Уравнение эллиптического типа
Решения обеих уравнений системы
будут комплексными. Это нас не устраивает. Вместо этой пары уравнений рассмотрим исходную форму
и пусть его решение (с любым выбранным знаком)
φ ( x , y ) = ξ( x , y ) + i η( x , y )
Покажем, что ξ и η — искомая замена переменных.
⇒
- Приведение к каноническому виду линейных уравнений с частными производными второго порядка
- Поверхности второго порядка: их виды, уравнения, примеры
- Общее уравнение поверхности второго порядка и инварианты поворота и переноса декартовой прямоугольной системы координат
- Виды поверхностей второго порядка и приведение общего уравнения поверхности второго порядка к каноническому
- Эллипсоид
- Мнимый эллипсоид
- Мнимый конус
- Однополостный гиперболоид
- Двуполостный гиперболоид
- Конус
- Эллиптический параболоид
- Гиперболический параболоид
- Эллиптический цилиндр
- Мнимый эллиптический цилиндр
- Мнимые пересекающиеся плоскости
- Гиперболический цилиндр
- Пересекающиеся плоскости
- Параболический цилиндр
- Параллельные плоскости
- Мнимые параллельные плоскости
- Совпадающие плоскости
- Решение примеров на определение вида поверхности второго порядка
- Определить вид поверхности второго порядка самостоятельно, а затем посмотреть решение
- 💥 Видео
Видео:§31.1 Приведение уравнения кривой к каноническому видуСкачать
Приведение к каноническому виду линейных уравнений с частными производными второго порядка
Федеральное агентство по образованию
ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
Институт математики, экономики и информатики
Кафедра дифференциальных и интегральных уравнений
ПРИВЕДЕНИЕ К КАНОНИЧЕСКОМУ ВИДУ ЛИНЕЙНЫХ УРАВНЕНИЙ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ ВТОРОГО ПОРЯДКА
Приведение к каноническому виду линейных уравнений с частными производными 2-го порядка с двумя независимыми переменными …………………………………………………………………………
1.1. Необходимый теоретический материал………………………..
1.2. Пример выполнения задачи1 (приведение к
каноническому виду уравнений гиперболического типа) .
1.3. Пример выполнения задачи 2 (приведение к
каноническому виду уравнений параболического типа)
1.4. Пример выполнения задачи 3 (приведение к
каноническому виду уравнений эллиптического типа) ..
1.5. Задачи для самостоятельного решения ………………….….
Упрощение группы младших производных
для уравнений второго порядка с постоянными коэффициентами
2.1. Необходимый теоретический материал …………………..
2.2. Пример выполнения задачи 4
2.3. Задачи для самостоятельного решения ……………………..
В настоящих методических указаниях изложен теоретический материал и на конкретных примерах разобрано приведение к каноническому виду линейных уравнений с частными производными второго порядка с двумя независимыми переменными для уравнений гиперболического, эллиптического и параболического типов.
Методические указания предназначены для студентов математических специальностей очной и заочной формы обучения.
§1. Приведение к каноническому виду линейных уравнений с частными производными 2-го порядка с двумя независимыми переменными.
Задача. Определить тип уравнения
(1)
и привести его к каноническому виду.
1.1. Необходимый теоретический материал.
I. Тип уравнения (1) определяется знаком выражения :
· если в некоторой точке, то уравнение (1) называется уравнением гиперболического типа в этой точке;
· если в некоторой точке, то уравнение (1) называется уравнением эллиптического типа в этой точке;
· если в некоторой точке, то уравнение (1) называется уравнением параболического типа в этой точке.
Уравнение (1) будет являться уравнением гиперболического, эллиптического, параболического типа в области D, если оно гиперболично, эллиптично, параболично в каждой точке этой области.
Уравнение (1) может менять свой тип при переходе из одной точки (области) в другую. Например, уравнение является уравнением эллиптического типа в точках ; параболического типа в точках ; и гиперболического типа в точках .
II. Чтобы привести уравнение к канонического виду, необходимо:
1. Определить коэффициенты ;
2. Вычислить выражение ;
3. Сделать вывод о типе уравнения (1) (в зависимости от знака выражения );
4. Записать уравнение характеристик:
; (2)
5. Решить уравнение (2). Для этого:
а) разрешить уравнение (2) как квадратное уравнение относительно dy:
; (3)
б) найти общие интегралы уравнений (3) (характеристики уравнения (1)):
· (4)
в случае уравнения гиперболического типа;
· , (5)
в случае уравнения параболического типа;
· , (6)
в случае уравнения эллиптического типа.
6. Ввести новые (характеристические) переменные и :
· в случае уравнения гиперболического типа в качестве и берут общие интегралы (4) уравнений (3), т. е.
· в случае уравнения параболического типа в качестве берут общий интеграл (5) уравнения (3), т. е. , в качестве берут произвольную, дважды дифференцируемую функцию , не выражающуюся через , т. е. ;
· в случае уравнения эллиптического типа в качестве и берут вещественную и мнимую часть любого из общих интегралов (6) уравнений (3):
7. Пересчитать все производные, входящие в уравнение (1), используя правило дифференцирования сложной функции:
,
,
, (7)
,
.
8. Подставить найденные производные в исходное уравнение (1) и привести подобные слагаемые. В результате уравнение (1) примет один из следующих видов:
· в случае уравнения гиперболического типа:
;
· в случае уравнения параболического типа:
;
· в случае уравнения эллиптического типа:
.
1.2. Пример выполнения задачи 1.
Определить тип уравнения
и привести его к каноническому виду.
1. Определим коэффициенты :
2. Вычислим выражение :
.
3. уравнение гиперболического типа во всей плоскости XOY.
4. Запишем уравнение характеристик:
. (9)
5. Решим уравнение (9). Для этого:
а) разрешаем уравнение (9) как квадратное уравнение относительно dy: ;
;
(10)
б) найдём общие интегралы уравнений (10) (характеристики уравнения (9)):
6. Введём характеристические переменные:
7. Пересчитаем производные, входящие в исходное уравнение.
Используя формулы (7), получим:
Здесь слева написаны коэффициенты уравнения (8) при соответствующих производных.
8. Собирая подобные слагаемые, получим:
Или после деления на -100 (коэффициент при ):
Ответ. Уравнение (8) является уравнением гиперболического типа на всей плоскости XOY. Канонический вид
где
1.3. Пример выполнения задачи 2.
Определить тип уравнения
и привести его к каноническому виду.
1. Определим коэффициенты . В нашем примере они постоянны:
2. Вычислим выражение :
.
3. уравнение параболического типа во всей плоскости XOY.
4. Запишем уравнение характеристик:
. (12)
5. Решим уравнение (12). Для этого:
а) разрешаем уравнение (9) как квадратное уравнение относительно dy. Однако в этом случае левая часть уравнения является полным квадратом:
;
(13)
б) имеем только одно уравнение характеристик (13). Найдём его общий интеграл (уравнения параболического типа имеют только одно семейство вещественных характеристик):
6. Введём характеристические переменные: одну из переменных вводим как и ранее
а в качестве берут произвольную, дважды дифференцируемую функцию, не выражающуюся через , пусть
;
7. Пересчитаем производные, входящие в исходное уравнение.
Используя формулы (7), получим:
Здесь слева написаны коэффициенты уравнения (11) при соответствующих производных.
8. Собирая подобные слагаемые, получим:
Функцию, стоящую в правой части уравнения (11) необходимо также выразить через характеристические переменные.
После деления на 25 (коэффициент при ):
Ответ. Уравнение (11) является уравнением параболического типа на всей плоскости XOY. Канонический вид
где
1.4. Пример выполнения задачи 3.
Определить тип уравнения
(14)
и привести его к каноническому виду.
1. Определим коэффициенты :
2. Вычислим выражение :
.
3. уравнение эллиптического типа во всей плоскости XOY.
4. Запишем уравнение характеристик:
. (15)
5. Решим уравнение (15). Для этого:
а) разрешаем уравнение (15) как квадратное уравнение относительно dy: ; (16)
б) уравнения (16) – это пара комплексно-сопряженных уравнений. Они имеют пару комплексно-сопряженных общих интегралов. (Уравнения эллиптического типа не имеют вещественных характеристик)
(17)
6. Введём характеристические переменные как вещественную и мнимую части одного из общих интегралов (17):
7. Пересчитаем производные, входящие в исходное уравнение.
Используя формулы (7), получим:
Здесь слева написаны коэффициенты уравнения (14) при соответствующих производных.
8. Собирая подобные слагаемые, получим:
Или после деления на 4 (коэффициент при и ):
Ответ. Уравнение (14) является уравнением эллиптического типа на всей плоскости XOY. Канонический вид
где
1.5. Задачи для самостоятельного решения.
Определить тип уравнения и привести его к каноническому виду.
.
.
.
.
.
.
.
.
.
.
Определить тип уравнения и привести его к каноническому виду.
Определить тип уравнения и привести его к каноническому виду.
§2. Упрощение группы младших производных
для уравнений второго порядка с постоянными коэффициентами
2. 1. Необходимый теоретический материал
В самом общем виде линейное уравнение с частными производными второго порядка с двумя независимыми переменными имеет вид
(1)
Преобразованием независимых переменных группа старших производных уравнения может быть упрощена. Уравнение (1) приводится к одному из следующих видов
· в случае уравнения гиперболического типа:
; (11)
· в случае уравнения параболического типа:
; (12)
· в случае уравнения эллиптического типа:
. (13)
Если коэффициенты исходного уравнения постоянны, то для дальнейшего упрощения уравнения любого типа нужно сделать замену неизвестной функции
, (14)
где — новая неизвестная функция, — параметры, подлежащие определению. Такая замена не «испортит» канонического вида, но при этом позволит подобрать параметры так, чтобы из трех слагаемых группы младших производных в уравнении осталось только одно. Уравнения гиперболического, параболического и эллиптического типов соответственно примут вид
;
;
.
Чтобы реализовать замену (14) в уравнениях (11), (12), (13), необходимо пересчитать все производные, входящие в эти уравнения по формулам
(15)
Подробно рассмотрим этот процесс на примере уравнения гиперболического типа, т. е. уравнения (11). Пересчитаем производные, входящие в это уравнение, используя формулы (15).
Здесь слева расставлены соответствующие коэффициенты уравнения (11). Собирая подобные слагаемые, получим
. (16)
В уравнении (16) приравняем к нулю коэффициенты при и
Откуда Подставив эти значения параметров в уравнение (16) и разделив его на , придем к уравнению
,
где .
2.2. Пример выполнения задачи 4
к каноническому виду и упростить группу младших производных.
9. Определим коэффициенты :
10. Вычислим выражение :
.
11. уравнение эллиптического типа во всей плоскости XOY.
12. Запишем уравнение характеристик:
. (18)
5. Решим уравнение (18). Для этого:
а) разрешаем уравнение (18) как квадратное уравнение относительно dy: ;
; (19)
б) найдём общие интегралы уравнений (19) (характеристики уравнения (17)):
6. Введём характеристические переменные:
13. Пересчитаем производные, входящие в исходное уравнение.
Используя формулы (7), получим:
Здесь слева написаны коэффициенты уравнения (17) при соответствующих производных.
14. Собирая подобные слагаемые, получим:
(20)
Теперь с помощью замены неизвестной функции (14)
упростим группу младших производных.
Пересчитаем производные, входящие в уравнение (20), используя формулы (15).
Здесь слева расставлены соответствующие коэффициенты уравнения (20). Собирая подобные слагаемые, получим
. (21)
В уравнении (21) приравняем к нулю коэффициенты при и
Откуда Подставив эти значения параметров в уравнение (21) и разделив его на , придем к уравнению
.
Ответ. Уравнение (20) является уравнением эллиптического типа на всей плоскости XOY. Его канонический вид
,
где .
2.3. Задачи для самостоятельного решения
Задача 4. Привести уравнения к каноническому виду и упростить группу младших производных.
.
.
.
.
.
.
.
.
.
.
Видео:Приведение ДУ 2 порядка в частных производных к каноническому видуСкачать
Поверхности второго порядка: их виды, уравнения, примеры
Видео:Кривые второго порядка. Эллипс. Приведение к каноническому виду и чертежСкачать
Общее уравнение поверхности второго порядка и инварианты поворота и переноса декартовой прямоугольной системы координат
Общее уравнение поверхности второго порядка имеет вид
Для определения вида поверхности второго порядка по общему уравнению и приведения общего уравнения к каноническому, нам понадобятся выражения, которые называются инвариантами. Инварианты — это определители и суммы определителей, составленные из коэффициентов общего уравнения, которые не меняются при переносе и повороте системы координат. Эти инварианты следующие:
Следующие два выражения, называемые семиинвариантами, являются инвариантами поворота декартовой прямоугольной системы координат:
В случае, если I 3 = 0 , K 4 = 0 , семиинвариант K 3 будет также и инвариантом переноса; в случае же I 3 = 0 , K 4 = 0 , I 2 = 0 , K 3 = 0 семиинвариант K 2 = 0 будет также и инвариантом переноса.
Видео:53. Приведение общего уравнения кривой к каноническому видуСкачать
Виды поверхностей второго порядка и приведение общего уравнения поверхности второго порядка к каноническому
I. Если I 3 ≠ 0 , то общее уравнение поверхности второго порядка при помощи поворота и переноса прямоугольной системы координат может быть приведено к следующему виду:
,
где λ 1 , λ 2 , λ 3 — корни характеристического уравнения
.
В зависимости от того, какие знаки у чисел λ 1 , λ 2 , λ 3 и K 4 /I 3 , определяется вид поверхности второго порядка.
Эллипсоид
Если числа λ 1 λ 2 , λ 3 одного знака, а K 4 /I 3 имеет знак им противоположный, то общее уравнение поверхности второго порядка определяет эллипсоид.
После решения характеристического уравнения общее уравнение можно переписать в следующем виде:
.
Тогда полуоси эллипсоида будут
, , .
Поэтому каноническое уравнение эллипсоида имеет вид
.
Мнимый эллипсоид
Если числа λ 1 λ 2 , λ 3 и K 4 /I 3 одного знака, то общее уравнение поверхности второго порядка определяет мнимый эллипсоид.
После решения характеристического уравнения общее уравнение можно привести к каноническому уравнению мнимого эллипсоида:
,
, , .
Мнимый конус
Если числа λ 1 λ 2 , λ 3 , а K 4 = 0 , то общее уравнение поверхности второго порядка определяет мнимый конус.
После решения характеристического уравнения общее уравнение можно привести к каноническому уравнению мнимого конуса:
,
, , .
Однополостный гиперболоид
Если два корня характеристического уравнения имеют один знак, а третий корень и K 4 /I 3 имеют знак, им противоположный, то общее уравнение поверхности второго порядка определяет однополостный гиперболоид.
Обозначая в этом случае через λ 1 и λ 2 корни характеристического уравнения, имеющие один знак, общее уравнение можно переписать в виде:
.
, , ,
то каноническое уравнение однополостного гиперболоида будет иметь вид
.
Двуполостный гиперболоид
Если два корня характеристического уравнения и K 4 /I 3 имеют один и тот же знак, а третий корень характеристического уравнения им противоположный, то общее уравнение поверхности второго порядка определяет двуполостный гиперболоид.
Обозначая в этом случае через λ 1 и λ 2 корни, имеющие один знак, общее уравнение можно переписать в виде:
.
Последняя запись и есть каноническое уравнение двуполостного гиперболоида.
Конус
Если два корня характеристического уравнения имеют один знак, третий корень имеет знак, им противоположный, а K 4 = 0 , то общее уравнение поверхности второго порядка определяет конус.
Считая, что одинаковый знак имеют корни λ 1 и λ 2 , общее уравнение можно переписать в виде:
,
известном как каноническое уравнение конуса.
II. Если I 3 = 0 , а K 4 ≠ 0 , то общее уравнение поверхности второго порядка при помощи поворота и переноса прямоугольной системы координат может быть приведено к следующему виду:
,
где λ 1 и λ 2 — отличные от нуля корни характеристического уравнения.
Эллиптический параболоид
Если λ 1 и λ 2 имеют один знак, то общее уравнение поверхности второго порядка определяет эллиптический параболоид.
Общее уравнение можно переписать в виде:
.
Выбирая перед корнем знак, противоположный знаку λ 1 и λ 2 , и полагая
,
,
получим каноническое уравнение эллиптического параболоида:
.
Гиперболический параболоид
Если λ 1 и λ 2 имеют разные знаки, то общее уравнение поверхности второго порядка определяет гиперболический параболоид.
Обозначая через λ 1 положительный корень, а через λ 2 — отрицательный и беря перед корнем знак минус, переписываем уравнение в виде:
.
, ,
получим каноническое уравнение гиперболического параболоида:
.
III. Если I 3 = 0 , а K 4 = 0 , I 2 ≠ 0 то общее уравнение поверхности второго порядка при помощи поворота и переноса прямоугольной системы координат может быть приведено к следующему виду:
,
где λ 1 и λ 2 — отличные от нуля корни характеристического уравнения.
Эллиптический цилиндр
Если λ 1 и λ 2 одного знака, а K 3 /I 2 имеет знак, им противоположный, то общее уравнение поверхности второго порядка определяет эллиптический цилиндр.
Переписываем уравнение, получившееся после решения характеристического уравнения, в виде:
.
, ,
получим каноническое уравнение эллиптического цилиндра:
.
Мнимый эллиптический цилиндр
Если λ 1 , λ 2 и K 3 /I 2 одного знака, то общее уравнение поверхности второго порядка определяет мнимый эллиптический цилиндр.
Переписываем уравнение, получившееся после решения характеристического уравнения, в виде:
.
Последняя запись — каноническое уравнение мнимого эллиптического цилиндра.
Мнимые пересекающиеся плоскости
Если λ 1 и λ 2 имеют один знак, а K 3 = 0 , то общее уравнение поверхности второго порядка определяет две мнимые пересекающиеся плоскости.
Переписываем уравнение, получившееся после решения характеристического уравнения, в виде:
.
, ,
получим каноническое уравнение мнимых пересекающихся плоскостей:
.
Гиперболический цилиндр
Если λ 1 и λ 2 имеют разные знаки, а K 3 ≠ 0 , то общее уравнение поверхности второго порядка определяет гиперболический цилиндр.
Переписываем уравнение, получившееся после решения характеристического уравнения, в виде:
,
, .
Таким образом, каноническое уравнение гиперболического цилиндра:
.
Пересекающиеся плоскости
Если λ 1 и λ 2 имеют разные знаки, а K 3 = 0 , то общее уравнение поверхности второго порядка определяет две пересекающиеся плоскости.
Переписываем уравнение, получившееся после решения характеристического уравнения, в виде:
,
, .
Таким образом, пересекающихся плоскостей:
.
IV. Если I 3 = 0 , K 4 = 0 , I 2 = 0 , K 3 ≠ 0 , то общее уравнение поверхности второго порядка при помощи поворота и переноса прямоугольной системы координат может быть приведено к следующему виду:
,
где λ 1 = I 1 — отличный от нуля корень характеристического уравнения.
Параболический цилиндр
Уравнение, получившееся после решения характеристического уравнения, можно переписать в виде:
,
.
Это уравнение параболического цилиндра, в каноническом виде оно записывается так:
.
V. Если I 3 = 0 , K 4 = 0 , I 2 = 0 , K 3 = 0 , то общее уравнение поверхности второго порядка при помощи поворота и переноса прямоугольной системы координат может быть приведено к следующему виду:
,
.
Параллельные плоскости
Если K 2 , то общее уравнение поверхности второго порядка определяет две параллельные плоскости.
,
перепишем его в виде
.
Мнимые параллельные плоскости
Если K 2 > 0 , то общее уравнение поверхности второго порядка определяет две мнимые параллельные плоскости.
,
перепишем его в виде
.
Совпадающие плоскости
Если K 2 = 0 , то общее уравнение поверхности второго порядка определяет две совпадающие плоскости:
.
Видео:Приведение линейного уравнения в частных производных c постоянными коэфф--ми к каноническому виду.Скачать
Решение примеров на определение вида поверхности второго порядка
Пример 1. Определить вид и составить каноническое уравнение поверхности, заданной относительно прямоугольной системы координат общим уравнением
Решение. Найдём I 3 :
(как вычислить определитель).
I 1 = 1 + 5 + 1 = 7 ,
Следовательно, данная поверхность — однополостный гиперболоид.
.
Составляем и решаем характеристическое уравнение:
;
.
,
, , .
Пример 2. Определить вид и составить каноническое уравнение поверхности, заданной относительно прямоугольной системы координат общим уравнением
Решение. Найдём I 3 :
.
.
Следовательно, общее уравнение определяет эллиптический параболоид.
.
I 1 = 2 + 2 + 3 = 7 .
Решаем характеристическое уравнение:
.
.
,
, .
Пример 3. Определить вид и составить каноническое уравнение поверхности, заданной относительно прямоугольной системы координат общим уравнением
,
,
,
I 1 = 5 + 2 + 5 = 12 .
Так как I 3 = К 4 = 0 , I 2 > 0 , I 1 K 3 , то данное общее уравнение определяет эллиптический цилиндр.
.
.
Определить вид поверхности второго порядка самостоятельно, а затем посмотреть решение
Пример 4. Определить вид и составить каноническое уравнение поверхности, заданной относительно прямоугольной системы координат общим уравнением
💥 Видео
УМФ, 20.10.2021, приведение уравнений к каноническому видуСкачать
2. Приведение уравнений второго порядка к каноническому видуСкачать
Приводим уравнение кривой 2 порядка к каноническому видуСкачать
Семинар №9 "Приведение уравнения второго порядка к каноническому виду"Скачать
13. Общие уравнения прямой в пространстве / приведение к каноническому видуСкачать
Семинар 6. Приведение уравнения кривой II порядка к каноническому видуСкачать
Видеоурок "Приведение к каноническому виду"Скачать
Приведение кривой второго порядка к каноническому виду. ПримерСкачать
Приводим диффур в частных производных к каноническому виду | УМФ (УрЧП) | КАК РЕШАТЬ?Скачать
Кривые второго порядка. Парабола. Приведение к каноническому виду и чертежСкачать
Приведение кривой второго порядка к каноническому виду. ТемаСкачать
Приведение поверхности второго порядка к каноническому виду ортогональным преобразованием.Скачать
Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать
Кривые второго порядка. Гипербола. Приведение к каноническому виду и чертежСкачать
Krikovtseva_2_Привести кривую второго порядка к каноническому виду, построить.Скачать