Как правильно записать уравнение в столбик

ДЕКАБРЬ 2016.Г. Оформление записей в тетрадях по математике
статья (1 класс) на тему

Как правильно записать уравнение в столбик

Порядок оформления записей в тетрадях по математике в начальной школе

Видео:Как делить уголком? Деление столбикомСкачать

Как делить уголком? Деление столбиком

Скачать:

ВложениеРазмер
obr_of_matem.docx681.77 КБ

Видео:ЕГЭ по математике. Деление многочлена на двучленСкачать

ЕГЭ по математике. Деление многочлена на двучлен

Предварительный просмотр:

Образцы оформления заданий на уроках математики

В ходе работы на уроках математики возникают частные вопросы оформления отдельных заданий: решения задач, нахождения значения числовых выражений, уравнений, неравенств, выполнения геометрических заданий.

Рассмотрим примерные рекомендации по оформлению отдельных заданий младшими школьниками в тетрадях по математике.

Во-первых, необходимо научить младших школьников легко определять количество строк, которые следует пропускать.

Между работами — 4 клетки, внутри работы между заданиями — 2 клетки, внутри заданий между действиями — 1 клетку (образец 1).

Требования к написанию цифр как в однозначных числах, так и в многозначных предъявляются единые. Каждая цифра пишется с наклоном в отдельной клетке, прислоняясь к её правой стороне. Особенно это требование актуально при выполнении действий с многозначными числами. Образцы написания цифр представлены в учебном наглядном пособии «Демонстрационный набор письменных цифр и математических знаков».

Во II классе учащимся удобнее все буквы в тетрадях по математике писать высотой в целую клетку (аналогично письму на уроках языка). В III и IV классах высота букв при повышении скорости письма может уменьшаться до 2/3 высоты клетки.

После даты, слов Домашняя работа, Классная работа. Задача точка не ставится. Слова Примеры, Уравнения, Неравенств, Математический диктант, Контрольный устный счёт в начальных классах не пишутся.

Как ученику II класса (именно в этом возрасте они начинают записывать дату выполнения работы) научиться определять место начала записи Даты? Например, можно договориться отсчитывать от начала страницы (или от полей) 10 полных клеток, а в 11-й начинать запись даты, тогда будет достигнуто единство оформления письменных записей и ученику легко будет расположить дату посередине страницы.

Оформление математических диктантов может быть выполнено разными способами. Учащиеся I класса пишут под диктовку числа, учатся писать математические диктанты, записывая результаты в строку через запятую. Начиная со II класса результаты диктанта можно оформлять в строку или в столбики. Учащиеся должны быть научены фиксировать ответы по-разному. Перед математическим диктантом учитель оговаривает с учащимися способ записи ответов. При записи результатов математического диктанта в строку учащиеся пишут каждый последующий результат через запятую. В случае отсутствия ответа

на месте его ученик ставит прочерк. В противном случае проверка результатов выполненного диктанта вызовет затруднения, как у учителя, так и учащихся (при самопроверке и при взаимопроверке). (Образец 2.)

Запись результатов математического диктанта может быть выполнена в столбики. Для этого перед началом диктанта учитель сообщает классу количество заданий предстоящего диктанта (10 или 12). Учащиеся до диктанта записывают половину порядковых номеров ответов (5 или 6) в первый столбик, а вторую половину — во второй, отступив вправо от записанных номеров заданий первого столбика оговоренное количество клеток, например 10. Порядковые номера заданий записываются с круглой скобкой.

В ходе выполнения математического диктанта учащиеся записывают ответ рядом с порядковым номером. Ответы, в которых учащийся сомневается, могут быть им пропущены. Заполнение их возможно и при самопроверке. Перед тем как отдать работу на проверку учителю или однокласснику, ученик должен рядом с номерами невыполненных заданий поставить прочерк. (Образец 3.)

В IV классе при изучении нумерации многозначных чисел фиксация результатов математического диктанта может производиться в один столбик. (Образец 4.)

В оформление задачи входит слово Задача, запись решения и ответа.

Слово Задача записывается с большой буквы посередине строки. Ориентировочно необходимо отступить от левого края страницы 10 клеток. Если запись слова Задача располагается на той же странице, что и дата, то учащимся удобно провести по воздуху линию от первой цифры даты вниз, так как первая буква слова будет расположена под первой цифрой даты. (См. образец 1.)

В I классе решение задачи записывается в виде числового выражения. Значение числового выражения (ответ задачи) подчёркивается. Полный ответ задачи проговаривается устно. (Образец 5.)

Со II класса пишутся слова Задача и Ответ. Второклассники учатся оформлять запись решения составной задачи. При записи решения задачи по действиям каждое действие пишется с новой строки. В начале строки ставится порядковый номер действия с круглой скобкой, отступается одна клетка и записывается действие. (Образец 6.)

Запись решения задачи может быть оформлена выражением. В этом случае порядковый номер в начале строки не ставится. (Образец 7.)

В III и IV классах решение может быть оформлено по действиям без пояснений, с полными или краткими пояснениями, с вопросами, с планом, а также выражением. Если решение задачи записывается выражением, то нет необходимости делать пояснения после действия. Результат поясняется только в ответе.

Решение задачи по действиям с краткими пояснениями

оформляется следующим образом. Пояснения к каждому из действий формулируются кратко (словосочетанием). Сразу после наименования ставится тире, и с маленькой буквы записывается пояснение, в котором заключается основной смысл ответа на поставленный вопрос. (Образец 8.)

Решение задачи по действиям с полными пояснениями оформляется следующим образом. (Образец 9.)

Решение задачи с вопросами предполагает постановку» вопросов к каждому из действий. Вопрос записывается с большой буквы с начала строки. После него ставится вопросительный знак, а затем с новой строки записывается действие. Порядковый номер действия в этом случае ставится один раз перед вопросом. (Образец 10.)

Решение этой же задачи можно оформить с планом. (Образец 11.)

При необходимости выполнить письменные вычисления решение задачи записывается сразу в столбик. (Образец 12.)

Если решение задачи записывается выражением, при этом необходимо произвести письменные вычисления, они располагаются под выражением. (Образец 13.)

Наименование пишется после каждого действия задачи или после выражения в скобках с маленькой буквы. В записи наименования допускаются сокращения (обязательно должно заканчиваться на согласный). После сокращения ставится точка, в случаях, если это сокращение не является общепринятым. Точка не ставится в наименованиях, обозначающих единицы измерения длины: мм, см, дм, м, км, единицы измерения веса: г, кг, т, ц, единицы измерения времени: суг, ч, мин, с.

Слово Ответ записывается с начала строки, после него ставится двоеточие. После двоеточия на первом месте желательно записать число (результат решения задачи), а после него с_ маленькой буквы пояснение к нему. Ответ задачи может записываться как целыми словами, так и с использованием общепринятых сокращений (километров — км, метров — м, километров в час — км/ч и т. п.). Ответ записывается к каждой задаче.

В случае если задача решается несколькими способами, делается пометка «1 способ, 2 способ» и ответ записывается один раз. Если решение задачи записано по действиям, а затем выражением, то ответ тоже записывается один раз. Если решение задачи выполнялось с полным пояснением, с записью вопросов по действиям, ответ может быть записан кратко. При этом записывается числовое значение и наименование либо число и словосочетание, отражающие ответ задачи. (См. образцы 9, 10, 11.) Если решение задачи записано выражением, по действиям с краткими пояснениями или без них, то ответ задачи должен быть полным (в виде числа и предложения). (См. образцы 6, 7, 8, 12, 13.)

К задаче может быть выполнена краткая запись. Она записывается после слова Задача. Между строками пропускается одна клетка. Буквы и цифры пишутся в соответствии с рассмотренными выше требованиями.

Запись нахождения значения математического выражения также оформляется единообразно. Если математическое выражение состоит из одного действия, которое решается устно, ученик записывает его в строку и рядом — его ответ. При записи нескольких таких выражений между столбиками рекомендуется пропускать в сторону 3 клетки, а вниз между столбиками — 2. (Образец 14.)

Если математическое выражение состоит из одного действия, и для его решения требуются письменные вычисления, то оно сразу записывается в столбик и вычисляется. В строке можно разместить несколько математических выражений с письменными вычислениями при условии, что вправо между ними необходимо пропускать не менее 3 клеток. (Образец 15.)

При письменном умножении на трёхзначное число следует рекомендовать учащимся размещать на одной строке только 2 примера, так как при записи происходит значительный сдвиг влево. При необходимости на строке размешается математическое выражение, а рядом проверка вычислений. (Образец 16.)

Учащийся вправе сам принять решение о рациональном размещении на странице выполненных заданий. К примеру, если необходимо выполнить несколько примеров на деление многозначных чисел и сделать к ним проверку, на одной строке можно разместить примеры на деление, а под ними проверку. В таких случаях рекомендуется отступать вниз 2 клетки. (Образец 17.)

Если математическое выражение состоит из нескольких действий, решение которых предполагает устные вычисления, то учащийся сначала определяет порядок действий (его можно надписать над выражением), затем производит устные вычисления и записывает ответ. Выполнять запись устных действий не нужно. (Образец 18.)

Если математическое выражение состоит из нескольких действий, решение которых предполагает письменные вычисления, то сначала оно записывается в строку. Определяется порядок выполнения действий. Затем каждое действие записывается под выражением и выполняется. Полученный конечный результат записывается в первоначальную запись после знака «равно». (Образец 19.)

Решение простейшего уравнения записывается в столбик: само уравнение, способ нахождения неизвестного, результат вычисления (значение неизвестного), проверка решения уравнения. Можно расположить решение двух уравнений в 2 столбика. При этом между уравнениями в сторону необходимо отступить 3 клетки. Слова Решение

и Проверка, которые используются в

образце оформления уравнения на страницах учебника, в тетрадях учащимися не записываются. (Образец 20.)

Решение уравнений в два действия также записывается в столбик. Расположение двух таких уравнений также допустимо на одной строке при условии, что их решение не требует письменных вычислений. (Образец 21.)

Если при решении уравнения необходимо выполнять письменные действия с многозначными числами, их следует располагать справа от записи решения уравнения. (Образец 22.)

Сравнение чисел, выражений, величин. При сравнении двух чисел они записываются на строке с интервалом в одну клетку. В ней учащийся ставит знак. (Образец 23.)

При сравнении многозначных чисел учащийся производит сравнение поразрядно. Достаточно обратить внимание на различающиеся цифры в разрядах, начиная с высшего, подчеркнуть их. Во второй строке можно записать только те цифры, которыми различаются числа. Это будет основанием для сравнения чисел. (Образец 24.)

Если число необходимо сравнить с выражением, то в записи между ними также оставляется клетка. Знак может быть вставлен только после нахождения значения выражения и сопоставления его с числом. (Образец 25.)

Если необходимо сравнить два выражения, то в записи между ними также оставляется клетка. Знак может быть вставлен только после нахождения значений обоих выражений. Найденные значения выражений целесообразно записать на следующей строке и после их сопоставления поставить знак сравнения между ними, а затем и на верхней строке в исходном выражении. (Образец 26.)

При сравнении величин обращается внимание на единицы их измерения. Если величины выражены в одинаковых единицах измерения, то сравнение производится так же, как и сравнение чисел. Знак ставится между величинами после установления их равенства или неравенства. (Образец 27.)

Если сравниваются величины, выраженные в разных единицах измерения, необходимо оценить возможность их сравнения без приведения их к единым единицам измерения; если это возможно, поставить требующийся знак. (Образец 28.)

При сравнении величин, выраженных в разных единицах измерения, чаще всего обязательным условием является приведение их к одинаковым единицам (меньшим или большим). Запись лучше зафиксировать на следующей строке. После сопоставления преобразованных величин можно поставить знак равенства или неравенства и затем перенести его в исходное выражение. (Образец 29.)

Задания геометрического характера могут включать только вычерчивание геометрических фигур, только нахождение параметров геометрических фигур, либо задание на нахождение параметров и вычерчивание фигур.

Если задание предполагает только вычерчивание фигуры (фигур), от предыдущего задания отступают две клетки и чертят заданную геометрическую фигуру.

Если задание предполагает только нахождение параметров геометрической фигуры, то ученик должен оформить выполнение задания как решение задачи: слово Задача, решение (нахождение параметров геометрической фигуры), ответ. Если в задаче не требуется вычерчивание фигуры, этого и не нужно делать. (Образец 30.)

Если задание предполагает нахождение параметров и вычерчивание фигуры, то оформляется это тоже как задача. Ученик должен привыкнуть к тому, что любые вычисления (даже устные) при нахождении параметров должны быть зафиксированы письменно. Сначала проводятся вычисления, затем вычерчивается фигура с полученными данными. (Образец 31.)

В задании может быть задана длина первого отрезка. Второй и третий отрезки необходимо найти, а затем начертить. В таком случае ребёнку удобно начертить данный отрезок, вычислить размер второго отрезка (с записью действия), начертить полученный отрезок, затем найти длину третьего отрезка (с записью действия) и тогда его начертить. (Образец 32.)

Это же задание учащийся может оформить иначе. (Образец 33.)

Если к заданию было записано слово Задача, значит, к нему предполагается и Ответ.

Если необходимо произвести сравнение отрезков, значит, за писывается слово Задача, после вычерчивания отрезков записывается математическое действие, с помощью которого производилось сравнение (вычитание, деление). Завершается выполнение задания записью ответа.

Отметим некоторые особенности вычерчивания отрезков.

  • Чертим отрезки, отступая от левого края страницы 1 полную клетку.
  • Все отрезки необходимо чертить друг под другом, при этом их начальные точки должны находиться на одном расстоянии от левого края страницы.
  • Пропуски между отрезками вниз составляют 1 клетку.
  • Края отрезков отмечаются небольшими штрихами.

Нахождение значения выражения с переменной записывается следующим образом. (Образец 34.)

Требования к оформлению контрольных работ. Оформление их производится так же, как и классных работ. Исправления делаются в случае необходимости аккуратно. Краткая запись к задаче, вопросы, пояснения, которые помогают при обучении решению задач, в контрольной работе не требуются, так как их использование часто влечёт множество орфографических ошибок, не отражающих реальные математические знания детей. Формулировки заданий контрольной работы учащимися не переписываются в тетрадь. Ставится лишь порядковый номер выполняемого задания.

Порядок выполнения заданий контрольной работы учащийся может выбрать сам. Записывая решения заданий, он должен ставить тот порядковый номер задания, под которым оно стоит в контрольной работе. (Образец 36.)

Хочется отметить, что далеко не все частные случаи оформления записей по математике удалось осветить в статье. Кроме того, прописанные в данной статье рекомендации являются примерными. Если учителем, методическим объединением учителей наработаны более рациональные приёмы обучения учащихся оформлению записей в тетрадях по математике без нарушения общепринятых норм, они имеют право внедрять их в свою деятельность. Важным остаётся требование единообразия оформления записей всеми учащимися.

Работа по формированию у младших школьников культуры оформления записей в тетрадях по математике кропотливая, требует терпения. Однако необходимо помнить, что эти условности, используемые школьниками, не отражают математической подготовки учащихся, поэтому не следует строго наказывать учащихся за то, что кто-то из них пропустил не 10, а 11 клеток при записи даты или допустил и прочие отклонения. Важно, чтобы записи были рациональными, единообразными, экономичными, лаконичными и при этом эстетично оформленными.

  1. Н. Л. Ковалевская, учитель высшей категории, методист высшей категории,

г. Минск//Пачатковае навучанне: сям’я, дзіцячы сад, школа, 2012 г., № 10, стр. 5-12

Видео:Деление в столбик. Как делить в столбик?Скачать

Деление в столбик. Как делить в столбик?

Онлайн калькулятор. Сложение, вычитание, умножение и деление столбиком.

Этот онлайн калькулятор поможет вам понять, как складывать, вычитать, умножать и делить целые числа и десятичные дроби столбиком. Калькулятор сложения, вычитания, умножения и деления столбиком очень просто и быстро вычислит сумму, разность, произведение и частное и выдаст подробное решение задачи.

Видео:Как правильно делить в столбик? | Математика ОГЭ 2023 | УмскулСкачать

Как правильно делить в столбик? | Математика ОГЭ 2023 | Умскул

Калькулятор для сложения, вычитания, умножения и деления столбиком

Ввод данных в калькулятор для сложения, вычитания, умножения и деления столбиком

В онлайн калькулятор можно вводить натуральные числа или десятичные дроби.

Дополнительные возможности калькулятора для сложения, вычитания, умножения и деления столбиком

  • Между полями для ввода можно перемещаться нажимая клавиши «влево» и «вправо» на клавиатуре.

Инструкция использования калькулятора для сложения, вычитания, умножения и деления столбиком

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Видео:Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?

Математика

План урока:

Здравствуйте, ребята! Начнем урок с интересной загадки:

Отгадайте без подсказки

Вы героев этой сказки:

Трое братьев до чего же

Друг на друга все похожи!

Видео:Деление столбиком. Как научиться делить в столбик?Скачать

Деление столбиком. Как научиться делить в столбик?

Буквенные выражения

Три весёлых поросёнка Ниф-Ниф, Наф-Наф и Нуф-Нуф приглашают нас с вами, ребята, в гости. Посмотрите, какие дома они построили!

Как вы думаете, можно ли вставить в окошки карточки с цифрами? Почему?

В домике Ниф-Нифа в открытом окошке может быть карточка с цифрой 5? Какое выражение можно записать?

А какое выражение запишем, если в доме Нуф-Нуфа в окошке будет цифра 2?

Можно ли в окошке Наф-Нафа увидеть цифру 1? А цифру 3?

С цифрой 1 запишем выражение: 1 – 1.

А вот цифра 3 не подходит, потому что из 1 нельзя вычесть 3.

Запишите получившиеся выражения и найдите их значения.

Мы записали числовые выражения, ведь они содержат только числа.

Ребята, как вы думаете, можно ли в окошко вставить карточку с буквой?

В математике принято использовать латинские буквы. Может быть, вы уже знаете некоторые из них? Давайте, правильно назовем латинские буквы.

В окошки домиков поросят подставим карточки с буквами: x, y, d.

Запишем выражения: x + 4, 6 + y, 1 d.

У нас получились буквенные выражения.

Найдём значение следующих буквенных выражений: 8 + а, d 6, x + 5, y 1.

Для этого вместо буквы подставим число: а = 12, d = 9, x = 14, y = 20.

Найдите значение выражения: k + 20, если k = 3, k = 5, k = 9.

Видео:Вычитание столбиком. Как научиться вычитать столбиком?Скачать

Вычитание столбиком. Как научиться вычитать столбиком?

Уравнение. Решение уравнений методом подбора

Ребята, внимательно посмотрите на карточки с цифрами трех поросят. Чья карточка подходит для записи в рамке? Почему?

Подходит карточка с цифрой 8, потому что 8 + 2 = 10.

Вместо окошка запишем латинскую букву х (икс).

Получится запись: х + 2 = 10.

Это уравнение.

Ниф-Ниф просит из чисел 6, 5, 2, 1 подобрать для каждого уравнения такое значение у (игрек), при котором получится верное равенство:

8 + у = 9 12 – у= 10 у + 7 = 12 у – 5 = 1

Мы решили уравнения методом подбора. Обязательно нужно сделать проверку. Для этого вместо у (игрек) подставим в уравнение нужное число и убедимся, что равенство верное.

А теперь задание от Наф-Нафа. Ребята, найдите среди этих записей уравнение и решите его методом подбора.

3 + у 10 – х 14 – 2 b у = 8

Видео:Как объяснить деление в столбик? Деление чисел уголком. Деление на многозначного на однозначное.Скачать

Как объяснить деление в столбик? Деление чисел уголком. Деление на многозначного на однозначное.

Проверка сложения и вычитания

Ребята, по примеру на сложение составьте два примера на вычитание по образцу:

2 + 3 = 5 6 + 1 = 7 9 + 7 = 16

Молодцы! Вспомните, как называются числа при сложении!

Это правило пригодится нам для проверки правильности вычислений.

Например, 2 + 1 = 3

Проверку выполним вычитанием: 3 – 1 = 2 или 3 – 2 = 1.

Выполните самостоятельно сложение и сделайте проверку вычитанием:

17 + 3 76 + 4 20 + 19

Задание от Нуф-Нуфа. Ребята, вспомните, как называются числа при вычитании?

Ребята, выполните вычитание и сделайте проверку сложением:

Выполните вычитание и сделайте проверку, пользуясь правилом:

Видео:КАК ДЕЛИТЬ ПАЛОЧКАМИ? #математика #егэ #деление #огэСкачать

КАК ДЕЛИТЬ ПАЛОЧКАМИ? #математика #егэ #деление #огэ

Письменное сложение и вычитание. Запись столбиком

Ребята. Помогите трем поросятам посчитать!

Веселым поросятам для строительства прочного каменного дома нужно ещё 36 камней. У них уже есть 53 камня. Сколько всего камней нужно для строительства дома?

В этом примере мы к единицам прибавляли единицы, к десяткам прибавляли десятки.

Гораздо удобнее этот пример записать столбиком:

Алгоритм сложения

  • Пишу десятки под десятками, а единицы под единицами.
  • Складываю единицы: 6 плюс 3 будет 9.
  • Пишу под единицами – 9.
  • Складываю десятки: 3 плюс 5 будет 8.
  • Пишу под десятками – 8.
  • Читаю ответ: 89.

Вычитание тоже можно выполнять столбиком:

Алгоритм вычитания

  • Пишу десятки под десятками, а единицы под единицами.
  • Вычитаю единицы: 9 минус 4 будет 5.
  • Пишу под единицами – 5.
  • Вычитаю десятки: 6 минус 3 будет 3.
  • Пишу под десятками – 3.
  • Читаю ответ: 35.

Ребята, веселые поросята записали для вас примеры столбиком. Используя алгоритмы, спишите примеры правильно и вычислите с устным объяснением:

Пока мы с вами решали примеры, в записях наших сказочных поросят кто-то стер некоторые цифры. Помогите восстановить примеры на сложение столбиком. Узнайте, какие числа складывали, какие результаты получились. Подумайте, какая цифра должна стоять на месте звездочки.

Правильный ответ вы найдете в конце урока со значком

Ребята, все ли задания этого урока давались вам легко? Выберите мордочку одного из трёх поросят: Ниф-Нифа, Нуф-Нуфа или Наф-Нафа по своему настроению.

А вы помните, чем закончилась сказка про трех веселых поросят? Они спрятались от волка в крепком каменном доме Наф-Нафа. Крепким бывает не только дом, крепкой бывает дружба! Сообща можно многого добиться, даже если бывает очень трудно.

Напоследок три веселых задачки на смекалку от наших сказочных героев.

Задача от Ниф-Нифа.

Сколько лап и сколько ушей у трех зайцев?

Задача от Нуф-Нуфа.

Сколько клювов и сколько лапок у трех цыплят?

Задача от Наф-Нафа.

Сколько хвостов и сколько ушей у трех котов?

У трех зайцев 12 лап и 6 ушей.

У трех цыплят 3 клюва и 6 лапок.

У трех котов 3 хвоста и 6 ушей.

А вот и правильный ответ!

Ниф-Ниф, Наф-Наф и Нуф-Нуф прощаются с вами, ребята. До новых встреч! Проверьте свои знания, подумайте, что еще не очень хорошо у вас получается.

📹 Видео

Кубические уравнения. Деление столбиком. Схема Горнера.Скачать

Кубические уравнения. Деление столбиком. Схема Горнера.

Как решают уравнения в России и СШАСкачать

Как решают уравнения в России и США

Примеры на деление в столбик. Как научиться делить столбиком?Скачать

Примеры на деление в столбик. Как научиться делить столбиком?

Сложение столбиком. Как научиться складывать столбиком?Скачать

Сложение столбиком. Как научиться складывать столбиком?

АФИГЕЕЕЕТЬ😳 Лайфхак, как легко делить на 5😎Скачать

АФИГЕЕЕЕТЬ😳 Лайфхак, как легко делить на 5😎

Деление многочлена на многочленСкачать

Деление многочлена на многочлен

Деление столбикомСкачать

Деление столбиком

Редактор формул Word, часть 1Скачать

Редактор формул Word, часть 1

Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать

Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?

Умножение двузначных чисел в столбик. Как умножать столбиком?Скачать

Умножение двузначных чисел в столбик. Как умножать столбиком?

Проверь свои знания по математике за 11 классСкачать

Проверь свои знания по математике за 11 класс
Поделиться или сохранить к себе: