Как проверить однородность дифференциального уравнения

Однородные дифференциальные уравнения первого порядка

Как проверить однородность дифференциального уравнения

Видео:Однородное дифференциальное уравнениеСкачать

Однородное дифференциальное уравнение

Определение

Видео:4. Однородные дифференциальные уравнения (часть 1)Скачать

4. Однородные дифференциальные уравнения (часть 1)

Как определить однородное дифференциальное уравнение

Для того, чтобы определить, является ли дифференциальное уравнение первого порядка однородным, нужно ввести постоянную t и заменить y на ty и x на tx : y → ty , x → tx . Если t сократится, то это однородное дифференциальное уравнение. Производная y′ при таком преобразовании не меняется.
.

Пример

Определить, является ли данное уравнение однородным

Делаем замену y → ty , x → tx .

Делим на t 2 .

.
Уравнение не содержит t . Следовательно, это однородное уравнение.

Видео:18+ Математика без Ху!ни. Дифференциальные уравнения. Однородное уравнение.Скачать

18+ Математика без Ху!ни. Дифференциальные уравнения. Однородное уравнение.

Метод решения однородного дифференциального уравнения

Однородное дифференциальное уравнение первого порядка приводится к уравнению с разделяющимися переменными с помощью подстановки y = ux . Покажем это. Рассмотрим уравнение:
(i)
Делаем подстановку:
y = ux ,
где u — функция от x . Дифференцируем по x :
y′ = ( ux ) ′ = u′ x + u ( x ) ′ = u′ x + u
Подставляем в исходное уравнение (i).
,
,
(ii) .
Разделяем переменные. Умножаем на dx и делим на x ( f ( u ) – u ) .

При f ( u ) – u ≠ 0 и x ≠ 0 получаем:

Интегрируем:

Таким образом, мы получили общий интеграл уравнения (i) в квадратурах:

Заменим постоянную интегрирования C на ln C , тогда

Опустим знак модуля, поскольку нужный знак определяется выбором знака постоянной C . Тогда общий интеграл примет вид:

Далее следует рассмотреть случай f ( u ) – u = 0 .
Если это уравнение имеет корни, то они являются решением уравнения (ii). Поскольку уравнение (ii) не совпадает с исходным уравнением, то следует убедиться, что дополнительные решения удовлетворяют исходному уравнению (i).

Всякий раз, когда мы, в процессе преобразований, делим какое-либо уравнение на некоторую функцию, которую обозначим как g ( x, y ) , то дальнейшие преобразования справедливы при g ( x, y ) ≠ 0 . Поэтому следует отдельно рассматривать случай g ( x, y ) = 0 .

Видео:5. Однородные дифференциальные уравнения. Часть 2.Скачать

5. Однородные дифференциальные уравнения. Часть 2.

Пример решения однородного дифференциального уравнения первого порядка

Проверим, является ли данное уравнение однородным. Делаем замену y → ty , x → tx . При этом y′ → y′ .
,
,
.
Сокращаем на t .

Постоянная t сократилась. Поэтому уравнение является однородным.

Делаем подстановку y = ux , где u – функция от x .
y′ = ( ux ) ′ = u′ x + u ( x ) ′ = u′ x + u
Подставляем в исходное уравнение.
,
,
,
.
При x ≥ 0 , |x| = x . При x ≤ 0 , |x| = – x . Мы пишем |x| = ± x подразумевая, что верхний знак относится к значениям x ≥ 0 , а нижний – к значениям x ≤ 0 .
,
Умножаем на ± dx и делим на .

При u 2 – 1 ≠ 0 имеем:

Интегрируем:

Интегралы табличные,
.

Применим формулу:
( a + b )( a – b ) = a 2 – b 2 .
Положим a = u , .
.
Возьмем обе части по модулю и логарифмируем,
.
Отсюда
.

Таким образом имеем:
,
.
Опускаем знак модуля, поскольку нужный знак обеспечивается выбором знака постоянной C .

Умножаем на x и подставляем ux = y .
,
.
Возводим в квадрат.
,
,
.

Теперь рассмотрим случай, u 2 – 1 = 0 .
Корни этого уравнения
.
Легко убедиться, что функции y = ± x удовлетворяют исходному уравнению.

Использованная литература:
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

Автор: Олег Одинцов . Опубликовано: 19-07-2012 Изменено: 24-02-2015

Видео:18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать

18+ Математика без Ху!ни. Дифференциальные уравнения.

Как определить однородное уравнение

Дифференциальное уравнение 1-го порядка P(x;y)dx+Q(x;y)dy=0 называется однородным, если P(x;y) и Q(x;y) — однородные функции одинакового измерения, то есть

Как проверить однородность дифференциального уравнения

Как определить, что дифференциальное уравнение — однородное? На практике проверку уравнения на однородность проводят следующим образом: вместо каждого x подставляют λx, вместо каждого y — λy. При этом y’, dx и dy не трогают. После этого упрощают уравнение. Если после упрощения удается сократить на λ (или n- ю степень λ) и получить исходное уравнение, то это и означает, что данное уравнение является однородным уравнением 1-го порядка.

Другая форма записи: y’=f(x;y). Это уравнение является однородным, если функция f(x;y) является однородной функцией нулевого порядка. Это означает, что f(λx;λy)=f(x;y).

Как проверить однородность дифференциального уравнения

Подставляем вместо каждого x λx, вместо каждого y — λy:

Как проверить однородность дифференциального уравнения

Как проверить однородность дифференциального уравнения

Выносим лямбда в квадрате за скобки и сокращаем на него:

Как проверить однородность дифференциального уравнения

Как проверить однородность дифференциального уравнения

Пришли к исходному уравнению, а это значит, что данное уравнение — однородное.

2) (x-y)ydx-x²dy=0.

Подставляем вместо каждого x λx, вместо каждого y — λy: (λx-λy)λydx-(λx)²dy=0. Теперь выносим общий множитель λ² за скобки: λ²((x-y)ydx-x²dy)=0. Делим обе части уравнения на λ²:

(x-y)ydx-x²dy=0. Пришли к исходному уравнению, значит, это уравнение — однородное. (Здесь P(x;y) и Q(x;y) — однородные функции 2й степени).

Как проверить однородность дифференциального уравнения

Наличие дроби y/x уже косвенно указывает на то, что уравнение может быть однородным. Проверим, так ли это:

Как проверить однородность дифференциального уравнения

После сокращения на λ получаем исходное уравнение:

Как проверить однородность дифференциального уравнения

а это значит, что данное уравнение является однородным.

Как проверить однородность дифференциального уравнения

Подставляем вместо каждого x λx, вместо каждого y — λy:

Как проверить однородность дифференциального уравнения

Как проверить однородность дифференциального уравнения

Делим обе части уравнения на лямбда в 4й степени:

Как проверить однородность дифференциального уравнения

Получили исходное уравнение, а значит, оно является однородным. (Здесь P(x;y) и Q(x;y) — однородные функции 4й степени).

Видео:Задача Коши ➜ Частное решение линейного однородного дифференциального уравненияСкачать

Задача Коши ➜ Частное решение линейного однородного дифференциального уравнения

Однородные дифференциальные уравнения

Однородное дифференциальное уравнение сводится к уравнению с разделяющимися переменными заменой y = xu, или, что тоже самое, Как проверить однородность дифференциального уравнения, где u новая искомая функция. Действительно, тогда y’ = u + u’x и исходное уравнение может быть переписано в виде u + u’x = f(u), или u’x = f(u)u. Из последнего при f(u)u можем записать Как проверить однородность дифференциального уравнения.

Пример. Решить уравнение (y 2 — 2xy)dx + x 2 dy = 0. Это однородное уравнение, так как y 2 — 2xy и x 2 однородные функции второй степени. Делаем замену y = xu, dy = udx + xdu. Подставляя в уравнение, имеем

(x 2 u 2 — 2x 2 u)dx + x 2 (udx + xdu) = 0.

Раскрывая скобки, приводя подобные и сокращая на x 2 , получаем уравнение с разделяющимися переменными

(u 2 — u)dx + xdu = 0

Разделяя переменные, получаем Как проверить однородность дифференциального уравненияили, что то же самое, Как проверить однородность дифференциального уравненияИнтегрируя последнее соотношение, имеем lnu — ln(u-1) = lnx + lnC. Потенцируя (переходя от логарифмической функции к e x ), можем записать Как проверить однородность дифференциального уравненияили, делая обратную замену Как проверить однородность дифференциального уравнения, получаем общий интеграл уравнения Как проверить однородность дифференциального уравнения

Уравнения вида Как проверить однородность дифференциального уравненияприводятся к однородным переносом начала координат в точку пересечения прямых a1x + b1y +c1 = 0, a2x + b2y +c2 = 0, если определитель Как проверить однородность дифференциального уравненияотличен от нуля, и заменой a1x + b1y = z, если этот определитель равен нулю.

Решить однородные уравнения онлайн можно с помощью специального сервиса Дифференциальные уравнения онлайн.

🎥 Видео

Дифференциальные уравнения, 3 урок, Однородные уравненияСкачать

Дифференциальные уравнения, 3 урок, Однородные уравнения

6. Дифференциальные уравнения, приводящиеся к однороднымСкачать

6. Дифференциальные уравнения, приводящиеся к однородным

15. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентамиСкачать

15. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами

#Дифуры I. Урок 3. Однородные дифференциальные уравненияСкачать

#Дифуры I. Урок 3. Однородные дифференциальные уравнения

13. Как решить дифференциальное уравнение первого порядка?Скачать

13. Как решить дифференциальное уравнение первого порядка?

1. Проверка решений дифференциальных уравнений.Скачать

1.  Проверка решений дифференциальных уравнений.

Линейные однородные дифференциальные уравнения n-го порядка с постоянными коэффициентамСкачать

Линейные однородные дифференциальные уравнения n-го порядка с постоянными коэффициентам

Лукьяненко Д. В. - Дифференциальные уравнения - Лекция 1Скачать

Лукьяненко Д. В. - Дифференциальные уравнения - Лекция 1

Лукьяненко Д. В. - Дифференциальные уравнения - Лекция 5Скачать

Лукьяненко Д. В. - Дифференциальные уравнения - Лекция 5

Однородное линейное дифференциальное уравнение. Алгоритм решенияСкачать

Однородное линейное дифференциальное уравнение. Алгоритм решения

Однородные дифференциальные уравнения 1 порядкаСкачать

Однородные дифференциальные уравнения 1 порядка

Дифференциальные уравнения 1-го порядка, приводящиеся к однородным (практика)Скачать

Дифференциальные уравнения 1-го порядка, приводящиеся к однородным (практика)
Поделиться или сохранить к себе: