Как правильно решать уравнения с отрицательными числами

Общие сведения об уравнениях

Уравнения — одна из сложных тем для усвоения, но при этом они являются достаточно мощным инструментом для решения большинства задач.

С помощью уравнений описываются различные процессы, протекающие в природе. Уравнения широко применяются в других науках: в экономике, физике, биологии и химии.

В данном уроке мы попробуем понять суть простейших уравнений, научимся выражать неизвестные и решим несколько уравнений. По мере усвоения новых материалов, уравнения будут усложняться, поэтому понять основы очень важно.

Видео:Решение уравнений с отрицательными числами.Скачать

Решение уравнений с отрицательными числами.

Что такое уравнение?

Уравнение — это равенство, содержащее в себе переменную, значение которой требуется найти. Это значение должно быть таким, чтобы при его подстановке в исходное уравнение получалось верное числовое равенство.

Например выражение 3 + 2 = 5 является равенством. При вычислении левой части получается верное числовое равенство 5 = 5 .

А вот равенство 3 + x = 5 является уравнением, поскольку содержит в себе переменную x , значение которой можно найти. Значение должно быть таким, чтобы при подстановке этого значения в исходное уравнение, получилось верное числовое равенство.

Другими словами, мы должны найти такое значение, при котором знак равенства оправдал бы свое местоположение — левая часть должна быть равна правой части.

Уравнение 3 + x = 5 является элементарным. Значение переменной x равно числу 2. При любом другом значении равенство соблюдáться не будет

Как правильно решать уравнения с отрицательными числами

Говорят, что число 2 является корнем или решением уравнения 3 + x = 5

Корень или решение уравнения — это значение переменной, при котором уравнение обращается в верное числовое равенство.

Корней может быть несколько или не быть совсем. Решить уравнение означает найти его корни или доказать, что корней нет.

Переменную, входящую в уравнение, иначе называют неизвестным. Вы вправе называть как вам удобнее. Это синонимы.

Примечание. Словосочетание «решить уравнение» говорит самó за себя. Решить уравнение означает «уравнять» равенство — сделать его сбалансированным, чтобы левая часть равнялась правой части.

Видео:как ЛЕГКО сложить отрицательные числа , ПРИМЕРЫСкачать

как ЛЕГКО сложить отрицательные числа , ПРИМЕРЫ

Выразить одно через другое

Изучение уравнений по традиции начинается с того, чтобы научиться выражать одно число, входящее в равенство, через ряд других. Давайте не будем нарушать эту традицию и поступим также.

Рассмотрим следующее выражение:

Данное выражение является суммой чисел 8 и 2. Значение данного выражения равно 10

Получили равенство. Теперь можно выразить любое число из этого равенства через другие числа, входящие в это же равенство. К примеру, выразим число 2.

Чтобы выразить число 2, нужно задать вопрос: «что нужно сделать с числами 10 и 8, чтобы получить число 2». Понятно, что для получения числа 2, нужно из числа 10 вычесть число 8.

Так и делаем. Записываем число 2 и через знак равенства говорим, что для получения этого числа 2 мы из числа 10 вычли число 8:

Мы выразили число 2 из равенства 8 + 2 = 10 . Как видно из примера, ничего сложного в этом нет.

При решении уравнений, в частности при выражении одного числа через другие, знак равенства удобно заменять на слово «есть». Делать это нужно мысленно, а не в самом выражении.

Так, выражая число 2 из равенства 8 + 2 = 10 мы получили равенство 2 = 10 − 8 . Данное равенство можно прочесть так:

2 есть 10 − 8

То есть знак = заменен на слово «есть». Более того, равенство 2 = 10 − 8 можно перевести с математического языка на полноценный человеческий язык. Тогда его можно будет прочитать следующим образом:

Число 2 есть разность числа 10 и числа 8

Число 2 есть разница между числом 10 и числом 8.

Но мы ограничимся лишь заменой знака равенства на слово «есть», и то будем делать это не всегда. Элементарные выражения можно понимать и без перевода математического языка на язык человеческий.

Вернём получившееся равенство 2 = 10 − 8 в первоначальное состояние:

Выразим в этот раз число 8. Что нужно сделать с остальными числами, чтобы получить число 8? Верно, нужно из числа 10 вычесть число 2

Вернем получившееся равенство 8 = 10 − 2 в первоначальное состояние:

В этот раз выразим число 10. Но оказывается, что десятку выражать не нужно, поскольку она уже выражена. Достаточно поменять местами левую и правую часть, тогда получится то, что нам нужно:

Пример 2. Рассмотрим равенство 8 − 2 = 6

Выразим из этого равенства число 8. Чтобы выразить число 8 остальные два числа нужно сложить:

Вернем получившееся равенство 8 = 6 + 2 в первоначальное состояние:

Выразим из этого равенства число 2. Чтобы выразить число 2, нужно из 8 вычесть 6

Пример 3. Рассмотрим равенство 3 × 2 = 6

Выразим число 3. Чтобы выразить число 3, нужно 6 разделить 2

Как правильно решать уравнения с отрицательными числами

Вернем получившееся равенство Как правильно решать уравнения с отрицательными числамив первоначальное состояние:

Выразим из этого равенства число 2. Чтобы выразить число 2, нужно 6 разделить 3

Как правильно решать уравнения с отрицательными числами

Пример 4. Рассмотрим равенство Как правильно решать уравнения с отрицательными числами

Выразим из этого равенства число 15. Чтобы выразить число 15, нужно перемножить числа 3 и 5

Вернем получившееся равенство 15 = 3 × 5 в первоначальное состояние:

Как правильно решать уравнения с отрицательными числами

Выразим из этого равенства число 5. Чтобы выразить число 5, нужно 15 разделить 3

Как правильно решать уравнения с отрицательными числами

Видео:Уравнения с отрицательными числами (Математика 6 класс)Скачать

Уравнения с отрицательными числами (Математика 6 класс)

Правила нахождения неизвестных

Рассмотрим несколько правил нахождения неизвестных. Возможно, они вам знакомы, но не мешает повторить их ещё раз. В дальнейшем их можно будет забыть, поскольку мы научимся решать уравнения, не применяя эти правила.

Вернемся к первому примеру, который мы рассматривали в предыдущей теме, где в равенстве 8 + 2 = 10 требовалось выразить число 2.

В равенстве 8 + 2 = 10 числа 8 и 2 являются слагаемыми, а число 10 — суммой.

Как правильно решать уравнения с отрицательными числами

Чтобы выразить число 2, мы поступили следующим образом:

То есть из суммы 10 вычли слагаемое 8.

Теперь представим, что в равенстве 8 + 2 = 10 вместо числа 2 располагается переменная x

В этом случае равенство 8 + 2 = 10 превращается в уравнение 8 + x = 10 , а переменная x берет на себя роль так называемого неизвестного слагаемого

Как правильно решать уравнения с отрицательными числами

Наша задача найти это неизвестное слагаемое, то есть решить уравнение 8 + x = 10 . Для нахождения неизвестного слагаемого предусмотрено следующее правило:

Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое.

Что мы в принципе и сделали, когда выражали двойку в равенстве 8 + 2 = 10 . Чтобы выразить слагаемое 2, мы из суммы 10 вычли другое слагаемое 8

А сейчас, чтобы найти неизвестное слагаемое x , мы должны из суммы 10 вычесть известное слагаемое 8:

Если вычислить правую часть получившегося равенства, то можно узнать чему равна переменная x

Мы решили уравнение. Значение переменной x равно 2 . Для проверки значение переменной x отправляют в исходное уравнение 8 + x = 10 и подставляют вместо x. Так желательно поступать с любым решённым уравнением, поскольку нельзя быть точно уверенным, что уравнение решено правильно:

Как правильно решать уравнения с отрицательными числами

В результате получается верное числовое равенство. Значит уравнение решено правильно.

Это же правило действовало бы в случае, если неизвестным слагаемым было бы первое число 8.

В этом уравнении x — это неизвестное слагаемое, 2 — известное слагаемое, 10 — сумма. Чтобы найти неизвестное слагаемое x , нужно из суммы 10 вычесть известное слагаемое 2

Как правильно решать уравнения с отрицательными числами

Вернемся ко второму примеру из предыдущей темы, где в равенстве 8 − 2 = 6 требовалось выразить число 8.

В равенстве 8 − 2 = 6 число 8 это уменьшаемое, число 2 — вычитаемое, число 6 — разность

Как правильно решать уравнения с отрицательными числами

Чтобы выразить число 8, мы поступили следующим образом:

То есть сложили разность 6 и вычитаемое 2.

Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 8 располагается переменная x

В этом случае переменная x берет на себя роль так называемого неизвестного уменьшаемого

Как правильно решать уравнения с отрицательными числами

Для нахождения неизвестного уменьшаемого предусмотрено следующее правило:

Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое.

Что мы и сделали, когда выражали число 8 в равенстве 8 − 2 = 6 . Чтобы выразить уменьшаемое 8, мы к разности 6 прибавили вычитаемое 2.

А сейчас, чтобы найти неизвестное уменьшаемое x , мы должны к разности 6 прибавить вычитаемое 2

Если вычислить правую часть, то можно узнать чему равна переменная x

Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 2 располагается переменная x

В этом случае переменная x берет на себя роль неизвестного вычитаемого

Как правильно решать уравнения с отрицательными числами

Для нахождения неизвестного вычитаемого предусмотрено следующее правило:

Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность.

Что мы и сделали, когда выражали число 2 в равенстве 8 − 2 = 6. Чтобы выразить число 2, мы из уменьшаемого 8 вычли разность 6.

А сейчас, чтобы найти неизвестное вычитаемое x, нужно опять же из уменьшаемого 8 вычесть разность 6

Вычисляем правую часть и находим значение x

Вернемся к третьему примеру из предыдущей темы, где в равенстве 3 × 2 = 6 мы пробовали выразить число 3.

В равенстве 3 × 2 = 6 число 3 — это множимое, число 2 — множитель, число 6 — произведение

Как правильно решать уравнения с отрицательными числами

Чтобы выразить число 3 мы поступили следующим образом:

Как правильно решать уравнения с отрицательными числами

То есть разделили произведение 6 на множитель 2.

Теперь представим, что в равенстве 3 × 2 = 6 вместо числа 3 располагается переменная x

В этом случае переменная x берет на себя роль неизвестного множимого.

Как правильно решать уравнения с отрицательными числами

Для нахождения неизвестного множимого предусмотрено следующее правило:

Чтобы найти неизвестное множимое, нужно произведение разделить на множитель.

Что мы и сделали, когда выражали число 3 из равенства 3 × 2 = 6 . Произведение 6 мы разделили на множитель 2.

А сейчас для нахождения неизвестного множимого x , нужно произведение 6 разделить на множитель 2.

Как правильно решать уравнения с отрицательными числами

Вычисление правой части позволяет нам найти значение переменной x

Это же правило применимо в случае, если переменная x располагается вместо множителя, а не множимого. Представим, что в равенстве 3 × 2 = 6 вместо числа 2 располагается переменная x .

Как правильно решать уравнения с отрицательными числами

В этом случае переменная x берет на себя роль неизвестного множителя. Для нахождения неизвестного множителя предусмотрено такое же, что и для нахождения неизвестного множимого, а именно деление произведения на известный множитель:

Чтобы найти неизвестный множитель, нужно произведение разделить на множимое.

Как правильно решать уравнения с отрицательными числами

Что мы и сделали, когда выражали число 2 из равенства 3 × 2 = 6 . Тогда для получения числа 2 мы разделили произведение 6 на множимое 3.

А сейчас для нахождения неизвестного множителя x мы разделили произведение 6 на множимое 3.

Вычисление правой части равенства Как правильно решать уравнения с отрицательными числамипозволяет узнать чему равно x

Множимое и множитель вместе называют сомножителями. Поскольку правила нахождения множимого и множителя совпадают, мы можем сформулировать общее правило нахождения неизвестного сомножителя:

Чтобы найти неизвестный сомножитель, нужно произведение разделить на известный сомножитель.

Например, решим уравнение 9 × x = 18 . Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 18 разделить на известный сомножитель 9

Как правильно решать уравнения с отрицательными числами

Отсюда Как правильно решать уравнения с отрицательными числами.

Решим уравнение x × 3 = 27 . Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 27 разделить на известный сомножитель 3

Как правильно решать уравнения с отрицательными числами

Отсюда Как правильно решать уравнения с отрицательными числами.

Вернемся к четвертому примеру из предыдущей темы, где в равенстве Как правильно решать уравнения с отрицательными числамитребовалось выразить число 15. В этом равенстве число 15 — это делимое, число 5 — делитель, число 3 — частное.

Как правильно решать уравнения с отрицательными числами

Чтобы выразить число 15 мы поступили следующим образом:

То есть умножили частное 3 на делитель 5.

Теперь представим, что в равенстве Как правильно решать уравнения с отрицательными числамивместо числа 15 располагается переменная x

Как правильно решать уравнения с отрицательными числами

В этом случае переменная x берет на себя роль неизвестного делимого.

Как правильно решать уравнения с отрицательными числами

Для нахождения неизвестного делимого предусмотрено следующее правило:

Чтобы найти неизвестное делимое, нужно частное умножить на делитель.

Что мы и сделали, когда выражали число 15 из равенства Как правильно решать уравнения с отрицательными числами. Чтобы выразить число 15, мы умножили частное 3 на делитель 5.

А сейчас, чтобы найти неизвестное делимое x , нужно частное 3 умножить на делитель 5

Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x .

Теперь представим, что в равенстве Как правильно решать уравнения с отрицательными числамивместо числа 5 располагается переменная x .

Как правильно решать уравнения с отрицательными числами

В этом случае переменная x берет на себя роль неизвестного делителя.

Как правильно решать уравнения с отрицательными числами

Для нахождения неизвестного делителя предусмотрено следующее правило:

Чтобы найти неизвестный делитель, нужно делимое разделить на частное.

Что мы и сделали, когда выражали число 5 из равенства Как правильно решать уравнения с отрицательными числами. Чтобы выразить число 5, мы разделили делимое 15 на частное 3.

А сейчас, чтобы найти неизвестный делитель x , нужно делимое 15 разделить на частное 3

Как правильно решать уравнения с отрицательными числами

Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x .

Итак, для нахождения неизвестных мы изучили следующие правила:

  • Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое;
  • Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое;
  • Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность;
  • Чтобы найти неизвестное множимое, нужно произведение разделить на множитель;
  • Чтобы найти неизвестный множитель, нужно произведение разделить на множимое;
  • Чтобы найти неизвестное делимое, нужно частное умножить на делитель;
  • Чтобы найти неизвестный делитель, нужно делимое разделить на частное.

Видео:Сложение и вычитание рациональных чисел. 6 класс.Скачать

Сложение и вычитание рациональных чисел. 6 класс.

Компоненты

Компонентами мы будем называть числа и переменные, входящие в равенство

Так, компонентами сложения являются слагаемые и сумма

Как правильно решать уравнения с отрицательными числами

Компонентами вычитания являются уменьшаемое, вычитаемое и разность

Как правильно решать уравнения с отрицательными числами

Компонентами умножения являются множимое, множитель и произведение

Как правильно решать уравнения с отрицательными числами

Компонентами деления являются делимое, делитель и частное

Как правильно решать уравнения с отрицательными числами

В зависимости от того, с какими компонентами мы будем иметь дело, будут применяться соответствующие правила нахождения неизвестных. Эти правила мы изучили в предыдущей теме. При решении уравнений желательно знать эти правило наизусть.

Пример 1. Найти корень уравнения 45 + x = 60

45 — слагаемое, x — неизвестное слагаемое, 60 — сумма. Имеем дело с компонентами сложения. Вспоминаем, что для нахождения неизвестного слагаемого, нужно из суммы вычесть известное слагаемое:

Вычислим правую часть, получим значение x равное 15

Значит корень уравнения 45 + x = 60 равен 15.

Чаще всего неизвестное слагаемое необходимо привести к виду при котором его можно было бы выразить.

Пример 2. Решить уравнение Как правильно решать уравнения с отрицательными числами

Здесь в отличие от предыдущего примера, неизвестное слагаемое нельзя выразить сразу, поскольку оно содержит коэффициент 2. Наша задача привести это уравнение к виду при котором можно было бы выразить x

В данном примере мы имеем дело с компонентами сложения — слагаемыми и суммой. 2x — это первое слагаемое, 4 — второе слагаемое, 8 — сумма.

Как правильно решать уравнения с отрицательными числами

При этом слагаемое 2x содержит переменную x . После нахождения значения переменной x слагаемое 2x примет другой вид. Поэтому слагаемое 2x можно полностью принять за неизвестное слагаемое:

Как правильно решать уравнения с отрицательными числами

Теперь применяем правило нахождения неизвестного слагаемого. Вычитаем из суммы известное слагаемое:

Как правильно решать уравнения с отрицательными числами

Вычислим правую часть получившегося уравнения:

Как правильно решать уравнения с отрицательными числами

Мы получили новое уравнение Как правильно решать уравнения с отрицательными числами. Теперь мы имеем дело с компонентами умножения: множимым, множителем и произведением. 2 — множимое, x — множитель, 4 — произведение

Как правильно решать уравнения с отрицательными числами

При этом переменная x является не просто множителем, а неизвестным множителем

Как правильно решать уравнения с отрицательными числами

Чтобы найти этот неизвестный множитель, нужно произведение разделить на множимое:

Как правильно решать уравнения с отрицательными числами

Вычислим правую часть, получим значение переменной x

Как правильно решать уравнения с отрицательными числами

Для проверки найденный корень отправим в исходное уравнение Как правильно решать уравнения с отрицательными числамии подставим вместо x

Как правильно решать уравнения с отрицательными числами

Получили верное числовое равенство. Значит уравнение решено правильно.

Пример 3. Решить уравнение 3x + 9x + 16x = 56

Cразу выразить неизвестное x нельзя. Сначала нужно привести данное уравнение к виду при котором его можно было бы выразить.

Приведем подобные слагаемые в левой части данного уравнения:

Как правильно решать уравнения с отрицательными числами

Имеем дело с компонентами умножения. 28 — множимое, x — множитель, 56 — произведение. При этом x является неизвестным множителем. Чтобы найти неизвестный множитель, нужно произведение разделить на множимое:

Как правильно решать уравнения с отрицательными числами

Отсюда x равен 2

Как правильно решать уравнения с отрицательными числами

Видео:Как вычитать отрицательные числа? / Простые примеры из жизни по математикеСкачать

Как вычитать отрицательные числа? / Простые примеры из жизни по математике

Равносильные уравнения

В предыдущем примере при решении уравнения 3x + 9x + 16x = 56 , мы привели подобные слагаемые в левой части уравнения. В результате получили новое уравнение 28x = 56 . Старое уравнение 3x + 9x + 16x = 56 и получившееся новое уравнение 28x = 56 называют равносильными уравнениями, поскольку их корни совпадают.

Уравнения называют равносильными, если их корни совпадают.

Проверим это. Для уравнения 3x + 9x + 16x = 56 мы нашли корень равный 2 . Подставим этот корень сначала в уравнение 3x + 9x + 16x = 56 , а затем в уравнение 28x = 56 , которое получилось в результате приведения подобных слагаемых в левой части предыдущего уравнения. Мы должны получить верные числовые равенства

Как правильно решать уравнения с отрицательными числами

Согласно порядку действий, в первую очередь выполняется умножение:

Как правильно решать уравнения с отрицательными числами

Подставим корень 2 во второе уравнение 28x = 56

Как правильно решать уравнения с отрицательными числами

Видим, что у обоих уравнений корни совпадают. Значит уравнения 3x + 9x + 16x = 56 и 28x = 56 действительно являются равносильными.

Для решения уравнения 3x + 9x + 16x = 56 мы воспользовались одним из тождественных преобразований — приведением подобных слагаемых. Правильное тождественное преобразование уравнения позволило нам получить равносильное уравнение 28x = 56 , которое проще решать.

Из тождественных преобразований на данный момент мы умеем только сокращать дроби, приводить подобные слагаемые, выносить общий множитель за скобки, а также раскрывать скобки. Существуют и другие преобразования, которые следует знать. Но для общего представления о тождественных преобразованиях уравнений, изученных нами тем вполне хватает.

Рассмотрим некоторые преобразования, которые позволяют получить равносильное уравнение

Если к обеим частям уравнения прибавить одно и то же число, то получится уравнение равносильное данному.

Если из обеих частей уравнения вычесть одно и то же число, то получится уравнение равносильное данному.

Другими словами, корень уравнения не изменится, если к обеим частям данного уравнения прибавить (или вычесть из обеих частей) одно и то же число.

Пример 1. Решить уравнение Как правильно решать уравнения с отрицательными числами

Вычтем из обеих частей уравнения число 10

Как правильно решать уравнения с отрицательными числами

Приведем подобные слагаемые в обеих частях:

Как правильно решать уравнения с отрицательными числами

Получили уравнение 5x = 10 . Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x , нужно произведение 10 разделить на известный сомножитель 5.

Как правильно решать уравнения с отрицательными числами

Отсюда Как правильно решать уравнения с отрицательными числами.

Вернемся к исходному уравнению Как правильно решать уравнения с отрицательными числамии подставим вместо x найденное значение 2

Как правильно решать уравнения с отрицательными числами

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение Как правильно решать уравнения с отрицательными числамимы вычли из обеих частей уравнения число 10 . В результате получили равносильное уравнение Как правильно решать уравнения с отрицательными числами. Корень этого уравнения, как и уравнения Как правильно решать уравнения с отрицательными числамитак же равен 2

Как правильно решать уравнения с отрицательными числами

Пример 2. Решить уравнение 4(x + 3) = 16

Раскроем скобки в левой части равенства:

Как правильно решать уравнения с отрицательными числами

Вычтем из обеих частей уравнения число 12

Как правильно решать уравнения с отрицательными числами

Приведем подобные слагаемые в обеих частях уравнения:

Как правильно решать уравнения с отрицательными числамиВ левой части останется 4x , а в правой части число 4

Как правильно решать уравнения с отрицательными числами

Получили уравнение 4x = 4 . Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x , нужно произведение 4 разделить на известный сомножитель 4

Как правильно решать уравнения с отрицательными числами

Отсюда Как правильно решать уравнения с отрицательными числами

Вернемся к исходному уравнению 4(x + 3) = 16 и подставим вместо x найденное значение 1

Как правильно решать уравнения с отрицательными числами

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение 4(x + 3) = 16 мы вычли из обеих частей уравнения число 12 . В результате получили равносильное уравнение 4x = 4 . Корень этого уравнения, как и уравнения 4(x + 3) = 16 так же равен 1

Как правильно решать уравнения с отрицательными числами

Пример 3. Решить уравнение Как правильно решать уравнения с отрицательными числами

Раскроем скобки в левой части равенства:

Как правильно решать уравнения с отрицательными числами

Прибавим к обеим частям уравнения число 8

Как правильно решать уравнения с отрицательными числами

Приведем подобные слагаемые в обеих частях уравнения:

Как правильно решать уравнения с отрицательными числами

В левой части останется 2x , а в правой части число 9

Как правильно решать уравнения с отрицательными числами

В получившемся уравнении 2x = 9 выразим неизвестное слагаемое x

Как правильно решать уравнения с отрицательными числами

Отсюда Как правильно решать уравнения с отрицательными числами

Вернемся к исходному уравнению Как правильно решать уравнения с отрицательными числамии подставим вместо x найденное значение 4,5

Как правильно решать уравнения с отрицательными числами

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение Как правильно решать уравнения с отрицательными числамимы прибавили к обеим частям уравнения число 8. В результате получили равносильное уравнение Как правильно решать уравнения с отрицательными числами. Корень этого уравнения, как и уравнения Как правильно решать уравнения с отрицательными числамитак же равен 4,5

Как правильно решать уравнения с отрицательными числами

Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом

Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.

То есть корень уравнения не изменится, если мы перенесем слагаемое из одной части уравнения в другую, изменив его знак. Это свойство является одним из важных и одним из часто используемых при решении уравнений.

Рассмотрим следующее уравнение:

Как правильно решать уравнения с отрицательными числами

Корень данного уравнения равен 2. Подставим вместо x этот корень и проверим получается ли верное числовое равенство

Как правильно решать уравнения с отрицательными числами

Получается верное равенство. Значит число 2 действительно является корнем уравнения Как правильно решать уравнения с отрицательными числами.

Теперь попробуем поэкспериментировать со слагаемыми этого уравнения, перенося их из одной части в другую, изменяя знаки.

Например, слагаемое 3x располагается в левой части равенства. Перенесём его в правую часть, изменив знак на противоположный:

Как правильно решать уравнения с отрицательными числами

Получилось уравнение 12 = 9x − 3x . Приведем подобные слагаемые в правой части данного уравнения:

Как правильно решать уравнения с отрицательными числами

Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Как правильно решать уравнения с отрицательными числами

Отсюда x = 2 . Как видим, корень уравнения не изменился. Значит уравнения 12 + 3x = 9x и 12 = 9x − 3x являются равносильными.

На самом деле данное преобразование является упрощенным методом предыдущего преобразования, где к обеим частям уравнения прибавлялось (или вычиталось) одно и то же число.

Мы сказали, что в уравнении 12 + 3x = 9x слагаемое 3x было перенесено в правую часть, изменив знак. В реальности же происходило следующее: из обеих частей уравнения вычли слагаемое 3x

Как правильно решать уравнения с отрицательными числами

Затем в левой части были приведены подобные слагаемые и получено уравнение 12 = 9x − 3x. Затем опять были приведены подобные слагаемые, но уже в правой части, и получено уравнение 12 = 6x.

Но так называемый «перенос» более удобен для подобных уравнений, поэтому он и получил такое широкое распространение. Решая уравнения, мы часто будем пользоваться именно этим преобразованием.

Равносильными также являются уравнения 12 + 3x = 9x и 3x − 9x = −12 . В этот раз в уравнении 12 + 3x = 9x слагаемое 12 было перенесено в правую часть, а слагаемое 9x в левую. Не следует забывать, что знаки этих слагаемых были изменены во время переноса

Как правильно решать уравнения с отрицательными числами

Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом:

Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю, то получится уравнение равносильное данному.

Другими словами, корни уравнения не изменятся, если обе его части умножить или разделить на одно и то же число. Это действие часто применяется тогда, когда нужно решить уравнение содержащее дробные выражения.

Сначала рассмотрим примеры, в которых обе части уравнения будут умножаться на одно и то же число.

Пример 1. Решить уравнение Как правильно решать уравнения с отрицательными числами

При решении уравнений, содержащих дробные выражения, сначала принято упростить это уравнение.

В данном случае мы имеем дело именно с таким уравнением. В целях упрощения данного уравнения обе его части можно умножить на 8:

Как правильно решать уравнения с отрицательными числами

Мы помним, что для умножения дроби на число, нужно числитель данной дроби умножить на это число. У нас имеются две дроби и каждая из них умножается на число 8. Наша задача умножить числители дробей на это число 8

Как правильно решать уравнения с отрицательными числами

Теперь происходит самое интересное. В числителях и знаменателях обеих дробей содержится множитель 8, который можно сократить на 8. Это позволит нам избавиться от дробного выражения:

Как правильно решать уравнения с отрицательными числами

В результате останется простейшее уравнение

Как правильно решать уравнения с отрицательными числами

Ну и нетрудно догадаться, что корень этого уравнения равен 4

Как правильно решать уравнения с отрицательными числами

Вернемся к исходному уравнению Как правильно решать уравнения с отрицательными числамии подставим вместо x найденное значение 4

Как правильно решать уравнения с отрицательными числами

Получается верное числовое равенство. Значит уравнение решено правильно.

При решении данного уравнения мы умножили обе его части на 8. В результате получили уравнение Как правильно решать уравнения с отрицательными числами. Корень этого уравнения, как и уравнения Как правильно решать уравнения с отрицательными числамиравен 4. Значит эти уравнения равносильны.

Множитель на который умножаются обе части уравнения принято записывать перед частью уравнения, а не после неё. Так, решая уравнение Как правильно решать уравнения с отрицательными числами, мы умножили обе части на множитель 8 и получили следующую запись:

Как правильно решать уравнения с отрицательными числами

От этого корень уравнения не изменился, но если бы мы сделали это находясь в школе, то нам сделали бы замечание, поскольку в алгебре множитель принято записывать перед тем выражением, с которым он перемножается. Поэтому умножение обеих частей уравнения Как правильно решать уравнения с отрицательными числамина множитель 8 желательно переписать следующим образом:

Как правильно решать уравнения с отрицательными числами

Пример 2. Решить уравнение Как правильно решать уравнения с отрицательными числами

Умнóжим обе части уравнения на 15

Как правильно решать уравнения с отрицательными числами

В левой части множители 15 можно сократить на 15, а в правой части множители 15 и 5 можно сократить на 5

Как правильно решать уравнения с отрицательными числами

Перепишем то, что у нас осталось:

Как правильно решать уравнения с отрицательными числами

Раскроем скобки в правой части уравнения:

Как правильно решать уравнения с отрицательными числами

Перенесем слагаемое x из левой части уравнения в правую часть, изменив знак. А слагаемое 15 из правой части уравнения перенесем в левую часть, опять же изменив знак:

Как правильно решать уравнения с отрицательными числами

Приведем подобные слагаемые в обеих частях, получим

Как правильно решать уравнения с отрицательными числами

Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Как правильно решать уравнения с отрицательными числами

Отсюда Как правильно решать уравнения с отрицательными числами

Вернемся к исходному уравнению Как правильно решать уравнения с отрицательными числамии подставим вместо x найденное значение 5

Как правильно решать уравнения с отрицательными числами

Получается верное числовое равенство. Значит уравнение решено правильно. При решении данного уравнения мы умножили обе го части на 15 . Далее выполняя тождественные преобразования, мы получили уравнение 10 = 2x . Корень этого уравнения, как и уравнения Как правильно решать уравнения с отрицательными числамиравен 5 . Значит эти уравнения равносильны.

Пример 3. Решить уравнение Как правильно решать уравнения с отрицательными числами

Умнóжим обе части уравнения на 3

Как правильно решать уравнения с отрицательными числами

В левой части можно сократить две тройки, а правая часть будет равна 18

Как правильно решать уравнения с отрицательными числами

Останется простейшее уравнение Как правильно решать уравнения с отрицательными числами. Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Как правильно решать уравнения с отрицательными числами

Отсюда Как правильно решать уравнения с отрицательными числами

Вернемся к исходному уравнению Как правильно решать уравнения с отрицательными числамии подставим вместо x найденное значение 9

Как правильно решать уравнения с отрицательными числами

Получается верное числовое равенство. Значит уравнение решено правильно.

Пример 4. Решить уравнение Как правильно решать уравнения с отрицательными числами

Умнóжим обе части уравнения на 6

Как правильно решать уравнения с отрицательными числами

В левой части уравнения раскроем скобки. В правой части множитель 6 можно поднять в числитель:

Как правильно решать уравнения с отрицательными числами

Сократим в обеих частях уравнениях то, что можно сократить:

Как правильно решать уравнения с отрицательными числами

Перепишем то, что у нас осталось:

Как правильно решать уравнения с отрицательными числами

Раскроем скобки в обеих частях уравнения:

Как правильно решать уравнения с отрицательными числами

Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное x , сгруппируем в левой части уравнения, а слагаемые свободные от неизвестных — в правой:

Как правильно решать уравнения с отрицательными числами

Приведем подобные слагаемые в обеих частях:

Как правильно решать уравнения с отрицательными числами

Теперь найдем значение переменной x . Для этого разделим произведение 28 на известный сомножитель 7

Как правильно решать уравнения с отрицательными числами

Вернемся к исходному уравнению Как правильно решать уравнения с отрицательными числамии подставим вместо x найденное значение 4

Как правильно решать уравнения с отрицательными числами

Получилось верное числовое равенство. Значит уравнение решено правильно.

Пример 5. Решить уравнение Как правильно решать уравнения с отрицательными числами

Раскроем скобки в обеих частях уравнения там, где это можно:

Как правильно решать уравнения с отрицательными числами

Умнóжим обе части уравнения на 15

Как правильно решать уравнения с отрицательными числами

Раскроем скобки в обеих частях уравнения:

Как правильно решать уравнения с отрицательными числами

Сократим в обеих частях уравнения, то что можно сократить:

Как правильно решать уравнения с отрицательными числами

Перепишем то, что у нас осталось:

Как правильно решать уравнения с отрицательными числами

Раскроем скобки там, где это можно:

Как правильно решать уравнения с отрицательными числами

Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Не забываем, что во время переноса, слагаемые меняют свои знаки на противоположные:

Как правильно решать уравнения с отрицательными числами

Приведем подобные слагаемые в обеих частях уравнения:

Как правильно решать уравнения с отрицательными числами

Найдём значение x

Как правильно решать уравнения с отрицательными числами

В получившемся ответе можно выделить целую часть:

Как правильно решать уравнения с отрицательными числами

Вернемся к исходному уравнению и подставим вместо x найденное значение Как правильно решать уравнения с отрицательными числами

Как правильно решать уравнения с отрицательными числами

Получается довольно громоздкое выражение. Воспользуемся переменными. Левую часть равенства занесем в переменную A , а правую часть равенства в переменную B

Как правильно решать уравнения с отрицательными числами

Наша задача состоит в том, чтобы убедиться равна ли левая часть правой. Другими словами, доказать равенство A = B

Найдем значение выражения, находящегося в переменной А.

Как правильно решать уравнения с отрицательными числами

Значение переменной А равно Как правильно решать уравнения с отрицательными числами. Теперь найдем значение переменной B . То есть значение правой части нашего равенства. Если и оно равно Как правильно решать уравнения с отрицательными числами, то уравнение будет решено верно

Как правильно решать уравнения с отрицательными числами

Видим, что значение переменной B , как и значение переменной A равно Как правильно решать уравнения с отрицательными числами. Это значит, что левая часть равна правой части. Отсюда делаем вывод, что уравнение решено правильно.

Теперь попробуем не умножать обе части уравнения на одно и то же число, а делить.

Рассмотрим уравнение 30x + 14x + 14 = 70x − 40x + 42 . Решим его обычным методом: слагаемые, содержащие неизвестные, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Далее выполняя известные тождественные преобразования, найдем значение x

Как правильно решать уравнения с отрицательными числами

Подставим найденное значение 2 вместо x в исходное уравнение:

Как правильно решать уравнения с отрицательными числами

Теперь попробуем разделить все слагаемые уравнения 30x + 14x + 14 = 70x − 40x + 42 на какое-нибудь число. Замечаем, что все слагаемые этого уравнения имеют общий множитель 2. На него и разделим каждое слагаемое:

Как правильно решать уравнения с отрицательными числами

Выполним сокращение в каждом слагаемом:

Как правильно решать уравнения с отрицательными числами

Перепишем то, что у нас осталось:

Как правильно решать уравнения с отрицательными числами

Решим это уравнение, пользуясь известными тождественными преобразованиями:

Как правильно решать уравнения с отрицательными числами

Получили корень 2 . Значит уравнения 15x + 7x + 7 = 35x − 20x + 21 и 30x + 14x + 14 = 70x − 40x + 42 равносильны.

Деление обеих частей уравнения на одно и то же число позволяет освобождать неизвестное от коэффициента. В предыдущем примере когда мы получили уравнение 7x = 14 , нам потребовалось разделить произведение 14 на известный сомножитель 7. Но если бы мы в левой части освободили неизвестное от коэффициента 7, корень нашелся бы сразу. Для этого достаточно было разделить обе части на 7

Как правильно решать уравнения с отрицательными числами

Этим методом мы тоже будем пользоваться часто.

Видео:Решение уравнений, 6 классСкачать

Решение уравнений, 6 класс

Умножение на минус единицу

Если обе части уравнения умножить на минус единицу, то получится уравнение равносильное данному.

Это правило следует из того, что от умножения (или деления) обеих частей уравнения на одно и то же число, корень данного уравнения не меняется. А значит корень не поменяется если обе его части умножить на −1 .

Данное правило позволяет поменять знаки всех компонентов, входящих в уравнение. Для чего это нужно? Опять же, чтобы получить равносильное уравнение, которое проще решать.

Рассмотрим уравнение Как правильно решать уравнения с отрицательными числами. Чему равен корень этого уравнения?

Прибавим к обеим частям уравнения число 5

Как правильно решать уравнения с отрицательными числами

Приведем подобные слагаемые:

Как правильно решать уравнения с отрицательными числами

А теперь вспомним про коэффициент буквенного выражения. Что же представляет собой левая часть уравнения Как правильно решать уравнения с отрицательными числами. Это есть произведение минус единицы и переменной x

Как правильно решать уравнения с отрицательными числами

То есть минус, стоящий перед переменной x, относится не к самой переменной x , а к единице, которую мы не видим, поскольку коэффициент 1 принято не записывать. Это означает, что уравнение Как правильно решать уравнения с отрицательными числамина самом деле выглядит следующим образом:

Как правильно решать уравнения с отрицательными числами

Имеем дело с компонентами умножения. Чтобы найти х , нужно произведение −5 разделить на известный сомножитель −1 .

Как правильно решать уравнения с отрицательными числами

или разделить обе части уравнения на −1 , что еще проще

Как правильно решать уравнения с отрицательными числами

Итак, корень уравнения Как правильно решать уравнения с отрицательными числамиравен 5 . Для проверки подставим его в исходное уравнение. Не забываем, что в исходном уравнении минус стоящий перед переменной x относится к невидимой единице

Как правильно решать уравнения с отрицательными числами

Получилось верное числовое равенство. Значит уравнение решено верно.

Теперь попробуем умножить обе части уравнения Как правильно решать уравнения с отрицательными числамина минус единицу:

Как правильно решать уравнения с отрицательными числами

После раскрытия скобок в левой части образуется выражение Как правильно решать уравнения с отрицательными числами, а правая часть будет равна 10

Как правильно решать уравнения с отрицательными числами

Корень этого уравнения, как и уравнения Как правильно решать уравнения с отрицательными числамиравен 5

Как правильно решать уравнения с отрицательными числами

Значит уравнения Как правильно решать уравнения с отрицательными числамии Как правильно решать уравнения с отрицательными числамиравносильны.

Пример 2. Решить уравнение Как правильно решать уравнения с отрицательными числами

В данном уравнении все компоненты являются отрицательными. С положительными компонентами работать удобнее, чем с отрицательными, поэтому поменяем знаки всех компонентов, входящих в уравнение Как правильно решать уравнения с отрицательными числами. Для этого умнóжим обе части данного уравнения на −1 .

Понятно, что от умножения на −1 любое число поменяет свой знак на противоположный. Поэтому саму процедуру умножения на −1 и раскрытие скобок подробно не расписывают, а сразу записывают компоненты уравнения с противоположными знаками.

Так, умножение уравнения Как правильно решать уравнения с отрицательными числамина −1 можно записать подробно следующим образом:

Как правильно решать уравнения с отрицательными числами

либо можно просто поменять знаки всех компонентов:

Как правильно решать уравнения с отрицательными числами

Получится то же самое, но разница будет в том, что мы сэкономим себе время.

Итак, умножив обе части уравнения Как правильно решать уравнения с отрицательными числамина −1 , мы получили уравнение Как правильно решать уравнения с отрицательными числами. Решим данное уравнение. Из обеих частей вычтем число 4 и разделим обе части на 3

Как правильно решать уравнения с отрицательными числами

Когда корень найден, переменную обычно записывают в левой части, а её значение в правой, что мы и сделали.

Пример 3. Решить уравнение Как правильно решать уравнения с отрицательными числами

Умнóжим обе части уравнения на −1 . Тогда все компоненты поменяют свои знаки на противоположные:

Как правильно решать уравнения с отрицательными числами

Из обеих частей получившегося уравнения вычтем 2x и приведем подобные слагаемые:

Как правильно решать уравнения с отрицательными числами

Прибавим к обеим частям уравнения единицу и приведем подобные слагаемые: Как правильно решать уравнения с отрицательными числами

Видео:Математика 6 Умножение и деление положительных и отрицательных чиселСкачать

Математика 6 Умножение и деление положительных и отрицательных чисел

Приравнивание к нулю

Недавно мы узнали, что если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.

А что будет если перенести из одной части в другую не одно слагаемое, а все слагаемые? Верно, в той части откуда забрали все слагаемые останется ноль. Иными словами, не останется ничего.

В качестве примера рассмотрим уравнение Как правильно решать уравнения с отрицательными числами. Решим данное уравнение, как обычно — слагаемые, содержащие неизвестные сгруппируем в одной части, а числовые слагаемые, свободные от неизвестных оставим в другой. Далее выполняя известные тождественные преобразования, найдем значение переменной x

Как правильно решать уравнения с отрицательными числами

Теперь попробуем решить это же уравнение, приравняв все его компоненты к нулю. Для этого перенесем все слагаемые из правой части в левую, изменив знаки:

Как правильно решать уравнения с отрицательными числами

Приведем подобные слагаемые в левой части:

Как правильно решать уравнения с отрицательными числами

Прибавим к обеим частям 77 , и разделим обе части на 7

Видео:Все действия с отрицательными числами за 2 минутыСкачать

Все действия с отрицательными числами за 2 минуты

Альтернатива правилам нахождения неизвестных

Очевидно, что зная о тождественных преобразованиях уравнений, можно не заучивать наизусть правила нахождения неизвестных.

К примеру, для нахождения неизвестного в уравнении Как правильно решать уравнения с отрицательными числамимы произведение 10 делили на известный сомножитель 2

Как правильно решать уравнения с отрицательными числами

Но если в уравнении Как правильно решать уравнения с отрицательными числамиобе части разделить на 2 корень найдется сразу. В левой части уравнения в числителе множитель 2 и в знаменателе множитель 2 сократятся на 2. А правая часть будет равна 5

Как правильно решать уравнения с отрицательными числами

Уравнения вида Как правильно решать уравнения с отрицательными числамимы решали выражая неизвестное слагаемое:

Как правильно решать уравнения с отрицательными числами

Как правильно решать уравнения с отрицательными числами

Как правильно решать уравнения с отрицательными числами

Но можно воспользоваться тождественными преобразованиями, которые мы сегодня изучили. В уравнении Как правильно решать уравнения с отрицательными числамислагаемое 4 можно перенести в правую часть, изменив знак:

Как правильно решать уравнения с отрицательными числами

Как правильно решать уравнения с отрицательными числами

Далее разделить обе части на 2

Как правильно решать уравнения с отрицательными числами

В левой части уравнения сократятся две двойки. Правая часть будет равна 2. Отсюда Как правильно решать уравнения с отрицательными числами.

Либо можно было из обеих частей уравнения вычесть 4. Тогда получилось бы следующее:

Как правильно решать уравнения с отрицательными числами

В случае с уравнениями вида Как правильно решать уравнения с отрицательными числамиудобнее делить произведение на известный сомножитель. Сравним оба решения:

Как правильно решать уравнения с отрицательными числами

Первое решение намного короче и аккуратнее. Второе решение можно значительно укоротить, если выполнить деление в уме.

Тем не менее, необходимо знать оба метода, и только затем использовать тот, который больше нравится.

Видео:№ 6. Действия с положительными и отрицательными числами (6 класс)Скачать

№ 6. Действия с положительными и отрицательными числами (6 класс)

Когда корней несколько

Уравнение может иметь несколько корней. Например уравнение x(x + 9) = 0 имеет два корня: 0 и −9 .

Как правильно решать уравнения с отрицательными числами

В уравнении x(x + 9) = 0 нужно было найти такое значение x при котором левая часть была бы равна нулю. В левой части этого уравнения содержатся выражения x и (x + 9) , которые являются сомножителями. Из законов умножения мы знаем, что произведение равно нулю, если хотя бы один из сомножителей равен нулю (или первый сомножитель или второй).

То есть в уравнении x(x + 9) = 0 равенство будет достигаться, если x будет равен нулю или (x + 9) будет равно нулю.

Приравняв к нулю оба этих выражения, мы сможем найти корни уравнения x(x + 9) = 0 . Первый корень, как видно из примера, нашелся сразу. Для нахождения второго корня нужно решить элементарное уравнение x + 9 = 0 . Несложно догадаться, что корень этого уравнения равен −9 . Проверка показывает, что корень верный:

Пример 2. Решить уравнение Как правильно решать уравнения с отрицательными числами

Данное уравнение имеет два корня: 1 и 2. Левая часть уравнения является произведение выражений (x − 1) и (x − 2) . А произведение равно нулю, если хотя бы один из сомножителей равен нулю (или сомножитель (x − 1) или сомножитель (x − 2) ).

Найдем такое x при котором выражения (x − 1) или (x − 2) обращаются в нули:

Как правильно решать уравнения с отрицательными числами

Подставляем по-очереди найденные значения в исходное уравнение Как правильно решать уравнения с отрицательными числамии убеждаемся, что при этих значениях левая часть равняется нулю:

Как правильно решать уравнения с отрицательными числами

Видео:Сложные уравнения. Как решить сложное уравнение?Скачать

Сложные уравнения. Как решить сложное уравнение?

Когда корней бесконечно много

Уравнение может иметь бесконечно много корней. То есть подставив в такое уравнение любое число, мы получим верное числовое равенство.

Пример 1. Решить уравнение Как правильно решать уравнения с отрицательными числами

Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения и привести подобные слагаемые, то получится равенство 14 = 14 . Это равенство будет получаться при любом x

Как правильно решать уравнения с отрицательными числами

Пример 2. Решить уравнение Как правильно решать уравнения с отрицательными числами

Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения, то получится равенство 10x + 12 = 10x + 12. Это равенство будет получаться при любом x

Видео:Умножение рациональных чисел. 6 класс.Скачать

Умножение рациональных чисел. 6 класс.

Когда корней нет

Случается и так, что уравнение вовсе не имеет решений, то есть не имеет корней. Например уравнение Как правильно решать уравнения с отрицательными числамине имеет корней, поскольку при любом значении x , левая часть уравнения не будет равна правой части. Например, пусть Как правильно решать уравнения с отрицательными числами. Тогда уравнение примет следующий вид

Как правильно решать уравнения с отрицательными числами

Пусть Как правильно решать уравнения с отрицательными числами

Как правильно решать уравнения с отрицательными числами

Пример 2. Решить уравнение Как правильно решать уравнения с отрицательными числами

Раскроем скобки в левой части равенства:

Как правильно решать уравнения с отрицательными числами

Приведем подобные слагаемые:

Как правильно решать уравнения с отрицательными числами

Видим, что левая часть не равна правой части. И так будет при любом значении y . Например, пусть y = 3 .

Как правильно решать уравнения с отрицательными числами

Видео:Математика 6 класс (Урок№35 - Отрицательные дроби.)Скачать

Математика 6 класс (Урок№35 - Отрицательные дроби.)

Буквенные уравнения

Уравнение может содержать не только числа с переменными, но и буквы.

Например, формула нахождения скорости является буквенным уравнением:

Как правильно решать уравнения с отрицательными числами

Данное уравнение описывает скорость движения тела при равноускоренном движении.

Полезным навыком является умение выразить любой компонент, входящий в буквенное уравнение. Например, чтобы из уравнения Как правильно решать уравнения с отрицательными числамиопределить расстояние, нужно выразить переменную s .

Умнóжим обе части уравнения Как правильно решать уравнения с отрицательными числамина t

Как правильно решать уравнения с отрицательными числами

В правой части переменные t сократим на t и перепишем то, что у нас осталось:

Как правильно решать уравнения с отрицательными числами

В получившемся уравнении левую и правую часть поменяем местами:

Как правильно решать уравнения с отрицательными числами

У нас получилась формула нахождения расстояния, которую мы изучали ранее.

Попробуем из уравнения Как правильно решать уравнения с отрицательными числамиопределить время. Для этого нужно выразить переменную t .

Умнóжим обе части уравнения на t

Как правильно решать уравнения с отрицательными числами

В правой части переменные t сократим на t и перепишем то, что у нас осталось:

Как правильно решать уравнения с отрицательными числами

В получившемся уравнении v × t = s обе части разделим на v

Как правильно решать уравнения с отрицательными числами

В левой части переменные v сократим на v и перепишем то, что у нас осталось:

Как правильно решать уравнения с отрицательными числами

У нас получилась формула определения времени, которую мы изучали ранее.

Предположим, что скорость поезда равна 50 км/ч

А расстояние равно 100 км

Тогда буквенное уравнение Как правильно решать уравнения с отрицательными числамипримет следующий вид

Как правильно решать уравнения с отрицательными числами

Из этого уравнения можно найти время. Для этого нужно суметь выразить переменную t . Можно воспользоваться правилом нахождения неизвестного делителя, разделив делимое на частное и таким образом определить значение переменной t

Как правильно решать уравнения с отрицательными числами

либо можно воспользоваться тождественными преобразованиями. Сначала умножить обе части уравнения на t

Как правильно решать уравнения с отрицательными числами

Затем разделить обе части на 50

Как правильно решать уравнения с отрицательными числами

Пример 2. Дано буквенное уравнение Как правильно решать уравнения с отрицательными числами. Выразите из данного уравнения x

Вычтем из обеих частей уравнения a

Как правильно решать уравнения с отрицательными числами

Разделим обе части уравнения на b

Как правильно решать уравнения с отрицательными числами

Теперь, если нам попадется уравнение вида a + bx = c , то у нас будет готовое решение. Достаточно будет подставить в него нужные значения. Те значения, которые будут подставляться вместо букв a, b, c принято называть параметрами. А уравнения вида a + bx = c называют уравнением с параметрами. В зависимости от параметров, корень будет меняться.

Решим уравнение 2 + 4x = 10 . Оно похоже на буквенное уравнение a + bx = c . Вместо того, чтобы выполнять тождественные преобразования, мы можем воспользоваться готовым решением. Сравним оба решения:

Как правильно решать уравнения с отрицательными числами

Видим, что второе решение намного проще и короче.

Для готового решения необходимо сделать небольшое замечание. Параметр b не должен быть равным нулю (b ≠ 0) , поскольку деление на ноль на допускается.

Пример 3. Дано буквенное уравнение Как правильно решать уравнения с отрицательными числами. Выразите из данного уравнения x

Раскроем скобки в обеих частях уравнения

Как правильно решать уравнения с отрицательными числами

Воспользуемся переносом слагаемых. Параметры, содержащие переменную x , сгруппируем в левой части уравнения, а параметры свободные от этой переменной — в правой.

Как правильно решать уравнения с отрицательными числами

В левой части вынесем за скобки множитель x

Как правильно решать уравнения с отрицательными числами

Разделим обе части на выражение a − b

Как правильно решать уравнения с отрицательными числами

В левой части числитель и знаменатель можно сократить на a − b . Так окончательно выразится переменная x

Как правильно решать уравнения с отрицательными числами

Теперь, если нам попадется уравнение вида a(x − c) = b(x + d) , то у нас будет готовое решение. Достаточно будет подставить в него нужные значения.

Допустим нам дано уравнение 4(x − 3) = 2(x + 4) . Оно похоже на уравнение a(x − c) = b(x + d) . Решим его двумя способами: при помощи тождественных преобразований и при помощи готового решения:

Для удобства вытащим из уравнения 4(x − 3) = 2(x + 4) значения параметров a, b, c, d . Это позволит нам не ошибиться при подстановке:

Как правильно решать уравнения с отрицательными числами

Как правильно решать уравнения с отрицательными числами

Как и в прошлом примере знаменатель здесь не должен быть равным нулю (a − b ≠ 0) . Если нам встретится уравнение вида a(x − c) = b(x + d) в котором параметры a и b будут одинаковыми, мы сможем не решая его сказать, что у данного уравнения корней нет, поскольку разность одинаковых чисел равна нулю.

Например, уравнение 2(x − 3) = 2(x + 4) является уравнением вида a(x − c) = b(x + d) . В уравнении 2(x − 3) = 2(x + 4) параметры a и b одинаковые. Если мы начнём его решать, то придем к тому, что левая часть не будет равна правой части:

Как правильно решать уравнения с отрицательными числами

Пример 4. Дано буквенное уравнение Как правильно решать уравнения с отрицательными числами. Выразите из данного уравнения x

Приведем левую часть уравнения к общему знаменателю:

Как правильно решать уравнения с отрицательными числами

Умнóжим обе части на a

Как правильно решать уравнения с отрицательными числами

В левой части x вынесем за скобки

Как правильно решать уравнения с отрицательными числами

Разделим обе части на выражение (1 − a)

Как правильно решать уравнения с отрицательными числами

Видео:Сложение и вычитание рациональных и отрицательных рациональных чисел. Практическая часть. 6 класс.Скачать

Сложение и вычитание рациональных и отрицательных рациональных чисел. Практическая часть. 6 класс.

Линейные уравнения с одним неизвестным

Рассмотренные в данном уроке уравнения называют линейными уравнениями первой степени с одним неизвестным.

Если уравнение дано в первой степени, не содержит деления на неизвестное, а также не содержит корней из неизвестного, то его можно назвать линейным. Мы еще не изучали степени и корни, поэтому чтобы не усложнять себе жизнь, слово «линейный» будем понимать как «простой».

Большинство уравнений, решенных в данном уроке, в конечном итоге сводились к простейшему уравнению, в котором нужно было произведение разделить на известный сомножитель. Таковым к примеру является уравнение 2 (x + 3) = 16 . Давайте решим его.

Раскроем скобки в левой части уравнения, получим 2 x + 6 = 16. Перенесем слагаемое 6 в правую часть, изменив знак. Тогда получим 2 x = 16 − 6. Вычислим правую часть, получим 2x = 10. Чтобы найти x , разделим произведение 10 на известный сомножитель 2. Отсюда x = 5.

Уравнение 2 (x + 3) = 16 является линейным. Оно свелось к уравнению 2x = 10 , для нахождения корня которого потребовалось разделить произведение на известный сомножитель. Такое простейшее уравнение называют линейным уравнением первой степени с одним неизвестным в каноническом виде. Слово «канонический» является синонимом слов «простейший» или «нормальный».

Линейное уравнение первой степени с одним неизвестным в каноническом виде называют уравнение вида ax = b.

Полученное нами уравнение 2x = 10 является линейным уравнением первой степени с одним неизвестным в каноническом виде. У этого уравнения первая степень, одно неизвестное, оно не содержит деления на неизвестное и не содержит корней из неизвестного, и представлено оно в каноническом виде, то есть в простейшем виде при котором легко можно определить значение x . Вместо параметров a и b в нашем уравнении содержатся числа 2 и 10. Но подобное уравнение может содержать и другие числа: положительные, отрицательные или равные нулю.

Если в линейном уравнении a = 0 и b = 0 , то уравнение имеет бесконечно много корней. Действительно, если a равно нулю и b равно нулю, то линейное уравнение ax = b примет вид 0x = 0 . При любом значении x левая часть будет равна правой части.

Если в линейном уравнении a = 0 и b ≠ 0 , то уравнение корней не имеет. Действительно, если a равно нулю и b равно какому-нибудь числу, не равному нулю, скажем числу 5, то уравнение ax = b примет вид 0x = 5 . Левая часть будет равна нулю, а правая часть пяти. А ноль не равен пяти.

Если в линейном уравнении a ≠ 0 , и b равно любому числу, то уравнение имеет один корень. Он определяется делением параметра b на параметр a

Как правильно решать уравнения с отрицательными числами

Действительно, если a равно какому-нибудь числу, не равному нулю, скажем числу 3 , и b равно какому-нибудь числу, скажем числу 6 , то уравнение Как правильно решать уравнения с отрицательными числамипримет вид Как правильно решать уравнения с отрицательными числами.
Отсюда Как правильно решать уравнения с отрицательными числами.

Существует и другая форма записи линейного уравнения первой степени с одним неизвестным. Выглядит она следующим образом: ax − b = 0 . Это то же самое уравнение, что и ax = b , но параметр b перенесен в левую часть с противоположным знаком. Такие уравнение мы тоже решали в данном уроке. Например, уравнение 7x − 77 = 0 . Уравнение вида ax − b = 0 называют линейным уравнением первой степени с одним неизвестным в общем виде.

В будущем после изучения рациональных выражений, мы рассмотрим такие понятия, как посторонние корни и потеря корней. А пока рассмотренного в данном уроке будет достаточным.

Видео:Уравнения с отрицательными числами #shortsСкачать

Уравнения с отрицательными числами #shorts

Уравнения вида -х равен a

Уравнения вида «-x равен а» появляются в 6 классе с началом изучения отрицательных чисел.

Поскольку такие уравнения в дальнейшем будут встречаться довольно часто, желательно сразу же научиться их решать правильно и быстро.

В общем виде уравнения вида «минус икс равен а» можно разбить на три случая:

Как правильно решать уравнения с отрицательными числами

Как правильно решать уравнения с отрицательными числами

Как правильно решать уравнения с отрицательными числами

Рассмотрим каждый из вариантов в общем виде и на примерах.

Как правильно решать уравнения с отрицательными числами

Решить это уравнение — значит, найти x. x и -x — противоположные числа. Поэтому икс равен числу, противоположному числу, стоящему в правой части уравнения, то есть числу которое отличается только знаком:

Как правильно решать уравнения с отрицательными числами

Как правильно решать уравнения с отрицательными числами

Рассуждая аналогично, приходим к выводу, что

Как правильно решать уравнения с отрицательными числами

Как правильно решать уравнения с отрицательными числами

Здесь минус икс равен нулю. Нуль не является ни положительным, ни отрицательным числом и противоположен самому себе, поэтому корень этого уравнения

Как правильно решать уравнения с отрицательными числами

Итак, в общем виде решение уравнений вида минус икс равен а можно записать так:

Видео:Вычитание рациональных чисел . Решение уравнений . 6 класс .Скачать

Вычитание рациональных чисел . Решение уравнений . 6 класс .

Памятка по теме «Решение уравнений» (6 класс)

Как правильно решать уравнения с отрицательными числами

В данном материале рассматривается тема «Решение уравнений» в 6 классе. Для более быстрого и успешного усвоения алгоритма решения уравнений я раздаю памятку каждому ученику.

Просмотр содержимого документа
«Памятка по теме «Решение уравнений» (6 класс)»

Шаг 1. Раскрыть скобки (если они есть), используя правила:

Правило 1. Если перед скобками стоит знак «плюс», то надо опустить эти скобки и этот знак «плюс», сохранив знаки у слагаемых, стоящих в скобках.

Правило 2. Если перед скобками стоит знак «минус», то надо опустить эти скобки и этот знак «минус», изменив знаки у слагаемых, стоящих в скобках, на противоположные.

Правило 3. Чтобы умножить положительное число на сумму, надо умножить это число на каждое слагаемое в сумме, сохранив знаки у слагаемых.

Правило 4. Чтобы умножить отрицательное число на сумму, надо умножить это число на каждое слагаемое в сумме, изменив знаки у слагаемых на противоположные.

Шаг 2. Привести подобные слагаемые (слагаемые, у которых одинаковая буквенная часть), используя правила:

Правило 1. Чтобы сложить два числа с одинаковыми знаками, надо:

поставить их общий знак;

сложить их модули.

Правило 2. Чтобы сложить два числа с разными знаками, надо:

поставить знак числа с бÓльшим модулем;

из бÓльшего модуля вычесть меньший.

Правило 3. Сумма двух противоположных чисел равна нуля.

Правило 4. От прибавления нуля число не изменяется.

Шаг 3. Перенести слагаемые из одной части уравнения в другую, изменив при этом их знак на противоположный. Слагаемые, содержащие неизвестное, собирают в левой части уравнения, числа – в правой части уравнения.

Шаг 4. Привести подобные слагаемые отдельно в левой части уравнения, отдельно в правой части уравнения.

Шаг 5. Чтобы найти неизвестный множитель, надо произведение разделить на известный множитель, используя правила:

Правило 1. Чтобы разделить два числа с одинаковыми знаками, надо:

поставить знак «плюс»;

модуль делимого разделить на модуль делителя.

Правило 2. Чтобы разделить два числа с разными знаками, надо:

поставить знак «минус»;

модуль делимого разделить на модуль делителя.

Правило 3. При делении нуля на любое число, не равное нулю, получается нуль.

Правило 4. Делить на нуль запрещено!

🎥 Видео

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?

Раскрытие скобок. 6 класс.Скачать

Раскрытие скобок. 6 класс.

СУПЕР ЛАЙФХАК — Как решать Иррациональные УравненияСкачать

СУПЕР ЛАЙФХАК — Как решать Иррациональные Уравнения

Линейное уравнение с одной переменной. 6 класс.Скачать

Линейное уравнение с одной переменной. 6 класс.

Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать

Как решать уравнения? уравнение 7 класс. Линейное уравнение
Поделиться или сохранить к себе: