольку запись |x| = −x выглядит будто модуль стал равен отрицательному числу. Следует иметь ввиду, что когда x

Пример 2. Пусть x = 5. То есть мы рассматриваем модуль числа 5

В данном случае выполняется первое условие x ≥ 0, ведь 5 ≥ 0

Как раскрывается знак модуля в уравнении

Поэтому используем первую формулу. А именно | x | = x. Получаем | 5 | = 5.

Ноль это своего рода точка перехода, в которой модуль меняет свой порядок раскрытия и далее сохраняет свой знак. Визуально это можно представить так:

Как раскрывается знак модуля в уравнении

На рисунке красные знаки минуса и плюса указывают как будет раскрываться модуль |x| на промежутках x и x ≥ 0 .

К примеру, если взять числа 1, 9 и 13 , а они принадлежат промежутку x ≥ 0, то согласно рисунку модуль |x| раскроется со знаком плюс:

А если возьмём числа, меньшие нуля, например −3, −9, −15, то согласно рисунку модуль раскроется со знаком минус:

Пример 3. Пусть x = √4 − 6. То есть мы рассматриваем модуль выражения √4 − 6,

Корень из числа 4 равен 2. Тогда модуль примет вид

x который был равен √4−6 теперь стал равен −4. В данном случае выполняется второе условие x |√4 − 6| = |2 − 6| = |−4| = −(−4) = 4

На практике обычно рассуждают так:

«Модуль раскрывается со знаком плюс, если подмодульное выражение больше или равно нулю; модуль раскрывается со знаком минус, если подмодульное выражение меньше нуля».

Примеры:

|2| = 2 — модуль раскрылся со знаком плюс, поскольку 2 ≥ 0

|−4| = −(−4) = 4 — модуль раскрылся со знаком минус, поскольку −4 x ≥ 0 расписано подробнее, а именно сказано что если x > 0 , то выражение |x| будет равно x , а если x =0, то выражение |x| будет равно нулю.

Пример 4. Пусть x = 0. То есть мы рассматриваем модуль нуля:

В данном случае выполняется условие x=0, ведь 0 = 0

Как раскрывается знак модуля в уравнении

Пример 5. Раскрыть модуль в выражении |x|+ 3

Если x ≥ 0, то модуль раскроется со знаком плюс, и тогда исходное выражение примет вид x + 3.

Допустим, требуется найти значение выражения |x|+ 3 при x = 5. Поскольку 5 ≥ 0, то модуль, содержащийся в выражении |x|+ 3 раскрóется со знаком плюс и тогда решение примет вид:

Найдём значение выражения |x|+ 3 при x = −6. Поскольку −6 |x| + 3 = 3 − x = 3 − (−6) = 9

Пример 6. Раскрыть модуль в выражении x +|x + 3|

Если x + 3 ≥ 0, то модуль |x + 3| раскроется со знаком плюс и тогда исходное выражение примет вид x + x + 3 , откуда 2x + 3.

Найдём значение выражения x +|x + 3| при x = 4. Поскольку 4 ≥ −3, то согласно нашему решению модуль выражения x +|x + 3| раскрывается со знаком плюс, и тогда исходное выражение принимает вид 2x+3, откуда подставив 4 получим 11

Найдём значение выражения x +|x + 3| при x=−3.

Поскольку −3 ≥ −3 , то согласно нашему решению модуль выражения x +|x + 3| раскрывается со знаком плюс, и тогда исходное выражение принимает вид 2x+3, откуда подставив −3 получим −3

Пример 3. Раскрыть модуль в выражении Как раскрывается знак модуля в уравнении

Как и прежде используем правило раскрытия модуля:

Как раскрывается знак модуля в уравнении

Но это решение не будет правильным, поскольку в первом случае написано условие x ≥ 0 , которое допускает что при x = 0 знаменатель выражения Как раскрывается знак модуля в уравненииобращается в ноль, а на ноль делить нельзя.

В данном примере удобнее использовать подробную запись правила раскрытия модуля, где отдельно рассматривается случай при котором x = 0

Как раскрывается знак модуля в уравнении

Перепишем решение так:

Как раскрывается знак модуля в уравнении

В первом случае написано условие x > 0 . Тогда выражение Как раскрывается знак модуля в уравнениистанет равно 1. Например, если x = 3 , то числитель и знаменатель станут равны 3, откуда полýчится 1

Как раскрывается знак модуля в уравнении

И так будет при любом x , бóльшем нуля.

Во втором случае написано условие x = 0 . Тогда решений не будет, потому что на ноль делить нельзя.

В третьем случае написано условие x . Тогда выражение Как раскрывается знак модуля в уравнениистанет равно −1 . Например, если x = −4 , то числитель станет равен 4 , а знаменатель −4 , откуда полýчится единица −1

Как раскрывается знак модуля в уравнении

Пример 4. Раскрыть модуль в выражении Как раскрывается знак модуля в уравнении

Если x ≥ 0 , то модуль, содержащийся в числителе, раскроется со знаком плюс, и тогда исходное выражение примет вид Как раскрывается знак модуля в уравнении, которое при любом x , бóльшем нуля, будет равно единице:

Как раскрывается знак модуля в уравнении

Если x , то модуль раскроется со знаком минус, и тогда исходное выражение примет вид Как раскрывается знак модуля в уравнении

Как раскрывается знак модуля в уравнении

Но надо учитывать, что при x = − 1 знаменатель выражения Как раскрывается знак модуля в уравненииобращается в ноль. Поэтому второе условие x следует дополнить записью о том, какие значения может принимать x

Как раскрывается знак модуля в уравнении

Видео:Уравнения с модулемСкачать

Уравнения с модулем

Преобразование выражений с модулями

Модуль, входящий в выражение, можно рассматривать как полноценный множитель. Его можно сокращать и выносить за скобки. Если модуль входит в многочлен, то его можно сложить с подобным ему модулем.

Как и у обычного буквенного множителя, у модуля есть свой коэффициент. Например, коэффициентом модуля |x| является 1, а коэффициентом модуля −|x| является −1. Коэффициентом модуля 3|x+1| является 3, а коэффициентом модуля −3|x+1| является −3.

Пример 1. Упростить выражение |x| + 2|x| − 2x + 5y и раскрыть модуль в получившемся выражении.

Решение

Выражения|x| и 2|x| являются подобными членами. Слóжим их. Остальное оставим без изменений:

Как раскрывается знак модуля в уравнении

Раскроем модуль в получившемся выражении. Если x ≥ 0, то получим 3x − 2x + 5y , откуда x + 5y .

Если x , то получим − 3x − 2x + 5y , откуда − 5x + 5y . Вынесем за скобки множитель − 5 , получим − 5(x − y)

В итоге имеем следующее решение:

Как раскрывается знак модуля в уравнении

Пример 2. Раскрыть модуль в выражении: −|x|

Решение

В данном случае перед знаком модуля стоит минус. Его можно понимать как минус единицу перед знаком модуля. Если x ≥ 0 , то модуль раскроется со знаком плюс, и тогда исходное выражение примет вид −x

Если x , то модуль раскроется со знаком минус, и тогда исходное выражение примет вид −(−x) откуда получим просто x

Видео:ЕГЭ 2017. Уравнение. Модуль. Раскрытие модуля. Задание 13.Скачать

ЕГЭ 2017. Уравнение. Модуль. Раскрытие модуля. Задание 13.

Уравнения с модулем

Видео:Модуль в модуле в уравнении. Алгебра 7 класс.Скачать

Модуль в модуле в уравнении. Алгебра 7 класс.

Что такое уравнение с модулем

Модуль числа — абсолютная величина, демонстрирующая удаленность точки от начала координат.

В том случае, когда число является отрицательным, его модуль соответствует числу, ему противоположному. Для неотрицательного числа модуль равен этому числу.

| x | = x , x ≥ 0 — x , x 0

Уравнения с модулем являются такими уравнениями, в составе которых имеется переменная, заключенная в знак модуля.

Самое простое уравнение с модулем |f(x)|=a является равносильным совокупности

Здесь a>0. При а отрицательном у такого уравнения отсутствует решение.

Уравнения с модулем могут быть предложены в качестве самостоятельного задания. Кроме того, подобные выражения нередко образуются в процессе решения других видов уравнений, к примеру, квадратных или иррациональных.

Разберем подробное решение квадратного уравнения:

Заметим, что справа имеется квадрат числа 4:

На первый взгляд, нужно избавиться от квадратов, чтобы получить линейное уравнение. С другой стороны, существует правило:

Вычисления следует продолжить с учетом записанной формулы. Тогда получим уравнение с модулем:

x 2 = 4 2 ⇔ x 2 = 4 2 ⇔ x = 4

Рассмотрим для тренировки пример, когда уравнения с модулем появляются при решении иррациональных уравнений. Например, дано уравнение:

2 x — 1 2 = 9 x 2 + 12 x + 4

Согласно стандартному алгоритму действий, в этом случае потребуется выполнить действия:

  • перенос слагаемых;
  • приведение подобных;
  • решение квадратного уравнения, например, с помощью дискриминанта.

Второй вариант решения предусматривает использование формулы сокращенного умножения квадрат суммы:

9 x 2 + 12 x + 4 = 3 x + 2 2

Преобразуем сложное уравнение:

2 x — 1 2 = 3 x + 2 2

На первый взгляд, можно избавиться от квадратов и решить линейное уравнение. Однако:

В результате получим:

2 x — 1 2 = 3 x + 2 2 ⇔ 2 x — 1 = 3 x + 2 .

При решении уравнений, которые содержат модуль, необходимо помнить свойства модуля:

  1. Модуль числа является неотрицательным числом: x ≥ 0 , x = 0 ⇔ x = 0 .
  2. Противоположные числа равны друг другу по модулю: — x = x .
  3. Произведение пары или более чисел по модулю равно произведению модулей этих чисел: x · y = x · y .
  4. Частное пары чисел по модулю равно частному модулей этих чисел: x y = x y , y ≠ 0 .
  5. Сумма чисел по модулю в любом случае меньше или равна сумме модулей данных чисел: x + y ≤ x + y .
  6. Постоянный множитель, который больше нуля, допустимо вынести за знак модуля: c x = c · x при c > 0 .
  7. Квадрат какого-то числа по модулю равен квадрату данного числа: x 2 = x 2 .

Пример 3

Руководствуясь перечисленными свойствами модуля, рассмотрим решение уравнения:

Заметим, что x равен x при x больше либо равно нулю. Значение –x возможно, когда x является отрицательным числом. Таким образом:

x = 7 ⇔ x = 7 , п р и x ≥ 0 — x = 7 , п р и x 0 ⇔ x = 7 x = — 7

Рассмотрим несколько иное уравнение:

В этом случае логика такая же, как в предыдущем примере:

x = — 7 ⇔ x = — 7 , при x ≥ 0 — x = — 7 , при x 0 ⇔ x = — 7 x ≥ 0 ⇒ р е ш е н и я н е т x = 7 x 0 ⇒ р е ш е н и я н е т

Видео:Уравнения с модулем. Что такое модуль числа. Алгебра 7 класс.Скачать

Уравнения с модулем. Что такое модуль числа. Алгебра 7 класс.

Способы решения уравнений с модулями для 10 и 11 классов

Существует три основных вида уравнений с модулем, которые предусматривают определенные подходы к решению:

  1. Уравнения x = a . x = a ⇔ x = a , п р и x ≥ 0 — x = a , п р и x 0 ⇔ x = a x = — a .
  2. Уравнения вида x = y . x = y ⇔ y ≥ 0 x = y x = — y

Видео:Уравнение с модулемСкачать

Уравнение с модулем

Примеры решения задач с объяснением

Уравнения, которые содержат модуль и имеют вид |x| = |a|, решают с помощью определения модуля.

Рассмотрим в качестве примера:

Определим x . Когда x ≥ 0 , значение равно х . Если x – х . Таким образом:

x = 5 ⇔ x = 5 при x ≥ 0 — x = 5 при x 0 ⇔ x = 5 x = — 5 .

Получим, что решением уравнения являются -5; 5.

Рассмотрим следующее задание, в рамках которого необходимо решить уравнение:

Воспользуемся стандартным алгоритмом:

x = — 3 ⇔ x = — 3 при x ≥ 0 — x = — 3 при x 0 ⇔ x = — 3 x ≥ 0 ⇒ решений нет x = 3 x 0 ⇒ решений нет

Согласно первому свойству модуля:

x ≥ 0 , то есть модуль в любом случае не является отрицательным числом.

Можно обобщить рассмотренные действия и записать правило для решения уравнений, которые имеют вид x = a . Данное правило можно использовать в работе:

x = a ⇒ a ≥ 0 x = a x = — a .

Используя данное правило, решим уравнение:

По сравнению с предыдущим примером, здесь под знаком модуля записано иное выражение. Однако суть решения от этого не меняется. Зная правило, выполним замену:

x — 5 = 3 ⇔ 3 ≥ 0 x — 5 = 3 x — 5 = — 3 ⇒ x = 8 x = 2

Решим следующее уравнение:

Воспользуемся правилом и получим:

3 x — 5 = 3 ⇔ 3 ≥ 0 3 x — 5 = 3 3 x — 5 = — 3 ⇒ x = 8 3 x = 2 3

Далее рассмотрим решение уравнений, которые записаны в виде | x | = | y | .

При раскрытии модулей, согласно определению, возникнет необходимость во множестве проверок. Например, потребуется определить, какое число является положительным, а какое будет отрицательным. Полученную в результате систему в дальнейшем необходимо упростить.

Второй вариант решения подразумевает изначально краткую запись вычислений. Вспомним, что по свойству модуля:

Применим это свойство к нашему примеру и исключим знаки модулей из уравнения:

x = y ⇔ x 2 = y 2 ⇔ x 2 = y 2 ⇔ x 2 — y 2 = 0 ⇔

⇔ x — y x + y = 0 ⇔ x = y x = — y .

Рассмотрим еще несколько примеров.

Воспользуемся рассмотренным правилом применения свойства модуля, получим:

x + 1 = 2 x — 1 ⇔ x + 1 = 2 x — 1 x + 1 = — 2 x — 1 ⇔ x = 2 x = 0 .

Решение выполняем по аналогии с предыдущими заданиями:

2 x — 9 = 3 — x ⇔ 2 x — 9 = 3 — x 2 x — 9 = x — 3 ⇔ 3 x = 12 x = 6 ⇔ x = 4 x = 6 .

Разберем на примере, как решать уравнения вида | x | = y .

Заметим, что справа записана переменная, которая может быть положительным или отрицательным числом. Исходя из того, что модуль не может быть отрицательным числом, убедимся в том, что эта переменная также не является отрицательным числом:

x = y ⇔ y ≥ 0 x = y x = — y

Воспользуемся стандартным алгоритмом:

x + 1 = 1 — 2 x ⇔ 1 — 2 x ≥ 0 x + 1 = 1 — 2 x x + 1 = 2 x — 1 ⇔ x ≤ 1 2 x = 0 x = 2 ⇔ x = 0 .

Заметим, что без проверки на положительность части уравнения, которая записана с правой стороны, существуют риски появления посторонних корней в решении. К примеру, проверим x=2 путем подстановки в начальное уравнение x + 1 = 1 — 2 x :

2 + 1 = 1 — 2 · 2 ⇔ 3 = — 3 не является верным.

При решении уравнений с модулем также применяют метод интервалов. Данный способ следует применять в тех случаях, когда уравнение содержит более двух модулей.

Рассмотрим пример такого выражения:

x + 3 — 2 x — 1 = 1

Первый модуль имеет вид:

Согласно определению модуля, при раскрытии знака выражение под ним сохраняется без изменений, если:

После раскрытия знака модуля получим противоположный знак, когда:

x + 3 = x + 3 , если x + 3 ≥ 0 — x — 3 , если x + 3 0 .

По аналогии выполним преобразования второго модуля:

2 x — 1 = 2 x — 1 , если 2 x — 1 ≥ 0 1 — 2 x , если 2 x — 1 0 .

Сложность заключается в том, что требуется проанализировать много вариантов, то есть по два варианта для каждого из модулей. Всего получится четыре уравнения. А в том случае, когда модулей три, потребуется рассмотреть восемь уравнений. Возникает необходимость в сокращении числа вариантов.

Заметим, что в нашем примере не предусмотрено одновременное выполнение всех условий:

Данные условия противоречивы относительно друг друга. В связи с этим, нецелесообразно раскрывать второй модуль со знаком плюс, когда первый модуль раскрыт со знаком минус. В результате получилось избавиться от одного уравнения.

Обобщая эту информацию, можно записать алгоритм действий. В первую очередь следует вычислить корни выражений, заключенных под знаком модуля. В результате получаются такие х , при которых выражения принимают нулевые значения:

x + 3 = 0 ⇒ x = — 3 2 x — 1 = 0 ⇒ x = 1 2

С помощью стандартного способа интервалов можно отметить на координатной прямой корни выражений, которые находятся под модулями, и расставить знаки. Далее для каждого из полученных интервалов нужно составить и решить уравнение.

В этом случае оба модуля раскрываются со знаком минус:

— x + 3 + 2 x — 1 = 1 ⇔ — x — 3 + 2 x — 1 = 1 ⇔ x = 5 > — 3 является сторонним корнем.

В данном выражении первый модуль раскроется со знаком плюс, а второй — со знаком минус:

x + 3 + 2 x — 1 = 1 ⇔ x + 3 + 2 x — 1 = 1 ⇔ x = — 1 3 полученный корень соответствует своему интервалу.

Теперь для обоих модулей будет записан знак плюс:

x + 3 — 2 x — 1 = 1 ⇔ x + 3 — 2 x + 1 = 1 ⇔ x = 3 данный корень также подходит для решения.

Выполним проверку корней. В первом случае корень посторонний:

x = 5 : 5 + 3 — 2 · 5 — 1 = 8 — 9 = — 1 ≠ 1

Второй корень является решением:

x = — 1 3 : — 1 3 + 3 — 2 · — 1 3 — 1 = 8 3 — 5 3 = 1 .

Третий корень также является решением:

x = 3 : 3 + 3 — 2 · 3 — 1 = 6 — 5 = 1 .

Таким образом, запишем ответ: — 1 3 ; 3 .

Существует ряд уравнений, в которых модуль расположен под знаком модуля. К примеру:

В этом случае следует раскрывать модули поочередно. Проанализируем два варианта решения.

Первое решение подразумевает вычисления для уравнения, которое имеет вид:

f x = a ⇔ f x = a f x = — a

Здесь f x является подмодульным выражением. Применительно к нашей задаче, это:

x — 5 = 3 ⇔ x — 5 = 3 x — 5 = — 3 ⇔ x = 8 x = 2

Получена пара простейших уравнений аналогичного вида, то есть:

x = 8 x = — 8 x = 2 x = — 2

Данные четыре числа являются решениями. Проверить это можно путем подстановки ответов в исходное уравнение.

Второй вариант решения является универсальным и позволяет справиться с нестандартными задачами.

Раскроем сначала внутренние модули:

Начальное уравнение будет записано, как пара уравнений:

x ≥ 0 x — 5 = 3 x 0 — x — 5 = 3

Видео:Контрольная работа. Уравнения с МОДУЛЕМСкачать

Контрольная работа. Уравнения с МОДУЛЕМ

Задачи для самостоятельного решения

Найти корни уравнения:

Здесь нужно возвести в квадрат все части выражения, сохраняя знак плюса справа. Тогда получится система:

Найдем корни квадратного уравнения:

3 x 2 — 18 x + 24 = 0

В процессе потребуется сократить уравнение на 3:

D = ( — 6 ) 2 — 4 · 1 · 8 = 36 — 32 = 4

Заметим, что D>0. В таком случае у уравнения есть пара решений, которые можно определить так:

x 1 , 2 = — b ± D 2 a ⇒ x 1 , 2 = 6 ± 4 2 · 1 ⇒ x 1 , 2 = 6 ± 2 2 ⇒ x 1 = 4 , x 2 = 2

Заметим, что оба корня больше единицы. Это соответствует условию. В результате начальное уравнение обладает двумя решениями:

x 1 = 4 и x 2 = 2

Ответ: x 1 = 4 , x 2 = 2

Найти корни уравнения:

Здесь требуется возвести в квадрат обе части уравнения:

( 3 x — 1 ) 2 = ( x + 5 ) 2

9 x 2 — 6 x + 1 = x 2 + 10 x + 25

8 x 2 — 16 x — 24 = 0

Заметим, что получившееся равенство можно сократить на число 8:

Используя теорему Виета, определим корни уравнения. Предположим, что x 1 и x 2 являются в данном случае решениями, тогда:

x 1 + x 2 = 2 , а x 1 · x 2 = — 3 ⇒ x 1 = 3 и x 2 = — 1 . .

Ответ: x 1 = 3 , x 2 = — 1

Нужно решить уравнение:

| x + 1 | + | x — 5 | = 20

Воспользуемся методом интервалов. Определим х , при которых модули принимают нулевые значения:

x + 1 = 0 ⇒ x = — 1 ; x — 5 = 0 ⇒ x = 5

С помощью данных точек координатная прямая будет поделена на три интервала:

Далее необходимо решить уравнение в каждом случае:

Корень соответствует определенному ранее промежутку.

Этот промежуток не имеет корней.

Этот корень соответствует определенному ранее интервалу.

Ответ: x 1 = — 8 , x 2 = 12

3 x + 1 = 1 — 2 x ⇔ 3 x + 3 = 1 — 2 x 3 x + 3 = 2 x — 1 ⇔ 5 x = — 2 x = — 4 ⇔ x = — 2 5 x = — 4 .

Ответ: x = — 2 5 , x = — 4

Найти корни уравнения:

2 x — 9 = 3 — x ⇔ 3 — x ≥ 0 2 x — 9 = 3 — x 2 x — 9 = x — 3

x ≤ 3 3 x = 12 x = 6 ⇔ x ≤ 3 x = 4 x = 6 ⇔ x ∈ ∅ .

Найти корни уравнения:

— 2 x + 4 = 3 — 4 x ⇔ 2 x + 8 = 4 x — 3 ⇔ ;

4 x — 3 ≥ 0 2 x + 8 = 4 x — 3 2 x + 8 = 3 — 4 x ⇔ x ≥ 3 4 x = 11 2 x = — 5 6 ⇔ x = 11 2 .

Найти корни уравнения:

2 x 2 — 15 = x ⇔ x ≥ 0 2 x 2 — x — 15 = 0 1 2 x 2 + x — 15 = 0 2

Найдем корни квадратных уравнений:

Заметим, что они обладают идентичным дискриминантом:

D = 1 + 4 · 2 · 15 = 121 = 11 2 .

1 : x 1 , 2 = 1 ± 11 4 ⇔ x = 3 x = — 5 2

2 : x 1 , 2 = — 1 ± 11 4 ⇔ x = — 3 x = 5 2

Таким образом, начальное уравнение можно записать в виде системы:

2 x 2 — 15 = x ⇔ x ≥ 0 x = 3 x = — 5 2 x = — 3 x = 5 2 ⇔ x = 3 x = 5 2

Найти корни уравнения:

x + 2 — 3 x — 1 + 4 — x = 3

x + 2 — 3 x — 1 + 4 — x = 3 x + 2 = 0 ⇒ x = — 2 3 x — 1 = 0 ⇒ x = 1 3 4 — x = 0 ⇒ x = 4

— x + 2 + 3 x — 1 + 4 — x = 3

x = 2 > — 2 ⇒ — этот корень является посторонним.

x + 2 + 3 x — 1 + 4 — x = 3 ⇔

3 x = — 2 ⇔ x = — 2 3 ∈ — 2 ; 1 3 этот корень удовлетворяет условиям.

x + 2 — 3 x — 1 + 4 — x = 3 ⇔ — 3 x = — 4 ⇔ x = 4 3 ∈ 1 3 ; 4 этот корень удовлетворяет условиям.

x + 2 — 3 x — 1 — 4 — x = 3 ⇔ x = 4 ⇔ x = — 4 4 — корень посторонний

Ответ: — 2 3 ; 4 3 .

Найти корни уравнения:

3 x — 5 + 3 + 2 x = 2 x + 1

3 x — 5 + 3 + 2 x = 2 x + 1 ⇔ 3 x — 5 + 3 + 2 x — 2 x + 1 = 0 .

3 x — 5 = 0 ⇒ x = 5 3 3 + 2 x = 0 ⇒ x = — 3 2 x + 1 = 0 ⇒ x = — 1

— 3 x — 5 — 3 + 2 x + 2 x + 1 = 0 ⇔

— 3 x = — 4 ⇔ x = 4 3 > — 3 2 ⇒ — корень является посторонним

— 3 x — 5 + 3 + 2 x + 2 x + 1 = 0 ⇔

x = — 10 — 1 ⇒ — корень является посторонним

— 3 x — 5 + 3 + 2 x — 2 x + 1 = 0 ⇔

— 3 x = — 6 ⇔ x = 2 > 5 3 ⇒ — корень является посторонним

3 x — 5 + 3 + 2 x — 2 x + 1 = 0 ⇔

3 x = 4 ⇔ x = 4 3 5 3 ⇒ — корень является посторонним

В результате на рассмотренных интервалах графика координатной прямой отсутствуют корни. В таком случае уравнение не имеет решений.

🎥 Видео

Как раскрыть модуль. Неравенство и график с модулем ЕГЭСкачать

Как раскрыть модуль. Неравенство и график с модулем ЕГЭ

Модуль числа. Практическая часть. 6 класс.Скачать

Модуль числа. Практическая часть. 6 класс.

Уравнения с модулем. Часть 2 | Математика | TutorOnlineСкачать

Уравнения с модулем. Часть 2  | Математика | TutorOnline

Неравенства с модулем | Математика | TutorOnlineСкачать

Неравенства с модулем | Математика | TutorOnline

6 класс, 24 урок, Модульные уравнения и неравенства с одной переменнойСкачать

6 класс, 24 урок, Модульные уравнения и неравенства с одной переменной

Раскрытие скобок. 6 класс.Скачать

Раскрытие скобок. 6 класс.

УРАВНЕНИЯ С МОДУЛЕМ | метод интерваловСкачать

УРАВНЕНИЯ С МОДУЛЕМ | метод интервалов

8 класс. Модуль числа. Уравнения и неравенства с модулем. Алгебра.Скачать

8 класс. Модуль числа. Уравнения и неравенства с модулем. Алгебра.

НЕРАВЕНСТВА С МОДУЛЕМ 😉 ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэСкачать

НЕРАВЕНСТВА С МОДУЛЕМ 😉 ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэ

Уравнения с модулем за 1 минуту. #математикапрофиль2023 #егэ2023 #математика #школа #fypСкачать

Уравнения с модулем за 1 минуту. #математикапрофиль2023 #егэ2023 #математика #школа #fyp

Как раскрыть модуль и решить уравнениеСкачать

Как раскрыть модуль и решить уравнение
Поделиться или сохранить к себе: