Часто преобразование и упрощение математических выражений требует перехода от корней к степеням и наоборот. Данная статья рассказывает о том, как осуществлять перевод корня в степень и обратно. Рассматривается теория, практические примеры и наиболее распространенные ошибки.
- Переход от степеней с дробными показателями к корням
- Как представить корень в виде степени?
- Как решать квадратные уравнения
- Понятие квадратного уравнения
- Приведенные и неприведенные квадратные уравнения
- Полные и неполные квадратные уравнения
- Решение неполных квадратных уравнений
- Как решить уравнение ax 2 = 0
- Как решить уравнение ax 2 + с = 0
- Как решить уравнение ax 2 + bx = 0
- Как разложить квадратное уравнение
- Дискриминант: формула корней квадратного уравнения
- Алгоритм решения квадратных уравнений по формулам корней
- Примеры решения квадратных уравнений
- Формула корней для четных вторых коэффициентов
- Формула Виета
- Упрощаем вид квадратных уравнений
- Связь между корнями и коэффициентами
- Алгебра. 8-й класс. «Преобразование корней»
- Ход урока
- 1. Актуализация.
- 2. Проблемная ситуация.
- 3. Изучение нового материала.
- 5. Итог урока
- 6. Домашнее задание.
- 🎬 Видео
Видео:секретный способ извлечения квадратного корня #SHORTSСкачать
Переход от степеней с дробными показателями к корням
Допустим, мы имеем число с показателем степени в виде обыкновенной дроби — a m n . Как записать такое выражение в виде корня?
Ответ вытекает из самого определения степени!
Положительное число a в степени m n — это корень степени n из числа a m .
При этом, обязательно должно выполнятся условие:
a > 0 ; m ∈ ℤ ; n ∈ ℕ .
Дробная степень числа нуль определяется аналогично, однако в этом случае число m принимается не целым, а натуральным, чтобы не возникло деления на 0 :
0 m n = 0 m n = 0 .
В соответствии с определением, степень a m n можно представить в виде корня a m n .
Например: 3 2 5 = 3 2 5 , 1 2 3 — 3 4 = 1 2 3 — 3 4 .
Однако, как уже было сказано, не следует забывать про условия: a > 0 ; m ∈ ℤ ; n ∈ ℕ .
Так, выражение — 8 1 3 нельзя представить в виде — 8 1 3 , так как запись — 8 1 3 попросту не имеет смысла — степень отрицательных чисел на определена.При этом, сам корень — 8 1 3 имеет смысл.
Переход от степеней с выражениями в основании и дробными показателями осуществляется аналогично на всей области допустимых значений (далее — ОДЗ) исходных выражений в основании степени.
Например, выражение x 2 + 2 x + 1 — 4 1 2 можно представить в виде квадратного корня x 2 + 2 x + 1 — 4 .Выражение в степени x 2 + x · y · z — z 3 — 7 3 переходит в выражение x 2 + x · y · z — z 3 — 7 3 для всех x , y , z из ОДЗ данного выражения.
Видео:Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnlineСкачать
Как представить корень в виде степени?
Обратная замена корней степенями, когда вместо выражения с корнем записывается выражения со степенью, также возможна. Просто перевернем равенство из предыдущего пункта и получим:
Опять же, переход очевиден для положительных чисел a . Например, 7 6 4 = 7 6 4 , или 2 7 — 5 3 = 2 7 — 5 3 .
Для отрицательных a корни имеют смысл. Например — 4 2 6 , — 2 3 . Однако, представить эти корни в виде степеней — 4 2 6 и — 2 1 3 нельзя.
Можно ли вообще преобразовать такие выражения со степенями? Да, если произвести некоторые предварительные преобразования. Рассмотрим, какие.
Используя свойства степеней, можно выполнить преобразования выражения — 4 2 6 .
— 4 2 6 = — 1 2 · 4 2 6 = 4 2 6 .
Так как 4 > 0 , можно записать:
В случае с корнем нечетной степени из отрицательного числа, можно записать:
— a 2 m + 1 = — a 2 m + 1 .
Тогда выражение — 2 3 примет вид:
— 2 3 = — 2 3 = — 2 1 3 .
Разберемся теперь, как корни, под которыми содержатся выражения, заменяются на степени, содержащие эти выражения в основании.
Обозначим буквой A некоторое выражение. Однако не будем спешить с представлением A m n в виде A m n . Поясним, что здесь имеется в виду. Например, выражение х — 3 2 3 , основываясь на равенстве из первого пункта, хочется представить в виде x — 3 2 3 . Такая замена возможна только при x — 3 ≥ 0 , а для остальных икс из ОДЗ она не подходит, так как для отрицательных a формула a m n = a m n не имеет смысла.
Таким образом, в рассмотренном примере преобразование вида A m n = A m n является преобразованием, сужающим ОДЗ, а из-за неаккуратного применения формулы A m n = A m n нередко возникают ошибки.
Чтобы правильно перейти от корня A m n к степени A m n , необходимо соблюдать несколько пунктов:
- В случае, если число m — целое и нечетное, а n — натуральное и четное, то формула A m n = A m n справедлива на всей ОДЗ переменных.
- Если m — целое и нечетное, а n — натуральное и нечетное,то выражение A m n можно заменить:
— на A m n для всех значений переменных, при которых A ≥ 0 ;
— на — — A m n для для всех значений переменных, при которых A 0 ; - Если m — целое и четное, а n — любое натуральное число, то A m n можно заменить на A m n .
Сведем все эти правила в таблицу и приведем несколько примеров их использования.
Вернемся к выражению х — 3 2 3 . Здесь m = 2 — целое и четное число, а n = 3 — натуральное число. Значит, выражение х — 3 2 3 правильно будет записать в виде:
х — 3 2 3 = x — 3 2 3 .
Приведем еще один пример с корнями и степенями.
Пример. Перевод корня в степень
x + 5 — 3 5 = x + 5 — 3 5 , x > — 5 — — x — 5 — 3 5 , x — 5
Обоснуем результаты, приведенные в таблице. Если число m — целое и нечетное, а n — натуральное и четное, для всех переменных из ОДЗ в выражении A m n значение A положительно или неотрицательно (при m > 0 ). Именно поэтому A m n = A m n .
Во втором варианте, когда m — целое, положительное и нечетное, а n — натуральное и нечетное, значения A m n разделяются. Для переменных из ОДЗ, при которых A неотрицательно, A m n = A m n = A m n . Для переменных, при которых A отрицательно, получаем A m n = — A m n = — 1 m · A m n = — A m n = — A m n = — A m n .
Аналогично рассмотрим и следующий случай, когда m — целое и четное, а n — любое натуральное число. Если значение A положительно или неотрицательно, то для таких значений переменных из ОДЗ A m n = A m n = A m n . Для отрицательных A получаем A m n = — A m n = — 1 m · A m n = A m n = A m n .
Таким образом, в третьем случае для всех переменных из ОДЗ можно записать A m n = A m n .
Видео:Извлекаем огромные корни В УМЕ!💣Скачать
Как решать квадратные уравнения
О чем эта статья:
Видео:Все про уравнения для задания 9 на ОГЭ 2024 по математикеСкачать
Понятие квадратного уравнения
Уравнение — это равенство, содержащее переменную, значение которой нужно найти.
Например, х + 8 = 12 — это уравнение, которое содержит переменную х.
Корень уравнения — это такое значение переменной, которое при подстановке в уравнение обращает его в верное числовое равенство.
Например, если х = 5, то при подстановке в уравнение мы получим 5 + 8 = 12. 13 = 12 — противоречие. Значит, х = 5 не является корнем уравнения.
А вот если х = 4, то при подстановке в уравнение мы получим 4 + 8 = 12. 12 = 12 — верное равенство. Значит, х = 4 является корнем уравнения.
Решить уравнение — значит найти все его корни или доказать, что их не существует.
Квадратное уравнение — это уравнение вида ax 2 + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.
Чтобы запомнить месторасположение коэффициентов, давайте потренируемся определять их.
Квадратные уравнения могут иметь два корня, один корень или не иметь корней.
Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Чтобы его найти, берем формулу: D = b 2 − 4ac. А вот свойства дискриминанта:
- если D 0, есть два различных корня.
С этим разобрались. А сейчас посмотрим подробнее на различные виды квадратных уравнений.
Разобраться в теме еще быстрее с помощью опытного преподавателя можно на курсах по математике в онлайн-школе Skysmart.
Видео:Свойства корней, которые надо знатьСкачать
Приведенные и неприведенные квадратные уравнения
Квадратное уравнение может быть приведенным или неприведенным — все зависит от от значения первого коэффициента.
Приведенное квадратное уравнение — это уравнение, где старший коэффициент, тот который стоит при одночлене высшей степени, равен единице.
Неприведенным называют квадратное уравнение, где старший коэффициент отличается от единицы.
Давайте-ка на примерах — вот у нас есть два уравнения:
- x 2 — 2x + 6 = 0
- x 2 — x — 1/4 = 0
В каждом из них старший коэффициент равен единице (которую мы мысленно представляем при x 2 ), а значит уравнение называется приведенным.
- 2x 2 − 4x — 12 = 0 — первый коэффициент отличен от единицы (2), значит это неприведенное квадратное уравнение.
Каждое неприведенное квадратное уравнение можно преобразовать в приведенное, если произвести равносильное преобразование — разделить обе его части на первый коэффициент.
Пример 1. Превратим неприведенное уравнение: 8x 2 + 20x — 9 = 0 — в приведенное.
Для этого разделим обе части исходного уравнения на старший коэффициент 8:
Ответ: равносильное данному приведенное уравнение x 2 + 2,5x — 1,125 = 0.
Видео:СЛОЖИТЕ ДВА КОРНЯСкачать
Полные и неполные квадратные уравнения
В определении квадратного уравнения есть условие: a ≠ 0. Оно нужно, чтобы уравнение ax 2 + bx + c = 0 было именно квадратным. Если a = 0, то уравнение обретет вид линейного: bx + c = 0.
Что касается коэффициентов b и c, то они могут быть равны нулю, как по отдельности, так и вместе. В таком случае квадратное уравнение принято называть неполным.
Неполное квадратное уравнение —— это квадратное уравнение вида ax 2 + bx + c = 0, где оба или хотя бы один из коэффициентов b и c равен нулю.
Полное квадратное уравнение — это уравнение, у которого все коэффициенты отличны от нуля.
Для самых любопытных объясняем откуда появились такие названия: | |
---|---|
Такие уравнения отличны от полного квадратного тем, что их левые части не содержат либо слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения. Видео:Преобразование выражений, содержащих кв.корни. Внесение и вынесения из, под знак кв. корня. 8 класс.Скачать Решение неполных квадратных уравненийКак мы уже знаем, есть три вида неполных квадратных уравнений:
Давайте рассмотрим по шагам, как решать неполные квадратные уравнения по видам. Как решить уравнение ax 2 = 0Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax 2 = 0. Уравнение ax 2 = 0 равносильно x 2 = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x 2 = 0 является нуль, так как 0 2 = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней. Таким образом, неполное квадратное уравнение ax 2 = 0 имеет единственный корень x = 0. Пример 1. Решить −6x 2 = 0.
Как решить уравнение ax 2 + с = 0Обратим внимание на неполные квадратные уравнения вида ax 2 + c = 0, в которых b = 0, c ≠ 0. Мы давно знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный. Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. Ну есть одно и то же, только с другими цифрами. Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax 2 + c = 0:
Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи. Если — c/а 2 = — c/а не имеет корней. Все потому, что квадрат любого числа всегда равен неотрицательному числу. Из этого следует, что при — c/а 0, то корни уравнения x 2 = — c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а) 2 = — c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а) 2 = — c/а. Ура, больше у этого уравнения нет корней.
Пример 1. Найти решение уравнения 8x 2 + 5 = 0.
Разделим обе части на 8: Ответ: уравнение 8x 2 + 5 = 0 не имеет корней. Как решить уравнение ax 2 + bx = 0Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0. Неполное квадратное уравнение ax 2 + bx = 0 можно решить методом разложения на множители. Как разложить квадратное уравнение: Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x. Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a. Таким образом, неполное квадратное уравнение ax 2 + bx = 0 имеет два корня: Пример 1. Решить уравнение 0,5x 2 + 0,125x = 0 0,5x = 0,125, Ответ: х = 0 и х = 0,25. Как разложить квадратное уравнениеС помощью теоремы Виета можно получить формулу разложения квадратного трехчлена на множители. Выглядит она так: Формула разложения квадратного трехчлена Если x1 и x2 — корни квадратного трехчлена ax 2 + bx + c, то справедливо равенство ax 2 + bx + c = a (x − x1) (x − x2). Видео:Квадратный корень. 8 класс.Скачать Дискриминант: формула корней квадратного уравненияЧтобы найти результат квадратного уравнения, придумали формулу корней. Выглядит она так:
где D = b 2 − 4ac — дискриминант квадратного уравнения. Эта запись означает: Чтобы легко применять эту формулу, нужно понять, как она получилась. Давайте разбираться. Алгоритм решения квадратных уравнений по формулам корнейТеперь мы знаем, что при решении квадратных уравнения можно использовать универсальную формулу корней — это помогает находить комплексные корни. В 8 классе на алгебре можно встретить задачу по поиску действительных корней квадратного уравнения. Для этого важно перед использованием формул найти дискриминант и убедиться, что он неотрицательный, и только после этого вычислять значения корней. Если дискриминант отрицательный, значит уравнение не имеет действительных корней. Алгоритм решения квадратного уравнения ax 2 + bx + c = 0:
Чтобы запомнить алгоритм решения квадратных уравнений и с легкостью его использовать, давайте тренироваться! Примеры решения квадратных уравненийКак решать квадратные уравнения мы уже знаем, осталось закрепить знания на практике. Пример 1. Решить уравнение −4x 2 + 28x — 49 = 0.
Ответ: единственный корень 3,5. Пример 2. Решить уравнение 54 — 6x 2 = 0.
Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую Ответ: два корня 3 и — 3. Пример 3. Решить уравнение x 2 — х = 0.
Ответ: два корня 0 и 1. Пример 4. Решить уравнение x 2 — 10 = 39.
Ответ: два корня 7 и −7. Пример 5. Решить уравнение 3x 2 — 4x+94 = 0.
D = (-4) 2 — 4 * 3 * 94 = 16 — 1128 = −1112 Ответ: корней нет. В школьной программе за 8 класс нет обязательного требования искать комплексные корни, но такой подход может ускорить ход решения. Если дискриминант отрицательный — сразу пишем ответ, что действительных корней нет и не мучаемся. Видео:Корень n-ой степени. Алгебра, 9 классСкачать Формула корней для четных вторых коэффициентовРассмотрим частный случай. Формула решения корней квадратного уравнения , где D = b 2 — 4ac, помогает получить еще одну формулу, более компактную, при помощи которой можно решать квадратные уравнения с четным коэффициентом при x. Рассмотрим, как появилась эта формула. Например, нам нужно решить квадратное уравнение ax 2 + 2nx + c = 0. Сначала найдем его корни по известной нам формуле. Вычислим дискриминант D = (2n) 2 — 4ac = 4n 2 — 4ac = 4(n 2 — ac) и подставим в формулу корней: 2 + 2nx + c = 0″ height=»705″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc11a460e2f8354381151.png» width=»588″> Для удобства вычислений обозначим выражение n 2 -ac как D1. Тогда формула корней квадратного уравнения со вторым коэффициентом 2·n примет вид:
где D1 = n 2 — ac. Самые внимательные уже заметили, что D = 4D1, или D1= D/4. Проще говоря, D1 — это четверть дискриминанта. И получается, что знак D1 является индикатором наличия или отсутствия корней квадратного уравнения. Сформулируем правило. Чтобы найти решение квадратного уравнения со вторым коэффициентом 2n, нужно:
Видео:Преобразование выражений, содержащих квадратные корни. Избавление от иррациональности. 8 класс.Скачать Формула ВиетаЕсли в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так: Сумма корней x 2 + bx + c = 0 равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену. Если дано x 2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства: Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам. Рассмотрим теорему Виета на примере: x 2 + 4x + 3 = 0. Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре: Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит: Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x 2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента: Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное. Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется: Результат проделанных вычислений в том, что мы убедились в справедливости выражения: Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Вот она: Обратная теорема Виета Если числа x1 и x2 таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа и есть корни x 2 + bx + c = 0. Обычно вся суть обратных теорем в том самом выводе, которое дает первая теорема. Так, при доказательстве теоремы Виета стало понятно, что сумма x1 и x2 равна −b, а их произведение равно c. В обратной теореме это и есть утверждение. Пример 1. Решить при помощи теоремы Виета: x 2 − 6x + 8 = 0.
2 − 6x + 8 = 0″ height=»59″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc101ce2e346034751939.png» width=»117″> Когда у нас есть эти два равенства, можно подобрать подходящие корни, которые будут удовлетворять обоим равенствам системы. Чтобы проще подобрать корни, нужно их перемножить. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x1 и x2 надо подбирать так, чтобы они удовлетворяли и второму равенству тоже. Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x1 + x2 = 6. А значения 4 и 2 подходят обоим равенствам: Значит числа 4 и 2 — корни уравнения x 2 − 6x + 8 = 0. p> Упрощаем вид квадратных уравненийЕсли мы ходили в школу всегда одной тропинкой, а потом вдруг обнаружили путь короче — это значит теперь у нас есть выбор: упростить себе задачу и сократить время на дорогу или прогуляться по привычному маршруту. Так же и при вычислении корней квадратного уравнения. Ведь проще посчитать уравнение 11x 2 — 4 x — 6 = 0, чем 1100x 2 — 400x — 600 = 0. Часто упрощение вида квадратного уравнения можно получить через умножение или деление обеих частей на некоторое число. Например, в предыдущем абзаце мы упростили уравнение 1100x 2 — 400x — 600 = 0, просто разделив обе части на 100. Такое преобразование возможно, когда коэффициенты не являются взаимно простыми числами. Тогда принято делить обе части уравнения на наибольший общий делитель абсолютных величин его коэффициентов. Покажем, как это работает на примере 12x 2 — 42x + 48 = 0. Найдем наибольший общий делитель абсолютных величин его коэффициентов: НОД (12, 42, 48) = 6. Разделим обе части исходного квадратного уравнения на 6, и придем к равносильному уравнению 2x 2 — 7x + 8 = 0. Вот так просто. А умножение обеих частей квадратного уравнения отлично помогает избавиться от дробных коэффициентов. Умножать в данном случае лучше на наименьшее общее кратное знаменателей его коэффициентов. Например, если обе части квадратного уравнения
умножить на НОК (6, 3, 1) = 6, то оно примет более простой вид x 2 + 4x — 18 = 0. Также для удобства вычислений можно избавиться от минуса при старшем коэффициенте квадратного уравнения — для этого умножим или разделим обе части на −1. Например, удобно от квадратного уравнения −2x 2 — 3x + 7 = 0 перейти к решению 2x 2 + 3x — 7 = 0. Связь между корнями и коэффициентамиМы уже запомнили, что формула корней квадратного уравнения выражает корни уравнения через его коэффициенты:
Из этой формулы, можно получить другие зависимости между корнями и коэффициентами. Например, можно применить формулы из теоремы Виета: Для приведенного квадратного уравнения сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней — свободному члену. Например, по виду уравнения 3x 2 — 7x + 22 = 0 можно сразу сказать, что сумма его корней равна 7/3, а произведение корней равно 22/3. Можно активно использовать уже записанные формулы и с их помощью получить ряд других связей между корнями и коэффициентами квадратного уравнения. Таким образом можно выразить сумму квадратов корней квадратного уравнения через его коэффициенты: Видео:Преобразование выражений, содержащих кв.корни. Внесение и вынесения из, под знак кв. корня. 8 класс.Скачать Алгебра. 8-й класс. «Преобразование корней»Разделы: Математика Класс: 8 Цели: Вывести правило «Вынесение множителя из-под знака корня», вывести правило «Внесение множителя под знак корня». Видео:Как складывать корни?Скачать Ход урока1. Актуализация.Ученикам предлагается выполнить первое задание «Третий лишний». В каждой строке даны три элемента, надо установить лишний элемент. (На уроке используется презентация – Приложение 1) Второе задание. На сколько групп можно разделить данные примеры?
2. Проблемная ситуация.Задание называется «Скорость счета». Задача учащихся решить 12 примеров за 1 минуту. В тетради записывать только ответы. На доске даны примеры: Проверка ответов см. Презентацию. У учащихся возникает проблемная ситуация – как решить пример, если подкоренные выражения различны. В ходе фронтальной беседы учитель подводит учащихся к тому, что сначала надо преобразовать подкоренные выражения. 3. Изучение нового материала.3.1. Учитель объясняет, что сегодня ученики узнают два преобразования. Поэтому для удобства надо разделить полстраницы пополам. И оставить строку для названия преобразований. Учитель: В левом столбце упростите . Каким образом можно представить подкоренное выражение? В ходе фронтальной беседы учитель с учениками перебирают возможные варианты разложения числа 12. Обсуждают, какое из разложений удобно. Решают пример, обосновывая каждый шаг. Появляется запись . Сравнивают подкоренные выражения в начале примера и в конце. Делают вывод, что упростили подкоренное выражение. Повторяют шаги. Один из учеников у доски пробует таким же образом упростить ? Обсуждают название данного преобразования. Формулируют алгоритм вынесения множителя из-под корня. В это время алгоритм появляется на экране. 3.2. После этого переходят ко второй колонке. Определяют, какое там будет преобразование. Решают пример – представить в виде корня . Обсуждают способ решения. Применяют этот способ для примера . Формулируют алгоритм, в ходе повторения шагов. Появляется алгоритм. 4. Этап закрепления нового материала. 4.1. Учитель раздает листочки, на которых записаны алгоритмы, и приведены примеры, которые решали. (Приложение 2). Ученики читают хором каждый алгоритм. Вынести множитель из-под корня Внести множитель под корень 1. Разложить подкоренное выражение на множители удобным способом. 1. Число, стоящее перед корнем, представить в виде корня. 2. Применить теорему «корень из произведения». 2. Применить теорему «произведение корней». 4.2. После прочтения алгоритмов, ученики решают два номера – на вынесения и внесение множителя. В каждом номере по три примера. Первый пример разбирают устно на экране компьютера. Второй пример записывают в тетради, работая с доской. Третий пример решают самостоятельно, затем решение проверяют по экрану.
5. Итог урока
Учитель проверяет первичное усвоение темы и получает обратную связь. На экране нужно найти соответствие между выражениями из первой и второй строк. Ученики предлагают варианты, обсуждают и проверяют. Учитель возвращает учеников к проблемной ситуации, возникшей вначале урока. Ученики применяют новые знания для решения примера. Учитель совместно с учениками определяет дальнейшие действия на следующие уроки: закреплять правила и решать примеры. 6. Домашнее задание.Выучить 2 алгоритма, выполнить примеры по листочку.
🎬 ВидеоДвойные корни. Как решать. Арифметический квадратный корень. Преобразование двойных радикалов.Скачать КАК ИЗВЛЕЧЬ КОРЕНЬ БЕЗ КАЛЬКУЛЯТОРАСкачать Корень n-ой степени из действительного числа и его свойства. 11 класс.Скачать Как извлекать кубический корень без калькулятораСкачать Преобразование выражений, содержащих квадратные корни. Алгебра, 8 классСкачать Если под корнем число в квадратеСкачать Что такое квадратный кореньСкачать Как правильно умножать корни #огэ #огэматематика #математикаСкачать |