Решение уравнений и неравенств с модулем часто вызывает затруднения. Однако, если хорошо понимать, что такое модуль числа, и как правильно раскрывать выражения, содержащие знак модуля, то наличие в уравнении выражения, стоящего под знаком модуля, перестает быть препятствием для его решения.
Немного теории. Каждое число имеет две характеристики: абсолютное значение числа, и его знак.
Например, число +5, или просто 5 имеет знак «+» и абсолютное значение 5.
Число -5 имеет знак «-» и абсолютное значение 5.
Абсолютные значения чисел 5 и -5 равны 5.
Абсолютное значение числа х называется модулем числа и обозначается |x|.
Как мы видим, модуль числа равен самому числу, если это число больше или равно нуля, и этому числу с противоположным знаком, если это число отрицательно.
Это же касается любых выражений, которые стоят под знаком модуля.
Правило раскрытия модуля выглядит так:
|f(x)|= f(x), если f(x) ≥ 0, и
|f(x)|= — f(x), если f(x)
Например |x-3|=x-3, если x-3≥0 и |x-3|=-(x-3)=3-x, если x-3 2 +4x-3
1. Раскроем модуль.
|x-3|=x-3, если x-3≥0, т.е. если х≥3
|x-3|=-(x-3)=3-x, если x-3 2 +4x-3
Внимание! Это уравнение существует только на промежутке х≥3!
Раскроем скобки, приведем подобные члены:
и решим это уравнение.
Это уравнение имеет корни:
Внимание! поскольку уравнение x-3=-x 2 +4x-3 существует только на промежутке х≥3, нас интересуют только те корни, которые принадлежат этому промежутку. Этому условию удовлетворяет только х2=3.
Внимание! Это уравнение существует только на промежутке х 2 -5х+6=0
Внимание! поскольку уравнение 3-х=-x 2 +4x-3 существует только на промежутке x
- Для вас другие записи этой рубрики:
- Отзывов ( 179 )
- Обобщённое понятие модуля числа
- Что такое модуль?
- Раскрытие модуля
- Преобразование выражений с модулями
- Уравнения с модулем
- Что такое уравнение с модулем
- Способы решения уравнений с модулями для 10 и 11 классов
- Примеры решения задач с объяснением
- Задачи для самостоятельного решения
- 🎥 Видео
Для вас другие записи этой рубрики:
Отзывов ( 179 )
Здравствуйте,Инна.Как умножить модуль на квадратное уравнение?
Спасибо.
Нужно раскрыть модуль: рассмотреть случаи, когда подмодульное выражение больше нуля и когда меньше нуля.
Если модуль в модуле. ||x| — 1| * |x| / x^2 — 1 ==> x -(x + 1) * (-x) / (x^2 — 1) ==> x(x + 1) / (x — 1)(x + 1) = ==> x/ x — 1.
-1 -(x + 1) * (-x) / (x^2 — 1) ==> x(x + 1) / (x — 1)(x + 1) = ==> x/ x — 1.
0 -x(x — 1) / (x^2 — 1) ==> x(x + 1) / (x — 1)(x + 1) = ==> x/ x — 1.
Не до конца понимаю, как правильно раскрыть модуль в модуле, и, соответственно, какой знак внутри модуля в который вложен другой модуль…
В этом примере проще ввести замену: , тогда получится выражение с одним модулем. В общем случае сначала раскрываем внутренний модуль, потом внешний. При раскрытии модуля необходимо указывать промежуток, на котором мы находимся. Например: . Cначала рассматриваем случай , Получаем систему: . И теперь система разбивается на совокупность двух систем: и . Так же рассматриваем второй случай, когда .
Видео:Как решать уравнение с модулем Уравнение с модулями как решать Как раскрыть модуль в уравненииСкачать
Обобщённое понятие модуля числа
В данном уроке мы рассмотрим понятие модуля числа более подробно.
Видео:МодульСкачать
Что такое модуль?
Модуль — это расстояние от начала координат до какого-нибудь числа на координатной прямой. Поскольку расстояние не бывает отрицательным, то и модуль всегда неотрицателен. Так, модуль числа 3 равен 3, как и модуль числа −3 равен 3
Предстáвим, что на координатной прямой расстояние между целыми числами равно одному шагу. Теперь если отметить числа −3 и 3, то расстояние до них от начала координат будет одинаково равно трём шагам:
Модуль это не только расстояние от начала координат до какого-нибудь числа. Модуль это также расстояние между любыми двумя числами на координатной прямой. Такое расстояние выражается в виде разности между этими числами, заключенной под знак модуля:
Где x1 и x2 — числа на координатной прямой.
Например, отметим на координатной прямой числа 2 и 5.
Расстояние между числами 2 и 5 можно записать с помощью модуля. Для этого запишем разность из чисел 2 и 5 и заключим эту разность под знак модуля:
Видим, что расстояние от числа 2 до числа 5 равно трём шагам:
Если расстояние от 2 до 5 равно 3, то и расстояние от 5 до 2 тоже равно 3
То есть, если в выражении |5 − 2| поменять числа местами, то результат не изменится:
Тогда можно записать, что |2 − 5| = |5 − 2|. Вообще, справедливо следующее равенство:
Это равенство можно прочитать так: Расстояние от x1 до x2 равно расстоянию от x2 до x1.
Видео:Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать
Раскрытие модуля
Когда мы говорим, что |3|= 3 или |−3|= 3 мы выполняем действие называемое раскрытием модуля.
Правило раскрытия модуля выглядит так:
Такую запись мы ранее не использовали. Дело в том, что равенство можно задавать несколькими формулами. Фигурная скобка указывает, что возможны два случая в зависимости от условия. В данном случае условиями являются записи «если x ≥ 0» и «если x .
В зависимости от того что будет подставлено вместо x, выражение |x| будет равно x, если подставленное число больше или равно нулю. А если вместо x подставлено число меньшее нуля, то выражение |x| будет равно −x.
Второй случай на первый взгляд может показаться противоречивым, поскольку запись |x| = −x выглядит будто модуль стал равен отрицательному числу. Следует иметь ввиду, что когда x
Пример 2. Пусть x = 5. То есть мы рассматриваем модуль числа 5
В данном случае выполняется первое условие x ≥ 0, ведь 5 ≥ 0
Поэтому используем первую формулу. А именно | x | = x. Получаем | 5 | = 5.
Ноль это своего рода точка перехода, в которой модуль меняет свой порядок раскрытия и далее сохраняет свой знак. Визуально это можно представить так:
На рисунке красные знаки минуса и плюса указывают как будет раскрываться модуль |x| на промежутках x и x ≥ 0 .
К примеру, если взять числа 1, 9 и 13 , а они принадлежат промежутку x ≥ 0, то согласно рисунку модуль |x| раскроется со знаком плюс:
А если возьмём числа, меньшие нуля, например −3, −9, −15, то согласно рисунку модуль раскроется со знаком минус:
Пример 3. Пусть x = √4 − 6. То есть мы рассматриваем модуль выражения √4 − 6,
Корень из числа 4 равен 2. Тогда модуль примет вид
x который был равен √4−6 теперь стал равен −4. В данном случае выполняется второе условие x |√4 − 6| = |2 − 6| = |−4| = −(−4) = 4
На практике обычно рассуждают так:
«Модуль раскрывается со знаком плюс, если подмодульное выражение больше или равно нулю; модуль раскрывается со знаком минус, если подмодульное выражение меньше нуля».
Примеры:
|2| = 2 — модуль раскрылся со знаком плюс, поскольку 2 ≥ 0
|−4| = −(−4) = 4 — модуль раскрылся со знаком минус, поскольку −4 x ≥ 0 расписано подробнее, а именно сказано что если x > 0 , то выражение |x| будет равно x , а если x =0, то выражение |x| будет равно нулю.
Пример 4. Пусть x = 0. То есть мы рассматриваем модуль нуля:
В данном случае выполняется условие x=0, ведь 0 = 0
Пример 5. Раскрыть модуль в выражении |x|+ 3
Если x ≥ 0, то модуль раскроется со знаком плюс, и тогда исходное выражение примет вид x + 3.
Допустим, требуется найти значение выражения |x|+ 3 при x = 5. Поскольку 5 ≥ 0, то модуль, содержащийся в выражении |x|+ 3 раскрóется со знаком плюс и тогда решение примет вид:
Найдём значение выражения |x|+ 3 при x = −6. Поскольку −6 |x| + 3 = 3 − x = 3 − (−6) = 9
Пример 6. Раскрыть модуль в выражении x +|x + 3|
Если x + 3 ≥ 0, то модуль |x + 3| раскроется со знаком плюс и тогда исходное выражение примет вид x + x + 3 , откуда 2x + 3.
Найдём значение выражения x +|x + 3| при x = 4. Поскольку 4 ≥ −3, то согласно нашему решению модуль выражения x +|x + 3| раскрывается со знаком плюс, и тогда исходное выражение принимает вид 2x+3, откуда подставив 4 получим 11
Найдём значение выражения x +|x + 3| при x=−3.
Поскольку −3 ≥ −3 , то согласно нашему решению модуль выражения x +|x + 3| раскрывается со знаком плюс, и тогда исходное выражение принимает вид 2x+3, откуда подставив −3 получим −3
Пример 3. Раскрыть модуль в выражении
Как и прежде используем правило раскрытия модуля:
Но это решение не будет правильным, поскольку в первом случае написано условие x ≥ 0 , которое допускает что при x = 0 знаменатель выражения обращается в ноль, а на ноль делить нельзя.
В данном примере удобнее использовать подробную запись правила раскрытия модуля, где отдельно рассматривается случай при котором x = 0
Перепишем решение так:
В первом случае написано условие x > 0 . Тогда выражение станет равно 1. Например, если x = 3 , то числитель и знаменатель станут равны 3, откуда полýчится 1
И так будет при любом x , бóльшем нуля.
Во втором случае написано условие x = 0 . Тогда решений не будет, потому что на ноль делить нельзя.
В третьем случае написано условие x . Тогда выражение станет равно −1 . Например, если x = −4 , то числитель станет равен 4 , а знаменатель −4 , откуда полýчится единица −1
Пример 4. Раскрыть модуль в выражении
Если x ≥ 0 , то модуль, содержащийся в числителе, раскроется со знаком плюс, и тогда исходное выражение примет вид , которое при любом x , бóльшем нуля, будет равно единице:
Если x , то модуль раскроется со знаком минус, и тогда исходное выражение примет вид
Но надо учитывать, что при x = − 1 знаменатель выражения обращается в ноль. Поэтому второе условие x следует дополнить записью о том, какие значения может принимать x
Видео:Уравнения с модулемСкачать
Преобразование выражений с модулями
Модуль, входящий в выражение, можно рассматривать как полноценный множитель. Его можно сокращать и выносить за скобки. Если модуль входит в многочлен, то его можно сложить с подобным ему модулем.
Как и у обычного буквенного множителя, у модуля есть свой коэффициент. Например, коэффициентом модуля |x| является 1, а коэффициентом модуля −|x| является −1. Коэффициентом модуля 3|x+1| является 3, а коэффициентом модуля −3|x+1| является −3.
Пример 1. Упростить выражение |x| + 2|x| − 2x + 5y и раскрыть модуль в получившемся выражении.
Решение
Выражения|x| и 2|x| являются подобными членами. Слóжим их. Остальное оставим без изменений:
Раскроем модуль в получившемся выражении. Если x ≥ 0, то получим 3x − 2x + 5y , откуда x + 5y .
Если x , то получим − 3x − 2x + 5y , откуда − 5x + 5y . Вынесем за скобки множитель − 5 , получим − 5(x − y)
В итоге имеем следующее решение:
Пример 2. Раскрыть модуль в выражении: −|x|
Решение
В данном случае перед знаком модуля стоит минус. Его можно понимать как минус единицу перед знаком модуля. Если x ≥ 0 , то модуль раскроется со знаком плюс, и тогда исходное выражение примет вид −x
Если x , то модуль раскроется со знаком минус, и тогда исходное выражение примет вид −(−x) откуда получим просто x
Видео:ЕГЭ 2017. Уравнение. Модуль. Раскрытие модуля. Задание 13.Скачать
Уравнения с модулем
Видео:Модуль в модуле в уравнении. Алгебра 7 класс.Скачать
Что такое уравнение с модулем
Модуль числа — абсолютная величина, демонстрирующая удаленность точки от начала координат.
В том случае, когда число является отрицательным, его модуль соответствует числу, ему противоположному. Для неотрицательного числа модуль равен этому числу.
| x | = x , x ≥ 0 — x , x 0
Уравнения с модулем являются такими уравнениями, в составе которых имеется переменная, заключенная в знак модуля.
Самое простое уравнение с модулем |f(x)|=a является равносильным совокупности
Здесь a>0. При а отрицательном у такого уравнения отсутствует решение.
Уравнения с модулем могут быть предложены в качестве самостоятельного задания. Кроме того, подобные выражения нередко образуются в процессе решения других видов уравнений, к примеру, квадратных или иррациональных.
Разберем подробное решение квадратного уравнения:
Заметим, что справа имеется квадрат числа 4:
На первый взгляд, нужно избавиться от квадратов, чтобы получить линейное уравнение. С другой стороны, существует правило:
Вычисления следует продолжить с учетом записанной формулы. Тогда получим уравнение с модулем:
x 2 = 4 2 ⇔ x 2 = 4 2 ⇔ x = 4
Рассмотрим для тренировки пример, когда уравнения с модулем появляются при решении иррациональных уравнений. Например, дано уравнение:
2 x — 1 2 = 9 x 2 + 12 x + 4
Согласно стандартному алгоритму действий, в этом случае потребуется выполнить действия:
- перенос слагаемых;
- приведение подобных;
- решение квадратного уравнения, например, с помощью дискриминанта.
Второй вариант решения предусматривает использование формулы сокращенного умножения квадрат суммы:
9 x 2 + 12 x + 4 = 3 x + 2 2
Преобразуем сложное уравнение:
2 x — 1 2 = 3 x + 2 2
На первый взгляд, можно избавиться от квадратов и решить линейное уравнение. Однако:
В результате получим:
2 x — 1 2 = 3 x + 2 2 ⇔ 2 x — 1 = 3 x + 2 .
При решении уравнений, которые содержат модуль, необходимо помнить свойства модуля:
- Модуль числа является неотрицательным числом: x ≥ 0 , x = 0 ⇔ x = 0 .
- Противоположные числа равны друг другу по модулю: — x = x .
- Произведение пары или более чисел по модулю равно произведению модулей этих чисел: x · y = x · y .
- Частное пары чисел по модулю равно частному модулей этих чисел: x y = x y , y ≠ 0 .
- Сумма чисел по модулю в любом случае меньше или равна сумме модулей данных чисел: x + y ≤ x + y .
- Постоянный множитель, который больше нуля, допустимо вынести за знак модуля: c x = c · x при c > 0 .
- Квадрат какого-то числа по модулю равен квадрату данного числа: x 2 = x 2 .
Пример 3
Руководствуясь перечисленными свойствами модуля, рассмотрим решение уравнения:
Заметим, что x равен x при x больше либо равно нулю. Значение –x возможно, когда x является отрицательным числом. Таким образом:
x = 7 ⇔ x = 7 , п р и x ≥ 0 — x = 7 , п р и x 0 ⇔ x = 7 x = — 7
Рассмотрим несколько иное уравнение:
В этом случае логика такая же, как в предыдущем примере:
x = — 7 ⇔ x = — 7 , при x ≥ 0 — x = — 7 , при x 0 ⇔ x = — 7 x ≥ 0 ⇒ р е ш е н и я н е т x = 7 x 0 ⇒ р е ш е н и я н е т
Видео:Уравнения с модулем. Что такое модуль числа. Алгебра 7 класс.Скачать
Способы решения уравнений с модулями для 10 и 11 классов
Существует три основных вида уравнений с модулем, которые предусматривают определенные подходы к решению:
- Уравнения x = a . x = a ⇔ x = a , п р и x ≥ 0 — x = a , п р и x 0 ⇔ x = a x = — a .
- Уравнения вида x = y . x = y ⇔ y ≥ 0 x = y x = — y
Видео:Уравнение с модулемСкачать
Примеры решения задач с объяснением
Уравнения, которые содержат модуль и имеют вид |x| = |a|, решают с помощью определения модуля.
Рассмотрим в качестве примера:
Определим x . Когда x ≥ 0 , значение равно х . Если x – х . Таким образом:
x = 5 ⇔ x = 5 при x ≥ 0 — x = 5 при x 0 ⇔ x = 5 x = — 5 .
Получим, что решением уравнения являются -5; 5.
Рассмотрим следующее задание, в рамках которого необходимо решить уравнение:
Воспользуемся стандартным алгоритмом:
x = — 3 ⇔ x = — 3 при x ≥ 0 — x = — 3 при x 0 ⇔ x = — 3 x ≥ 0 ⇒ решений нет x = 3 x 0 ⇒ решений нет
Согласно первому свойству модуля:
x ≥ 0 , то есть модуль в любом случае не является отрицательным числом.
Можно обобщить рассмотренные действия и записать правило для решения уравнений, которые имеют вид x = a . Данное правило можно использовать в работе:
x = a ⇒ a ≥ 0 x = a x = — a .
Используя данное правило, решим уравнение:
По сравнению с предыдущим примером, здесь под знаком модуля записано иное выражение. Однако суть решения от этого не меняется. Зная правило, выполним замену:
x — 5 = 3 ⇔ 3 ≥ 0 x — 5 = 3 x — 5 = — 3 ⇒ x = 8 x = 2
Решим следующее уравнение:
Воспользуемся правилом и получим:
3 x — 5 = 3 ⇔ 3 ≥ 0 3 x — 5 = 3 3 x — 5 = — 3 ⇒ x = 8 3 x = 2 3
Далее рассмотрим решение уравнений, которые записаны в виде | x | = | y | .
При раскрытии модулей, согласно определению, возникнет необходимость во множестве проверок. Например, потребуется определить, какое число является положительным, а какое будет отрицательным. Полученную в результате систему в дальнейшем необходимо упростить.
Второй вариант решения подразумевает изначально краткую запись вычислений. Вспомним, что по свойству модуля:
Применим это свойство к нашему примеру и исключим знаки модулей из уравнения:
x = y ⇔ x 2 = y 2 ⇔ x 2 = y 2 ⇔ x 2 — y 2 = 0 ⇔
⇔ x — y x + y = 0 ⇔ x = y x = — y .
Рассмотрим еще несколько примеров.
Воспользуемся рассмотренным правилом применения свойства модуля, получим:
x + 1 = 2 x — 1 ⇔ x + 1 = 2 x — 1 x + 1 = — 2 x — 1 ⇔ x = 2 x = 0 .
Решение выполняем по аналогии с предыдущими заданиями:
2 x — 9 = 3 — x ⇔ 2 x — 9 = 3 — x 2 x — 9 = x — 3 ⇔ 3 x = 12 x = 6 ⇔ x = 4 x = 6 .
Разберем на примере, как решать уравнения вида | x | = y .
Заметим, что справа записана переменная, которая может быть положительным или отрицательным числом. Исходя из того, что модуль не может быть отрицательным числом, убедимся в том, что эта переменная также не является отрицательным числом:
x = y ⇔ y ≥ 0 x = y x = — y
Воспользуемся стандартным алгоритмом:
x + 1 = 1 — 2 x ⇔ 1 — 2 x ≥ 0 x + 1 = 1 — 2 x x + 1 = 2 x — 1 ⇔ x ≤ 1 2 x = 0 x = 2 ⇔ x = 0 .
Заметим, что без проверки на положительность части уравнения, которая записана с правой стороны, существуют риски появления посторонних корней в решении. К примеру, проверим x=2 путем подстановки в начальное уравнение x + 1 = 1 — 2 x :
2 + 1 = 1 — 2 · 2 ⇔ 3 = — 3 не является верным.
При решении уравнений с модулем также применяют метод интервалов. Данный способ следует применять в тех случаях, когда уравнение содержит более двух модулей.
Рассмотрим пример такого выражения:
x + 3 — 2 x — 1 = 1
Первый модуль имеет вид:
Согласно определению модуля, при раскрытии знака выражение под ним сохраняется без изменений, если:
После раскрытия знака модуля получим противоположный знак, когда:
x + 3 = x + 3 , если x + 3 ≥ 0 — x — 3 , если x + 3 0 .
По аналогии выполним преобразования второго модуля:
2 x — 1 = 2 x — 1 , если 2 x — 1 ≥ 0 1 — 2 x , если 2 x — 1 0 .
Сложность заключается в том, что требуется проанализировать много вариантов, то есть по два варианта для каждого из модулей. Всего получится четыре уравнения. А в том случае, когда модулей три, потребуется рассмотреть восемь уравнений. Возникает необходимость в сокращении числа вариантов.
Заметим, что в нашем примере не предусмотрено одновременное выполнение всех условий:
Данные условия противоречивы относительно друг друга. В связи с этим, нецелесообразно раскрывать второй модуль со знаком плюс, когда первый модуль раскрыт со знаком минус. В результате получилось избавиться от одного уравнения.
Обобщая эту информацию, можно записать алгоритм действий. В первую очередь следует вычислить корни выражений, заключенных под знаком модуля. В результате получаются такие х , при которых выражения принимают нулевые значения:
x + 3 = 0 ⇒ x = — 3 2 x — 1 = 0 ⇒ x = 1 2
С помощью стандартного способа интервалов можно отметить на координатной прямой корни выражений, которые находятся под модулями, и расставить знаки. Далее для каждого из полученных интервалов нужно составить и решить уравнение.
В этом случае оба модуля раскрываются со знаком минус:
— x + 3 + 2 x — 1 = 1 ⇔ — x — 3 + 2 x — 1 = 1 ⇔ x = 5 > — 3 является сторонним корнем.
В данном выражении первый модуль раскроется со знаком плюс, а второй — со знаком минус:
x + 3 + 2 x — 1 = 1 ⇔ x + 3 + 2 x — 1 = 1 ⇔ x = — 1 3 полученный корень соответствует своему интервалу.
Теперь для обоих модулей будет записан знак плюс:
x + 3 — 2 x — 1 = 1 ⇔ x + 3 — 2 x + 1 = 1 ⇔ x = 3 данный корень также подходит для решения.
Выполним проверку корней. В первом случае корень посторонний:
x = 5 : 5 + 3 — 2 · 5 — 1 = 8 — 9 = — 1 ≠ 1
Второй корень является решением:
x = — 1 3 : — 1 3 + 3 — 2 · — 1 3 — 1 = 8 3 — 5 3 = 1 .
Третий корень также является решением:
x = 3 : 3 + 3 — 2 · 3 — 1 = 6 — 5 = 1 .
Таким образом, запишем ответ: — 1 3 ; 3 .
Существует ряд уравнений, в которых модуль расположен под знаком модуля. К примеру:
В этом случае следует раскрывать модули поочередно. Проанализируем два варианта решения.
Первое решение подразумевает вычисления для уравнения, которое имеет вид:
f x = a ⇔ f x = a f x = — a
Здесь f x является подмодульным выражением. Применительно к нашей задаче, это:
x — 5 = 3 ⇔ x — 5 = 3 x — 5 = — 3 ⇔ x = 8 x = 2
Получена пара простейших уравнений аналогичного вида, то есть:
x = 8 x = — 8 x = 2 x = — 2
Данные четыре числа являются решениями. Проверить это можно путем подстановки ответов в исходное уравнение.
Второй вариант решения является универсальным и позволяет справиться с нестандартными задачами.
Раскроем сначала внутренние модули:
Начальное уравнение будет записано, как пара уравнений:
x ≥ 0 x — 5 = 3 x 0 — x — 5 = 3
Видео:Контрольная работа. Уравнения с МОДУЛЕМСкачать
Задачи для самостоятельного решения
Найти корни уравнения:
Здесь нужно возвести в квадрат все части выражения, сохраняя знак плюса справа. Тогда получится система:
Найдем корни квадратного уравнения:
3 x 2 — 18 x + 24 = 0
В процессе потребуется сократить уравнение на 3:
D = ( — 6 ) 2 — 4 · 1 · 8 = 36 — 32 = 4
Заметим, что D>0. В таком случае у уравнения есть пара решений, которые можно определить так:
x 1 , 2 = — b ± D 2 a ⇒ x 1 , 2 = 6 ± 4 2 · 1 ⇒ x 1 , 2 = 6 ± 2 2 ⇒ x 1 = 4 , x 2 = 2
Заметим, что оба корня больше единицы. Это соответствует условию. В результате начальное уравнение обладает двумя решениями:
x 1 = 4 и x 2 = 2
Ответ: x 1 = 4 , x 2 = 2
Найти корни уравнения:
Здесь требуется возвести в квадрат обе части уравнения:
( 3 x — 1 ) 2 = ( x + 5 ) 2
9 x 2 — 6 x + 1 = x 2 + 10 x + 25
8 x 2 — 16 x — 24 = 0
Заметим, что получившееся равенство можно сократить на число 8:
Используя теорему Виета, определим корни уравнения. Предположим, что x 1 и x 2 являются в данном случае решениями, тогда:
x 1 + x 2 = 2 , а x 1 · x 2 = — 3 ⇒ x 1 = 3 и x 2 = — 1 . .
Ответ: x 1 = 3 , x 2 = — 1
Нужно решить уравнение:
| x + 1 | + | x — 5 | = 20
Воспользуемся методом интервалов. Определим х , при которых модули принимают нулевые значения:
x + 1 = 0 ⇒ x = — 1 ; x — 5 = 0 ⇒ x = 5
С помощью данных точек координатная прямая будет поделена на три интервала:
Далее необходимо решить уравнение в каждом случае:
Корень соответствует определенному ранее промежутку.
Этот промежуток не имеет корней.
Этот корень соответствует определенному ранее интервалу.
Ответ: x 1 = — 8 , x 2 = 12
3 x + 1 = 1 — 2 x ⇔ 3 x + 3 = 1 — 2 x 3 x + 3 = 2 x — 1 ⇔ 5 x = — 2 x = — 4 ⇔ x = — 2 5 x = — 4 .
Ответ: x = — 2 5 , x = — 4
Найти корни уравнения:
2 x — 9 = 3 — x ⇔ 3 — x ≥ 0 2 x — 9 = 3 — x 2 x — 9 = x — 3
x ≤ 3 3 x = 12 x = 6 ⇔ x ≤ 3 x = 4 x = 6 ⇔ x ∈ ∅ .
Найти корни уравнения:
— 2 x + 4 = 3 — 4 x ⇔ 2 x + 8 = 4 x — 3 ⇔ ;
4 x — 3 ≥ 0 2 x + 8 = 4 x — 3 2 x + 8 = 3 — 4 x ⇔ x ≥ 3 4 x = 11 2 x = — 5 6 ⇔ x = 11 2 .
Найти корни уравнения:
2 x 2 — 15 = x ⇔ x ≥ 0 2 x 2 — x — 15 = 0 1 2 x 2 + x — 15 = 0 2
Найдем корни квадратных уравнений:
Заметим, что они обладают идентичным дискриминантом:
D = 1 + 4 · 2 · 15 = 121 = 11 2 .
1 : x 1 , 2 = 1 ± 11 4 ⇔ x = 3 x = — 5 2
2 : x 1 , 2 = — 1 ± 11 4 ⇔ x = — 3 x = 5 2
Таким образом, начальное уравнение можно записать в виде системы:
2 x 2 — 15 = x ⇔ x ≥ 0 x = 3 x = — 5 2 x = — 3 x = 5 2 ⇔ x = 3 x = 5 2
Найти корни уравнения:
x + 2 — 3 x — 1 + 4 — x = 3
x + 2 — 3 x — 1 + 4 — x = 3 x + 2 = 0 ⇒ x = — 2 3 x — 1 = 0 ⇒ x = 1 3 4 — x = 0 ⇒ x = 4
— x + 2 + 3 x — 1 + 4 — x = 3
x = 2 > — 2 ⇒ — этот корень является посторонним.
x + 2 + 3 x — 1 + 4 — x = 3 ⇔
3 x = — 2 ⇔ x = — 2 3 ∈ — 2 ; 1 3 этот корень удовлетворяет условиям.
x + 2 — 3 x — 1 + 4 — x = 3 ⇔ — 3 x = — 4 ⇔ x = 4 3 ∈ 1 3 ; 4 этот корень удовлетворяет условиям.
x + 2 — 3 x — 1 — 4 — x = 3 ⇔ x = 4 ⇔ x = — 4 4 — корень посторонний
Ответ: — 2 3 ; 4 3 .
Найти корни уравнения:
3 x — 5 + 3 + 2 x = 2 x + 1
3 x — 5 + 3 + 2 x = 2 x + 1 ⇔ 3 x — 5 + 3 + 2 x — 2 x + 1 = 0 .
3 x — 5 = 0 ⇒ x = 5 3 3 + 2 x = 0 ⇒ x = — 3 2 x + 1 = 0 ⇒ x = — 1
— 3 x — 5 — 3 + 2 x + 2 x + 1 = 0 ⇔
— 3 x = — 4 ⇔ x = 4 3 > — 3 2 ⇒ — корень является посторонним
— 3 x — 5 + 3 + 2 x + 2 x + 1 = 0 ⇔
x = — 10 — 1 ⇒ — корень является посторонним
— 3 x — 5 + 3 + 2 x — 2 x + 1 = 0 ⇔
— 3 x = — 6 ⇔ x = 2 > 5 3 ⇒ — корень является посторонним
3 x — 5 + 3 + 2 x — 2 x + 1 = 0 ⇔
3 x = 4 ⇔ x = 4 3 5 3 ⇒ — корень является посторонним
В результате на рассмотренных интервалах графика координатной прямой отсутствуют корни. В таком случае уравнение не имеет решений.
🎥 Видео
Как раскрыть модуль. Неравенство и график с модулем ЕГЭСкачать
Модуль числа. Практическая часть. 6 класс.Скачать
Уравнения с модулем. Часть 2 | Математика | TutorOnlineСкачать
Неравенства с модулем | Математика | TutorOnlineСкачать
6 класс, 24 урок, Модульные уравнения и неравенства с одной переменнойСкачать
Раскрытие скобок. 6 класс.Скачать
УРАВНЕНИЯ С МОДУЛЕМ | метод интерваловСкачать
8 класс. Модуль числа. Уравнения и неравенства с модулем. Алгебра.Скачать
НЕРАВЕНСТВА С МОДУЛЕМ 😉 ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэСкачать
Уравнения с модулем за 1 минуту. #математикапрофиль2023 #егэ2023 #математика #школа #fypСкачать
Как раскрыть модуль и решить уравнениеСкачать