Как правильно решать уравнения по алгебре

Решение простых линейных уравнений

Как правильно решать уравнения по алгебре

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Содержание
  1. Понятие уравнения
  2. Какие бывают виды уравнений
  3. Как решать простые уравнения
  4. Примеры линейных уравнений
  5. Учим алгебра 7 класс. Как решать уравнения алгебра 7 класс, примеры, дроби, функции, степени, модули
  6. Как решать уравнения алгебра 7 класс
  7. Как решать систему уравнений алгебра 7 класс
  8. метод подстановки
  9. метод сложения
  10. графический метод
  11. Как решать дроби 7 класс
  12. Примеры 7 класс как решать
  13. Как решать задачи алгебра 7 класс
  14. Как решать функции алгебра 7 клас с
  15. Как решать степени алгебра 7 класс
  16. Алгебра модули как решать
  17. Об Авторе
  18. Смотрите также
  19. Красивый подарок маме своими руками, 8 марта короткие пожелания, открытка 8 марта своими руками для детей: открытки на 8 марта своими руками шаблоны, цветные шаблоны открыток
  20. Явления живой и неживой природы 2 класс: биология живая неживая природа, признаки живой и неживой природы
  21. Подарок маме на 8 марта своими руками, какую сделать поделку для мамы: в детском саду, в школе, лучшие поделки своими руками. Рисунок маме 8 марта: рисование простые рисунки
  22. 2 комментария
  23. Общие сведения об уравнениях
  24. Что такое уравнение?
  25. Выразить одно через другое
  26. Правила нахождения неизвестных
  27. Компоненты
  28. Равносильные уравнения
  29. Умножение на минус единицу
  30. Приравнивание к нулю
  31. Альтернатива правилам нахождения неизвестных
  32. Когда корней несколько
  33. Когда корней бесконечно много
  34. Когда корней нет
  35. Буквенные уравнения
  36. Линейные уравнения с одним неизвестным

Видео:ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по Математике

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.

Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.

Решить уравнение значит найти все возможные корни или убедиться, что их нет.

Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Видео:Алгебра 7 Линейное уравнение с одной переменнойСкачать

Алгебра 7 Линейное уравнение с одной переменной

Какие бывают виды уравнений

Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.

Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = -b : а;
  • если а равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Числовой коэффициент — число, которое стоит при неизвестной переменной.

Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:

Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.

Видео:Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать

Как решать уравнения? уравнение 7 класс. Линейное уравнение

Как решать простые уравнения

Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.

1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.

Для примера рассмотрим простейшее уравнение: x+3=5

Начнем с того, что в каждом уравнении есть левая и правая часть.

Перенесем 3 из левой части в правую и меняем знак на противоположный.

Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.

Решим еще один пример: 6x = 5x + 10.

Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.

Приведем подобные и завершим решение.

2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.

Применим правило при решении примера: 4x=8.

При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.

Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.

Разделим каждую часть на 4. Как это выглядит:

Как правильно решать уравнения по алгебре

Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:

Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12

    Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.

−4x = 12 | : (−4)
x = −3

Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.

Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.

Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.

Алгоритм решения простого линейного уравнения
  1. Раскрываем скобки, если они есть.
  2. Группируем члены, которые содержат неизвестную переменную в одну часть уравнения, остальные члены — в другую.
  3. Приводим подобные члены в каждой части уравнения.
  4. Решаем уравнение, которое получилось: aх = b. Делим обе части на коэффициент при неизвестном.

Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.

Как правильно решать уравнения по алгебре

Видео:Решаем Вариант 7 Часть 2 | Лысенко 40 вариантов | ОГЭ по математике 2024Скачать

Решаем Вариант 7 Часть 2 | Лысенко 40 вариантов | ОГЭ по математике 2024

Примеры линейных уравнений

Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!

Пример 1. Как правильно решить уравнение: 6х + 1 = 19.

    Перенести 1 из левой части в правую со знаком минус.

Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.

Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.

5х − 15 + 2 = 3х − 12 + 2х − 1

Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.

5х − 3х − 2х = −12 − 1 + 15 − 2

Приведем подобные члены.

Ответ: х — любое число.

Пример 3. Решить: 4х = 1/8.

    Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.

Пример 4. Решить: 4(х + 2) = 6 − 7х.

  1. 4х + 8 = 6 − 7х
  2. 4х + 7х = 6 − 8
  3. 11х = −2
  4. х = −2 : 11
  5. х = −2/11

Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.

Пример 5. Решить: Как правильно решать уравнения по алгебре

  1. Как правильно решать уравнения по алгебре
  2. 3(3х — 4) = 4 · 7х + 24
  3. 9х — 12 = 28х + 24
  4. 9х — 28х = 24 + 12
  5. -19х = 36
  6. х = 36 : (-19)
  7. х = — 36/19

Пример 6. Как решить линейное уравнение: х + 7 = х + 4.

5х — 15 + 2 = 3х — 2 + 2х — 1

Сгруппировать в левой части неизвестные члены, в правой — свободные члены:

Приведем подобные члены.

Ответ: нет решений.

Пример 7. Решить: 2(х + 3) = 5 − 7х.

Видео:Задание 9 на ОГЭ по математике 2023 / Разбираем все типы уравнений за 5 минут!Скачать

Задание 9 на ОГЭ по математике 2023 / Разбираем все типы уравнений за 5 минут!

Учим алгебра 7 класс. Как решать уравнения алгебра 7 класс, примеры, дроби, функции, степени, модули

В 7 классе ученикам предстоит научиться решать уравнения, дроби, строить функции, разбираться в модулях. Для этого следует познакомиться с основными понятиями в темах, рассмотреть алгоритм решения и пошагово учиться находить ответы. Главное правило — начать с простых примеров, постепенно переходя на более сложные. Большинство задач можно решать несколькими методами (это касается и примеров), следует выбрать самый простой и удобный для себя.

Видео:Сложные уравнения. Как решить сложное уравнение?Скачать

Сложные уравнения. Как решить сложное уравнение?

Как решать уравнения алгебра 7 класс

Начнем с решения линейных уравнений (на рисунке показано, по какому принципу они устроены). Чтобы найти ответ в таких уравнениях, нужно совершать действия: раскрытие скобок, поиск подобных слагаемых, умножение/деление частей на одно и тоже число, перенос слагаемых из одной части уравнения в другую. Всё зависит от конкретного примера.

Как правильно решать уравнения по алгебре

Рассмотрим несколько примеров пошагового решения линейных уравнений.

Пример 1.
6x + 24 = 0

Поскольку части уравнения (левая и правая) равны, то можно отнять из каждой одинаковое число. Равенство не изменится, а пример станет значительно проще. В представленном уравнении отняли 24 и слева, и справа. В левой части 24 сократилось, а в правой (0 — 24) получилось -24 (не забываем ставить знак минуса).

Получилось: 6x = -24. Теперь можем сократить 6 и -24 на число 6 (или рассуждаем так: чтобы найти множитель, нужно произведение разделить на другой множитель). В ответе будет -4. Не забудьте в самом конце подставить полученное число вместо х. Совпал ответ — значит, все правильно.

Как правильно решать уравнения по алгебре

Можно рассуждать проще: чтобы упростить уравнение, нужно из левой части отправить в правую число 24, поменяв его знак. Равенство сохранится (на рисунке ниже).

Как правильно решать уравнения по алгебре

Пример 2.
9 + 16x = 41 + 14x

Как правильно решать уравнения по алгебре

Это уравнение более сложное. Здесь важно запомнить несколько моментов:

  • числа без х переносятся в левую часть, а с х — в правую;
  • при переносе знаки меняют.

Пример 3.
7(10 — 4x) + 5x = 12 — 3(5x + 2)

Как правильно решать уравнения по алгебре

  1. Раскрыть скобки, выполнив умножение: 7 умножаем на каждое число в скобках (в правой части -3 на каждое). При выполнении действия не забывайте сохранять знаки.
  2. Записываем уравнение, получившееся после раскрытия скобок. Ещё раз сверяем знаки.
  3. Числа с х отправляются в левую часть, без х — в правую. Знаки чисел, которые переходят в другую часть, меняем.
  4. Подсчитываем результат с обеих сторон.
  5. Делим -64 на -8 и получаем ответ. Не забываем, что минус на минус при делении и умножении дают плюс.

В рассмотренных уравнениях корень точно определён. Так получается не всегда.

Пример 4.

Как правильно решать уравнения по алгебре

Обратите внимание, в ответе получилось 0x = 0. Это значит, что x может быть любым числом, потому что при умножение хоть какого числа на 0 получится 0.

Как правильно решать уравнения по алгебре

В этом примере корней нет, так как любое число, которое умножают на 0, будет равно 0 (21 никак не получится).

Видео:ЛИНЕЙНОЕ УРАНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ — Как решать линейное уравнение // Алгебра 7 классСкачать

ЛИНЕЙНОЕ УРАНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ — Как решать линейное уравнение // Алгебра 7 класс

Как решать систему уравнений алгебра 7 класс

Системой называют несколько уравнений, в которых нужно найти такие значения неизвестных, чтобы равенство сохранилось. Разберемся на примерах, как выглядят системы и какие методы их решения существуют.

метод подстановки

Из самого названия следует, что алгоритм требует что-то подставлять. Ниже представлена система, где нужно найти значения x и y.

Суть метода подстановки: переменную в одном из уравнений выражают через другую переменную. Затем подставляют полученное выражение в другое уравнение.

Смотрим на систему. Видим, что удобнее будет выразить x во втором уравнении (так как он один). Выражаем путем переноса за знак «равно» 12y. Получилось: x = 11 — 12y (не забываем менять знак при переносе числа).

В первое уравнение вместо «x» записываем получившееся выражение. Меняем только x, остальное сохраняется в прежнем виде.

Как правильно решать уравнения по алгебре

Далее преобразуем уравнение, в которое поместили выражение. Раскрываем скобки (перемножаем 5 на каждое значение). y оставляем в левой части, числа переносим в правую, знаки меняем. Таким образом нашли значение y (y = 1).

Как правильно решать уравнения по алгебре

Теперь подставляем полученную единицу во второе уравнение (x = 11 — 12y).

Как правильно решать уравнения по алгебре

Убедиться в правильном решение можно так: подставьте полученные значения в систему. Если равенства сохранятся, значит, решено верно.

метод сложения

Чтобы решить систему методом сложения, нужно из двух уравнений сделать одно. Просто складываем первое и второе. Здесь «y» просто сократились, и получилось простое уравнение. Как только нашли значение «х», нужно подставить его в любой пример (здесь поставили во второе уравнение). В ответе пишется так: (4; 3) — первым всегда пишется х, затем у.

Как правильно решать уравнения по алгебре

графический метод

У нас есть система, где y = 5x и y = -2x + 7. Рассмотрим алгоритм решения системы уравнений:

  1. Подбираем 2 числа для х. Мы взяли 0 и 1, подставляем в первое уравнение: y = 5 * 0 = 0; у = 5 * 1 = 5. Значит первая прямая имеет координаты: (0; 0) и (1; 5).
  2. Для второго уравнения подбираем значения х. Взяли 3 и 2, подставляем и находим у: -2 * 3 + 7 = 1; -2 * 2 + 7 = 3. Значит прямая имеет координаты (3; 1) и (2; 3).
  3. Отмечаем на графике соответствующие прямые, подписываем их название.
  4. на месте пересечения получившихся прямых ставим точку — это будет решение.
  5. Точка имеет координаты (1; 5).

Как правильно решать уравнения по алгебре

На заметку! Старайтесь подбирать такие значения х, чтобы у был небольшим. Так отмечать будет проще.

Выбирайте самый удобный способ решения. Третий метод — графический, считают самым неточным.

Видео:Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать

Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?

Как решать дроби 7 класс

Дроби можно разделить на 2 основных вида:

Они различаются в способе написания (смотрите рисунок ниже). В свою очередь и те, и другие делятся еще на несколько видов.

Как правильно решать уравнения по алгебре

Для начала рассмотрим решение примеров с десятичными дробями.

Как правильно решать уравнения по алгебре

Особое внимание при решении стоит уделить запятым. При сложении и вычитании запятые стоят строго друг под другом, при умножении это не имеет значения.

Как правильно решать уравнения по алгебреПримеры решения обыкновенных дробей.

Как правильно решать уравнения по алгебре

  • при сложении и вычитании нужно привести дроби к общему знаменателю, найти дополнительные множители. Так, для чисел 6 и 4 общим знаменателем стало число 24. Дополнительные множители считали так: 24 : 6 = 4 (для первой дроби) и 24 : 4 = 6 (для второй). Потом умножили доп. множители на числители и полученные числа сложили. Если в ответе получилась неправильная дробь, то выделяем целую часть, при необходимости сокращаем дроби.
  • при умножении пишем дроби под одной чертой, сокращаем.
  • при делении нужно вторую дробь перевернуть, поставить знак умножения и сократить дроби.

Если пример состоит из простой и десятичной дроби, то следует привести их к одному виду (к которому проще или удобнее считать).

Видео:ТЕОРЕМА ВИЕТА ЗА 2 МИНУТЫСкачать

ТЕОРЕМА ВИЕТА ЗА 2 МИНУТЫ

Примеры 7 класс как решать

Теперь закрепим решение дробей на примерах.

Решение примера, представленного ниже:

  1. Видим, что присутствует как обыкновенная дробь, так и десятичные. Нужно привести к одному виду. Так как десятичных больше, и превратить 1/4 в этот вид проще, то делим 1 на 4, а целую часть сохраняем. Вышло 5,25.
  2. Далее умножаем — 3 на каждое число в скобках, внимательно следим за знаками.
  3. Остается от 10,4 отнять 9,3. В итоге вышло 1,1.

Но можно было решить проще. Первое действие всегда в скобках. Поэтому от 5,25 отнимаем 2,15. Получится 3,1. Умножаем ее на 3 — вышло 9,3. И отнимаем: 10,4 — 9,3 = 1,1. Этот способ даже проще, потому что не нужно следить за знаками при раскрытии скобок.

Как правильно решать уравнения по алгебре

Чтобы верно решить следующий пример, нужно:

  • точно проставить порядок действий (умножение и деление делаем в первую очередь, затем складываем);
  • Умножить десятичные дроби столбиком, не забыть поставить запятую;
  • деление здесь простое: переставили запятую на один знак вправо, поделили, получили -2.
  • сложили числа.

Как правильно решать уравнения по алгебре

Видео:Дробно-рациональные уравнения. 8 класс.Скачать

Дробно-рациональные уравнения. 8 класс.

Как решать задачи алгебра 7 класс

Задачи решаются путем составления уравнений.

Как правильно решать уравнения по алгебре

Другие примеры задач с подробными решениями в видео-материалах.

Видео:ОГЭ по математике. Решаем уравнения | МатематикаСкачать

ОГЭ по математике. Решаем уравнения | Математика

Как решать функции алгебра 7 клас с

Функцией принято считать зависимость y от x. При этом x является переменной (или аргументом), а у — это значение функции (зависимая переменная).

  • y(x) = 8x
  • y(x) = −3x — 62
  • y(x) = x−1 + 18

Чтобы найти значение у, которое бы соответствовало определенному значению х, нужно просто это значение х подставить в функцию.

Как правильно решать уравнения по алгебре

Как правильно решать уравнения по алгебре

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Как решать степени алгебра 7 класс

Если требуется взять какое-либо число несколько раз, то проще записать его в степени. Например, нужно двойку взять три раза, т. е.: 2 * 2 * 2. Получается длинная запись. Поэтому придумали писать так: 2³ (читается: два в третьей степени).

Видео:Линейное уравнение с двумя переменными. 7 класс.Скачать

Линейное уравнение с двумя переменными. 7 класс.

Как правильно решать уравнения по алгебре

Чтобы число возвести в степень (она указывается справа от числа вверху), нужно его умножать на самого себя столько раз, какая цифра указана. Рассмотрим подробнее на примерах.

Как правильно решать уравнения по алгебре

Не всегда получается возвести число в степень «в уме». Иногда посчитать сложно. Например, возвести 6 в 5 степень, быстро получится не у каждого. Чтобы всякий раз не считать столбиком, лучше выучить основные степени. Они представлены в таблице.

Как правильно решать уравнения по алгебре

При возведении любого числа в степень 1, получится это же число. Если возводить число в нулевую степень, в ответе будет 1.

Рассмотрим несколько примеров со степенями.

Как правильно решать уравнения по алгебре

Отдельное внимание обращаем на возведение в степень отрицательного числа. Если такое число возводить в четную степень (2; 4; 6 и т.д.), то получится положительный ответ, если в нечетную, то ответ со знаком минус.

Видео:Уравнения с дробями. Алгебра 7 класс.Скачать

Уравнения с дробями. Алгебра 7 класс.

Алгебра модули как решать

Модулем числа называют это же число, только без знака минус. Например: | − 9 | = 9. При этом если число изначально неотрицательное, то оно остается прежним.

Как правильно решать уравнения по алгебре

Перейдем к простым примерам.

Логично предположить, что под модулем будет число 4. Также подойдет число -4, ведь из-под модуля все равно выйдет положительное. Так, корнями уравнения будут: x = 4 и x = − 4.

Как правильно решать уравнения по алгебре

Из-под модуля не может выйти отрицательное число. Поэтому, если видим что-то похожее: Ι-8 + хΙ = -8, значит, корней не будет, так как уравнение заведомо нерешаемо.

Другие примеры описаны в видео.

Об Авторе

Как правильно решать уравнения по алгебре

Смотрите также

  • Как правильно решать уравнения по алгебре

Видео:Простые уравнения. Как решать простые уравнения?Скачать

Простые уравнения. Как решать простые уравнения?

Красивый подарок маме своими руками, 8 марта короткие пожелания, открытка 8 марта своими руками для детей: открытки на 8 марта своими руками шаблоны, цветные шаблоны открыток

Как правильно решать уравнения по алгебре

Видео:Линейное уравнение с одной переменной. 6 класс.Скачать

Линейное уравнение с одной переменной. 6 класс.

Явления живой и неживой природы 2 класс: биология живая неживая природа, признаки живой и неживой природы

Как правильно решать уравнения по алгебре

Видео:РЕШЕНИЕ УРАВНЕНИЙ |ПОДРОБНОЕ ОБЪЯСНЕНИЕ КАК РЕШИТЬ УРАВНЕНИЯ / ПРОСТЫЕ УРАВНЕНИЯ 2 КЛАСС МАТЕМАТИКАСкачать

РЕШЕНИЕ УРАВНЕНИЙ |ПОДРОБНОЕ ОБЪЯСНЕНИЕ КАК РЕШИТЬ УРАВНЕНИЯ / ПРОСТЫЕ УРАВНЕНИЯ  2 КЛАСС МАТЕМАТИКА

Подарок маме на 8 марта своими руками, какую сделать поделку для мамы: в детском саду, в школе, лучшие поделки своими руками. Рисунок маме 8 марта: рисование простые рисунки

2 комментария

Как правильно решать уравнения по алгебре

Спасибо большое очень помогли.

Как правильно решать уравнения по алгебре

Огромное спасибо!А то учитель неможет нормально тему объяснить

Видео:Решение задач с помощью уравнений. Алгебра 7 классСкачать

Решение задач с помощью уравнений. Алгебра 7 класс

Общие сведения об уравнениях

Уравнения — одна из сложных тем для усвоения, но при этом они являются достаточно мощным инструментом для решения большинства задач.

С помощью уравнений описываются различные процессы, протекающие в природе. Уравнения широко применяются в других науках: в экономике, физике, биологии и химии.

В данном уроке мы попробуем понять суть простейших уравнений, научимся выражать неизвестные и решим несколько уравнений. По мере усвоения новых материалов, уравнения будут усложняться, поэтому понять основы очень важно.

Видео:Решить уравнение - Математика - 6 классСкачать

Решить уравнение - Математика - 6 класс

Что такое уравнение?

Уравнение — это равенство, содержащее в себе переменную, значение которой требуется найти. Это значение должно быть таким, чтобы при его подстановке в исходное уравнение получалось верное числовое равенство.

Например выражение 3 + 2 = 5 является равенством. При вычислении левой части получается верное числовое равенство 5 = 5 .

А вот равенство 3 + x = 5 является уравнением, поскольку содержит в себе переменную x , значение которой можно найти. Значение должно быть таким, чтобы при подстановке этого значения в исходное уравнение, получилось верное числовое равенство.

Другими словами, мы должны найти такое значение, при котором знак равенства оправдал бы свое местоположение — левая часть должна быть равна правой части.

Уравнение 3 + x = 5 является элементарным. Значение переменной x равно числу 2. При любом другом значении равенство соблюдáться не будет

Как правильно решать уравнения по алгебре

Говорят, что число 2 является корнем или решением уравнения 3 + x = 5

Корень или решение уравнения — это значение переменной, при котором уравнение обращается в верное числовое равенство.

Корней может быть несколько или не быть совсем. Решить уравнение означает найти его корни или доказать, что корней нет.

Переменную, входящую в уравнение, иначе называют неизвестным. Вы вправе называть как вам удобнее. Это синонимы.

Примечание. Словосочетание «решить уравнение» говорит самó за себя. Решить уравнение означает «уравнять» равенство — сделать его сбалансированным, чтобы левая часть равнялась правой части.

Видео:Как решать уравнения с дробью? #shortsСкачать

Как решать уравнения с дробью? #shorts

Выразить одно через другое

Изучение уравнений по традиции начинается с того, чтобы научиться выражать одно число, входящее в равенство, через ряд других. Давайте не будем нарушать эту традицию и поступим также.

Рассмотрим следующее выражение:

Данное выражение является суммой чисел 8 и 2. Значение данного выражения равно 10

Получили равенство. Теперь можно выразить любое число из этого равенства через другие числа, входящие в это же равенство. К примеру, выразим число 2.

Чтобы выразить число 2, нужно задать вопрос: «что нужно сделать с числами 10 и 8, чтобы получить число 2». Понятно, что для получения числа 2, нужно из числа 10 вычесть число 8.

Так и делаем. Записываем число 2 и через знак равенства говорим, что для получения этого числа 2 мы из числа 10 вычли число 8:

Мы выразили число 2 из равенства 8 + 2 = 10 . Как видно из примера, ничего сложного в этом нет.

При решении уравнений, в частности при выражении одного числа через другие, знак равенства удобно заменять на слово «есть». Делать это нужно мысленно, а не в самом выражении.

Так, выражая число 2 из равенства 8 + 2 = 10 мы получили равенство 2 = 10 − 8 . Данное равенство можно прочесть так:

2 есть 10 − 8

То есть знак = заменен на слово «есть». Более того, равенство 2 = 10 − 8 можно перевести с математического языка на полноценный человеческий язык. Тогда его можно будет прочитать следующим образом:

Число 2 есть разность числа 10 и числа 8

Число 2 есть разница между числом 10 и числом 8.

Но мы ограничимся лишь заменой знака равенства на слово «есть», и то будем делать это не всегда. Элементарные выражения можно понимать и без перевода математического языка на язык человеческий.

Вернём получившееся равенство 2 = 10 − 8 в первоначальное состояние:

Выразим в этот раз число 8. Что нужно сделать с остальными числами, чтобы получить число 8? Верно, нужно из числа 10 вычесть число 2

Вернем получившееся равенство 8 = 10 − 2 в первоначальное состояние:

В этот раз выразим число 10. Но оказывается, что десятку выражать не нужно, поскольку она уже выражена. Достаточно поменять местами левую и правую часть, тогда получится то, что нам нужно:

Пример 2. Рассмотрим равенство 8 − 2 = 6

Выразим из этого равенства число 8. Чтобы выразить число 8 остальные два числа нужно сложить:

Вернем получившееся равенство 8 = 6 + 2 в первоначальное состояние:

Выразим из этого равенства число 2. Чтобы выразить число 2, нужно из 8 вычесть 6

Пример 3. Рассмотрим равенство 3 × 2 = 6

Выразим число 3. Чтобы выразить число 3, нужно 6 разделить 2

Как правильно решать уравнения по алгебре

Вернем получившееся равенство Как правильно решать уравнения по алгебрев первоначальное состояние:

Выразим из этого равенства число 2. Чтобы выразить число 2, нужно 6 разделить 3

Как правильно решать уравнения по алгебре

Пример 4. Рассмотрим равенство Как правильно решать уравнения по алгебре

Выразим из этого равенства число 15. Чтобы выразить число 15, нужно перемножить числа 3 и 5

Вернем получившееся равенство 15 = 3 × 5 в первоначальное состояние:

Как правильно решать уравнения по алгебре

Выразим из этого равенства число 5. Чтобы выразить число 5, нужно 15 разделить 3

Как правильно решать уравнения по алгебре

Правила нахождения неизвестных

Рассмотрим несколько правил нахождения неизвестных. Возможно, они вам знакомы, но не мешает повторить их ещё раз. В дальнейшем их можно будет забыть, поскольку мы научимся решать уравнения, не применяя эти правила.

Вернемся к первому примеру, который мы рассматривали в предыдущей теме, где в равенстве 8 + 2 = 10 требовалось выразить число 2.

В равенстве 8 + 2 = 10 числа 8 и 2 являются слагаемыми, а число 10 — суммой.

Как правильно решать уравнения по алгебре

Чтобы выразить число 2, мы поступили следующим образом:

То есть из суммы 10 вычли слагаемое 8.

Теперь представим, что в равенстве 8 + 2 = 10 вместо числа 2 располагается переменная x

В этом случае равенство 8 + 2 = 10 превращается в уравнение 8 + x = 10 , а переменная x берет на себя роль так называемого неизвестного слагаемого

Как правильно решать уравнения по алгебре

Наша задача найти это неизвестное слагаемое, то есть решить уравнение 8 + x = 10 . Для нахождения неизвестного слагаемого предусмотрено следующее правило:

Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое.

Что мы в принципе и сделали, когда выражали двойку в равенстве 8 + 2 = 10 . Чтобы выразить слагаемое 2, мы из суммы 10 вычли другое слагаемое 8

А сейчас, чтобы найти неизвестное слагаемое x , мы должны из суммы 10 вычесть известное слагаемое 8:

Если вычислить правую часть получившегося равенства, то можно узнать чему равна переменная x

Мы решили уравнение. Значение переменной x равно 2 . Для проверки значение переменной x отправляют в исходное уравнение 8 + x = 10 и подставляют вместо x. Так желательно поступать с любым решённым уравнением, поскольку нельзя быть точно уверенным, что уравнение решено правильно:

Как правильно решать уравнения по алгебре

В результате получается верное числовое равенство. Значит уравнение решено правильно.

Это же правило действовало бы в случае, если неизвестным слагаемым было бы первое число 8.

В этом уравнении x — это неизвестное слагаемое, 2 — известное слагаемое, 10 — сумма. Чтобы найти неизвестное слагаемое x , нужно из суммы 10 вычесть известное слагаемое 2

Как правильно решать уравнения по алгебре

Вернемся ко второму примеру из предыдущей темы, где в равенстве 8 − 2 = 6 требовалось выразить число 8.

В равенстве 8 − 2 = 6 число 8 это уменьшаемое, число 2 — вычитаемое, число 6 — разность

Как правильно решать уравнения по алгебре

Чтобы выразить число 8, мы поступили следующим образом:

То есть сложили разность 6 и вычитаемое 2.

Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 8 располагается переменная x

В этом случае переменная x берет на себя роль так называемого неизвестного уменьшаемого

Как правильно решать уравнения по алгебре

Для нахождения неизвестного уменьшаемого предусмотрено следующее правило:

Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое.

Что мы и сделали, когда выражали число 8 в равенстве 8 − 2 = 6 . Чтобы выразить уменьшаемое 8, мы к разности 6 прибавили вычитаемое 2.

А сейчас, чтобы найти неизвестное уменьшаемое x , мы должны к разности 6 прибавить вычитаемое 2

Если вычислить правую часть, то можно узнать чему равна переменная x

Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 2 располагается переменная x

В этом случае переменная x берет на себя роль неизвестного вычитаемого

Как правильно решать уравнения по алгебре

Для нахождения неизвестного вычитаемого предусмотрено следующее правило:

Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность.

Что мы и сделали, когда выражали число 2 в равенстве 8 − 2 = 6. Чтобы выразить число 2, мы из уменьшаемого 8 вычли разность 6.

А сейчас, чтобы найти неизвестное вычитаемое x, нужно опять же из уменьшаемого 8 вычесть разность 6

Вычисляем правую часть и находим значение x

Вернемся к третьему примеру из предыдущей темы, где в равенстве 3 × 2 = 6 мы пробовали выразить число 3.

В равенстве 3 × 2 = 6 число 3 — это множимое, число 2 — множитель, число 6 — произведение

Как правильно решать уравнения по алгебре

Чтобы выразить число 3 мы поступили следующим образом:

Как правильно решать уравнения по алгебре

То есть разделили произведение 6 на множитель 2.

Теперь представим, что в равенстве 3 × 2 = 6 вместо числа 3 располагается переменная x

В этом случае переменная x берет на себя роль неизвестного множимого.

Как правильно решать уравнения по алгебре

Для нахождения неизвестного множимого предусмотрено следующее правило:

Чтобы найти неизвестное множимое, нужно произведение разделить на множитель.

Что мы и сделали, когда выражали число 3 из равенства 3 × 2 = 6 . Произведение 6 мы разделили на множитель 2.

А сейчас для нахождения неизвестного множимого x , нужно произведение 6 разделить на множитель 2.

Как правильно решать уравнения по алгебре

Вычисление правой части позволяет нам найти значение переменной x

Это же правило применимо в случае, если переменная x располагается вместо множителя, а не множимого. Представим, что в равенстве 3 × 2 = 6 вместо числа 2 располагается переменная x .

Как правильно решать уравнения по алгебре

В этом случае переменная x берет на себя роль неизвестного множителя. Для нахождения неизвестного множителя предусмотрено такое же, что и для нахождения неизвестного множимого, а именно деление произведения на известный множитель:

Чтобы найти неизвестный множитель, нужно произведение разделить на множимое.

Как правильно решать уравнения по алгебре

Что мы и сделали, когда выражали число 2 из равенства 3 × 2 = 6 . Тогда для получения числа 2 мы разделили произведение 6 на множимое 3.

А сейчас для нахождения неизвестного множителя x мы разделили произведение 6 на множимое 3.

Вычисление правой части равенства Как правильно решать уравнения по алгебрепозволяет узнать чему равно x

Множимое и множитель вместе называют сомножителями. Поскольку правила нахождения множимого и множителя совпадают, мы можем сформулировать общее правило нахождения неизвестного сомножителя:

Чтобы найти неизвестный сомножитель, нужно произведение разделить на известный сомножитель.

Например, решим уравнение 9 × x = 18 . Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 18 разделить на известный сомножитель 9

Как правильно решать уравнения по алгебре

Отсюда Как правильно решать уравнения по алгебре.

Решим уравнение x × 3 = 27 . Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 27 разделить на известный сомножитель 3

Как правильно решать уравнения по алгебре

Отсюда Как правильно решать уравнения по алгебре.

Вернемся к четвертому примеру из предыдущей темы, где в равенстве Как правильно решать уравнения по алгебретребовалось выразить число 15. В этом равенстве число 15 — это делимое, число 5 — делитель, число 3 — частное.

Как правильно решать уравнения по алгебре

Чтобы выразить число 15 мы поступили следующим образом:

То есть умножили частное 3 на делитель 5.

Теперь представим, что в равенстве Как правильно решать уравнения по алгебревместо числа 15 располагается переменная x

Как правильно решать уравнения по алгебре

В этом случае переменная x берет на себя роль неизвестного делимого.

Как правильно решать уравнения по алгебре

Для нахождения неизвестного делимого предусмотрено следующее правило:

Чтобы найти неизвестное делимое, нужно частное умножить на делитель.

Что мы и сделали, когда выражали число 15 из равенства Как правильно решать уравнения по алгебре. Чтобы выразить число 15, мы умножили частное 3 на делитель 5.

А сейчас, чтобы найти неизвестное делимое x , нужно частное 3 умножить на делитель 5

Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x .

Теперь представим, что в равенстве Как правильно решать уравнения по алгебревместо числа 5 располагается переменная x .

Как правильно решать уравнения по алгебре

В этом случае переменная x берет на себя роль неизвестного делителя.

Как правильно решать уравнения по алгебре

Для нахождения неизвестного делителя предусмотрено следующее правило:

Чтобы найти неизвестный делитель, нужно делимое разделить на частное.

Что мы и сделали, когда выражали число 5 из равенства Как правильно решать уравнения по алгебре. Чтобы выразить число 5, мы разделили делимое 15 на частное 3.

А сейчас, чтобы найти неизвестный делитель x , нужно делимое 15 разделить на частное 3

Как правильно решать уравнения по алгебре

Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x .

Итак, для нахождения неизвестных мы изучили следующие правила:

  • Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое;
  • Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое;
  • Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность;
  • Чтобы найти неизвестное множимое, нужно произведение разделить на множитель;
  • Чтобы найти неизвестный множитель, нужно произведение разделить на множимое;
  • Чтобы найти неизвестное делимое, нужно частное умножить на делитель;
  • Чтобы найти неизвестный делитель, нужно делимое разделить на частное.

Компоненты

Компонентами мы будем называть числа и переменные, входящие в равенство

Так, компонентами сложения являются слагаемые и сумма

Как правильно решать уравнения по алгебре

Компонентами вычитания являются уменьшаемое, вычитаемое и разность

Как правильно решать уравнения по алгебре

Компонентами умножения являются множимое, множитель и произведение

Как правильно решать уравнения по алгебре

Компонентами деления являются делимое, делитель и частное

Как правильно решать уравнения по алгебре

В зависимости от того, с какими компонентами мы будем иметь дело, будут применяться соответствующие правила нахождения неизвестных. Эти правила мы изучили в предыдущей теме. При решении уравнений желательно знать эти правило наизусть.

Пример 1. Найти корень уравнения 45 + x = 60

45 — слагаемое, x — неизвестное слагаемое, 60 — сумма. Имеем дело с компонентами сложения. Вспоминаем, что для нахождения неизвестного слагаемого, нужно из суммы вычесть известное слагаемое:

Вычислим правую часть, получим значение x равное 15

Значит корень уравнения 45 + x = 60 равен 15.

Чаще всего неизвестное слагаемое необходимо привести к виду при котором его можно было бы выразить.

Пример 2. Решить уравнение Как правильно решать уравнения по алгебре

Здесь в отличие от предыдущего примера, неизвестное слагаемое нельзя выразить сразу, поскольку оно содержит коэффициент 2. Наша задача привести это уравнение к виду при котором можно было бы выразить x

В данном примере мы имеем дело с компонентами сложения — слагаемыми и суммой. 2x — это первое слагаемое, 4 — второе слагаемое, 8 — сумма.

Как правильно решать уравнения по алгебре

При этом слагаемое 2x содержит переменную x . После нахождения значения переменной x слагаемое 2x примет другой вид. Поэтому слагаемое 2x можно полностью принять за неизвестное слагаемое:

Как правильно решать уравнения по алгебре

Теперь применяем правило нахождения неизвестного слагаемого. Вычитаем из суммы известное слагаемое:

Как правильно решать уравнения по алгебре

Вычислим правую часть получившегося уравнения:

Как правильно решать уравнения по алгебре

Мы получили новое уравнение Как правильно решать уравнения по алгебре. Теперь мы имеем дело с компонентами умножения: множимым, множителем и произведением. 2 — множимое, x — множитель, 4 — произведение

Как правильно решать уравнения по алгебре

При этом переменная x является не просто множителем, а неизвестным множителем

Как правильно решать уравнения по алгебре

Чтобы найти этот неизвестный множитель, нужно произведение разделить на множимое:

Как правильно решать уравнения по алгебре

Вычислим правую часть, получим значение переменной x

Как правильно решать уравнения по алгебре

Для проверки найденный корень отправим в исходное уравнение Как правильно решать уравнения по алгебреи подставим вместо x

Как правильно решать уравнения по алгебре

Получили верное числовое равенство. Значит уравнение решено правильно.

Пример 3. Решить уравнение 3x + 9x + 16x = 56

Cразу выразить неизвестное x нельзя. Сначала нужно привести данное уравнение к виду при котором его можно было бы выразить.

Приведем подобные слагаемые в левой части данного уравнения:

Как правильно решать уравнения по алгебре

Имеем дело с компонентами умножения. 28 — множимое, x — множитель, 56 — произведение. При этом x является неизвестным множителем. Чтобы найти неизвестный множитель, нужно произведение разделить на множимое:

Как правильно решать уравнения по алгебре

Отсюда x равен 2

Как правильно решать уравнения по алгебре

Равносильные уравнения

В предыдущем примере при решении уравнения 3x + 9x + 16x = 56 , мы привели подобные слагаемые в левой части уравнения. В результате получили новое уравнение 28x = 56 . Старое уравнение 3x + 9x + 16x = 56 и получившееся новое уравнение 28x = 56 называют равносильными уравнениями, поскольку их корни совпадают.

Уравнения называют равносильными, если их корни совпадают.

Проверим это. Для уравнения 3x + 9x + 16x = 56 мы нашли корень равный 2 . Подставим этот корень сначала в уравнение 3x + 9x + 16x = 56 , а затем в уравнение 28x = 56 , которое получилось в результате приведения подобных слагаемых в левой части предыдущего уравнения. Мы должны получить верные числовые равенства

Как правильно решать уравнения по алгебре

Согласно порядку действий, в первую очередь выполняется умножение:

Как правильно решать уравнения по алгебре

Подставим корень 2 во второе уравнение 28x = 56

Как правильно решать уравнения по алгебре

Видим, что у обоих уравнений корни совпадают. Значит уравнения 3x + 9x + 16x = 56 и 28x = 56 действительно являются равносильными.

Для решения уравнения 3x + 9x + 16x = 56 мы воспользовались одним из тождественных преобразований — приведением подобных слагаемых. Правильное тождественное преобразование уравнения позволило нам получить равносильное уравнение 28x = 56 , которое проще решать.

Из тождественных преобразований на данный момент мы умеем только сокращать дроби, приводить подобные слагаемые, выносить общий множитель за скобки, а также раскрывать скобки. Существуют и другие преобразования, которые следует знать. Но для общего представления о тождественных преобразованиях уравнений, изученных нами тем вполне хватает.

Рассмотрим некоторые преобразования, которые позволяют получить равносильное уравнение

Если к обеим частям уравнения прибавить одно и то же число, то получится уравнение равносильное данному.

Если из обеих частей уравнения вычесть одно и то же число, то получится уравнение равносильное данному.

Другими словами, корень уравнения не изменится, если к обеим частям данного уравнения прибавить (или вычесть из обеих частей) одно и то же число.

Пример 1. Решить уравнение Как правильно решать уравнения по алгебре

Вычтем из обеих частей уравнения число 10

Как правильно решать уравнения по алгебре

Приведем подобные слагаемые в обеих частях:

Как правильно решать уравнения по алгебре

Получили уравнение 5x = 10 . Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x , нужно произведение 10 разделить на известный сомножитель 5.

Как правильно решать уравнения по алгебре

Отсюда Как правильно решать уравнения по алгебре.

Вернемся к исходному уравнению Как правильно решать уравнения по алгебреи подставим вместо x найденное значение 2

Как правильно решать уравнения по алгебре

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение Как правильно решать уравнения по алгебремы вычли из обеих частей уравнения число 10 . В результате получили равносильное уравнение Как правильно решать уравнения по алгебре. Корень этого уравнения, как и уравнения Как правильно решать уравнения по алгебретак же равен 2

Как правильно решать уравнения по алгебре

Пример 2. Решить уравнение 4(x + 3) = 16

Раскроем скобки в левой части равенства:

Как правильно решать уравнения по алгебре

Вычтем из обеих частей уравнения число 12

Как правильно решать уравнения по алгебре

Приведем подобные слагаемые в обеих частях уравнения:

Как правильно решать уравнения по алгебреВ левой части останется 4x , а в правой части число 4

Как правильно решать уравнения по алгебре

Получили уравнение 4x = 4 . Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x , нужно произведение 4 разделить на известный сомножитель 4

Как правильно решать уравнения по алгебре

Отсюда Как правильно решать уравнения по алгебре

Вернемся к исходному уравнению 4(x + 3) = 16 и подставим вместо x найденное значение 1

Как правильно решать уравнения по алгебре

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение 4(x + 3) = 16 мы вычли из обеих частей уравнения число 12 . В результате получили равносильное уравнение 4x = 4 . Корень этого уравнения, как и уравнения 4(x + 3) = 16 так же равен 1

Как правильно решать уравнения по алгебре

Пример 3. Решить уравнение Как правильно решать уравнения по алгебре

Раскроем скобки в левой части равенства:

Как правильно решать уравнения по алгебре

Прибавим к обеим частям уравнения число 8

Как правильно решать уравнения по алгебре

Приведем подобные слагаемые в обеих частях уравнения:

Как правильно решать уравнения по алгебре

В левой части останется 2x , а в правой части число 9

Как правильно решать уравнения по алгебре

В получившемся уравнении 2x = 9 выразим неизвестное слагаемое x

Как правильно решать уравнения по алгебре

Отсюда Как правильно решать уравнения по алгебре

Вернемся к исходному уравнению Как правильно решать уравнения по алгебреи подставим вместо x найденное значение 4,5

Как правильно решать уравнения по алгебре

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение Как правильно решать уравнения по алгебремы прибавили к обеим частям уравнения число 8. В результате получили равносильное уравнение Как правильно решать уравнения по алгебре. Корень этого уравнения, как и уравнения Как правильно решать уравнения по алгебретак же равен 4,5

Как правильно решать уравнения по алгебре

Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом

Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.

То есть корень уравнения не изменится, если мы перенесем слагаемое из одной части уравнения в другую, изменив его знак. Это свойство является одним из важных и одним из часто используемых при решении уравнений.

Рассмотрим следующее уравнение:

Как правильно решать уравнения по алгебре

Корень данного уравнения равен 2. Подставим вместо x этот корень и проверим получается ли верное числовое равенство

Как правильно решать уравнения по алгебре

Получается верное равенство. Значит число 2 действительно является корнем уравнения Как правильно решать уравнения по алгебре.

Теперь попробуем поэкспериментировать со слагаемыми этого уравнения, перенося их из одной части в другую, изменяя знаки.

Например, слагаемое 3x располагается в левой части равенства. Перенесём его в правую часть, изменив знак на противоположный:

Как правильно решать уравнения по алгебре

Получилось уравнение 12 = 9x − 3x . Приведем подобные слагаемые в правой части данного уравнения:

Как правильно решать уравнения по алгебре

Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Как правильно решать уравнения по алгебре

Отсюда x = 2 . Как видим, корень уравнения не изменился. Значит уравнения 12 + 3x = 9x и 12 = 9x − 3x являются равносильными.

На самом деле данное преобразование является упрощенным методом предыдущего преобразования, где к обеим частям уравнения прибавлялось (или вычиталось) одно и то же число.

Мы сказали, что в уравнении 12 + 3x = 9x слагаемое 3x было перенесено в правую часть, изменив знак. В реальности же происходило следующее: из обеих частей уравнения вычли слагаемое 3x

Как правильно решать уравнения по алгебре

Затем в левой части были приведены подобные слагаемые и получено уравнение 12 = 9x − 3x. Затем опять были приведены подобные слагаемые, но уже в правой части, и получено уравнение 12 = 6x.

Но так называемый «перенос» более удобен для подобных уравнений, поэтому он и получил такое широкое распространение. Решая уравнения, мы часто будем пользоваться именно этим преобразованием.

Равносильными также являются уравнения 12 + 3x = 9x и 3x − 9x = −12 . В этот раз в уравнении 12 + 3x = 9x слагаемое 12 было перенесено в правую часть, а слагаемое 9x в левую. Не следует забывать, что знаки этих слагаемых были изменены во время переноса

Как правильно решать уравнения по алгебре

Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом:

Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю, то получится уравнение равносильное данному.

Другими словами, корни уравнения не изменятся, если обе его части умножить или разделить на одно и то же число. Это действие часто применяется тогда, когда нужно решить уравнение содержащее дробные выражения.

Сначала рассмотрим примеры, в которых обе части уравнения будут умножаться на одно и то же число.

Пример 1. Решить уравнение Как правильно решать уравнения по алгебре

При решении уравнений, содержащих дробные выражения, сначала принято упростить это уравнение.

В данном случае мы имеем дело именно с таким уравнением. В целях упрощения данного уравнения обе его части можно умножить на 8:

Как правильно решать уравнения по алгебре

Мы помним, что для умножения дроби на число, нужно числитель данной дроби умножить на это число. У нас имеются две дроби и каждая из них умножается на число 8. Наша задача умножить числители дробей на это число 8

Как правильно решать уравнения по алгебре

Теперь происходит самое интересное. В числителях и знаменателях обеих дробей содержится множитель 8, который можно сократить на 8. Это позволит нам избавиться от дробного выражения:

Как правильно решать уравнения по алгебре

В результате останется простейшее уравнение

Как правильно решать уравнения по алгебре

Ну и нетрудно догадаться, что корень этого уравнения равен 4

Как правильно решать уравнения по алгебре

Вернемся к исходному уравнению Как правильно решать уравнения по алгебреи подставим вместо x найденное значение 4

Как правильно решать уравнения по алгебре

Получается верное числовое равенство. Значит уравнение решено правильно.

При решении данного уравнения мы умножили обе его части на 8. В результате получили уравнение Как правильно решать уравнения по алгебре. Корень этого уравнения, как и уравнения Как правильно решать уравнения по алгебреравен 4. Значит эти уравнения равносильны.

Множитель на который умножаются обе части уравнения принято записывать перед частью уравнения, а не после неё. Так, решая уравнение Как правильно решать уравнения по алгебре, мы умножили обе части на множитель 8 и получили следующую запись:

Как правильно решать уравнения по алгебре

От этого корень уравнения не изменился, но если бы мы сделали это находясь в школе, то нам сделали бы замечание, поскольку в алгебре множитель принято записывать перед тем выражением, с которым он перемножается. Поэтому умножение обеих частей уравнения Как правильно решать уравнения по алгебрена множитель 8 желательно переписать следующим образом:

Как правильно решать уравнения по алгебре

Пример 2. Решить уравнение Как правильно решать уравнения по алгебре

Умнóжим обе части уравнения на 15

Как правильно решать уравнения по алгебре

В левой части множители 15 можно сократить на 15, а в правой части множители 15 и 5 можно сократить на 5

Как правильно решать уравнения по алгебре

Перепишем то, что у нас осталось:

Как правильно решать уравнения по алгебре

Раскроем скобки в правой части уравнения:

Как правильно решать уравнения по алгебре

Перенесем слагаемое x из левой части уравнения в правую часть, изменив знак. А слагаемое 15 из правой части уравнения перенесем в левую часть, опять же изменив знак:

Как правильно решать уравнения по алгебре

Приведем подобные слагаемые в обеих частях, получим

Как правильно решать уравнения по алгебре

Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Как правильно решать уравнения по алгебре

Отсюда Как правильно решать уравнения по алгебре

Вернемся к исходному уравнению Как правильно решать уравнения по алгебреи подставим вместо x найденное значение 5

Как правильно решать уравнения по алгебре

Получается верное числовое равенство. Значит уравнение решено правильно. При решении данного уравнения мы умножили обе го части на 15 . Далее выполняя тождественные преобразования, мы получили уравнение 10 = 2x . Корень этого уравнения, как и уравнения Как правильно решать уравнения по алгебреравен 5 . Значит эти уравнения равносильны.

Пример 3. Решить уравнение Как правильно решать уравнения по алгебре

Умнóжим обе части уравнения на 3

Как правильно решать уравнения по алгебре

В левой части можно сократить две тройки, а правая часть будет равна 18

Как правильно решать уравнения по алгебре

Останется простейшее уравнение Как правильно решать уравнения по алгебре. Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Как правильно решать уравнения по алгебре

Отсюда Как правильно решать уравнения по алгебре

Вернемся к исходному уравнению Как правильно решать уравнения по алгебреи подставим вместо x найденное значение 9

Как правильно решать уравнения по алгебре

Получается верное числовое равенство. Значит уравнение решено правильно.

Пример 4. Решить уравнение Как правильно решать уравнения по алгебре

Умнóжим обе части уравнения на 6

Как правильно решать уравнения по алгебре

В левой части уравнения раскроем скобки. В правой части множитель 6 можно поднять в числитель:

Как правильно решать уравнения по алгебре

Сократим в обеих частях уравнениях то, что можно сократить:

Как правильно решать уравнения по алгебре

Перепишем то, что у нас осталось:

Как правильно решать уравнения по алгебре

Раскроем скобки в обеих частях уравнения:

Как правильно решать уравнения по алгебре

Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное x , сгруппируем в левой части уравнения, а слагаемые свободные от неизвестных — в правой:

Как правильно решать уравнения по алгебре

Приведем подобные слагаемые в обеих частях:

Как правильно решать уравнения по алгебре

Теперь найдем значение переменной x . Для этого разделим произведение 28 на известный сомножитель 7

Как правильно решать уравнения по алгебре

Вернемся к исходному уравнению Как правильно решать уравнения по алгебреи подставим вместо x найденное значение 4

Как правильно решать уравнения по алгебре

Получилось верное числовое равенство. Значит уравнение решено правильно.

Пример 5. Решить уравнение Как правильно решать уравнения по алгебре

Раскроем скобки в обеих частях уравнения там, где это можно:

Как правильно решать уравнения по алгебре

Умнóжим обе части уравнения на 15

Как правильно решать уравнения по алгебре

Раскроем скобки в обеих частях уравнения:

Как правильно решать уравнения по алгебре

Сократим в обеих частях уравнения, то что можно сократить:

Как правильно решать уравнения по алгебре

Перепишем то, что у нас осталось:

Как правильно решать уравнения по алгебре

Раскроем скобки там, где это можно:

Как правильно решать уравнения по алгебре

Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Не забываем, что во время переноса, слагаемые меняют свои знаки на противоположные:

Как правильно решать уравнения по алгебре

Приведем подобные слагаемые в обеих частях уравнения:

Как правильно решать уравнения по алгебре

Найдём значение x

Как правильно решать уравнения по алгебре

В получившемся ответе можно выделить целую часть:

Как правильно решать уравнения по алгебре

Вернемся к исходному уравнению и подставим вместо x найденное значение Как правильно решать уравнения по алгебре

Как правильно решать уравнения по алгебре

Получается довольно громоздкое выражение. Воспользуемся переменными. Левую часть равенства занесем в переменную A , а правую часть равенства в переменную B

Как правильно решать уравнения по алгебре

Наша задача состоит в том, чтобы убедиться равна ли левая часть правой. Другими словами, доказать равенство A = B

Найдем значение выражения, находящегося в переменной А.

Как правильно решать уравнения по алгебре

Значение переменной А равно Как правильно решать уравнения по алгебре. Теперь найдем значение переменной B . То есть значение правой части нашего равенства. Если и оно равно Как правильно решать уравнения по алгебре, то уравнение будет решено верно

Как правильно решать уравнения по алгебре

Видим, что значение переменной B , как и значение переменной A равно Как правильно решать уравнения по алгебре. Это значит, что левая часть равна правой части. Отсюда делаем вывод, что уравнение решено правильно.

Теперь попробуем не умножать обе части уравнения на одно и то же число, а делить.

Рассмотрим уравнение 30x + 14x + 14 = 70x − 40x + 42 . Решим его обычным методом: слагаемые, содержащие неизвестные, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Далее выполняя известные тождественные преобразования, найдем значение x

Как правильно решать уравнения по алгебре

Подставим найденное значение 2 вместо x в исходное уравнение:

Как правильно решать уравнения по алгебре

Теперь попробуем разделить все слагаемые уравнения 30x + 14x + 14 = 70x − 40x + 42 на какое-нибудь число. Замечаем, что все слагаемые этого уравнения имеют общий множитель 2. На него и разделим каждое слагаемое:

Как правильно решать уравнения по алгебре

Выполним сокращение в каждом слагаемом:

Как правильно решать уравнения по алгебре

Перепишем то, что у нас осталось:

Как правильно решать уравнения по алгебре

Решим это уравнение, пользуясь известными тождественными преобразованиями:

Как правильно решать уравнения по алгебре

Получили корень 2 . Значит уравнения 15x + 7x + 7 = 35x − 20x + 21 и 30x + 14x + 14 = 70x − 40x + 42 равносильны.

Деление обеих частей уравнения на одно и то же число позволяет освобождать неизвестное от коэффициента. В предыдущем примере когда мы получили уравнение 7x = 14 , нам потребовалось разделить произведение 14 на известный сомножитель 7. Но если бы мы в левой части освободили неизвестное от коэффициента 7, корень нашелся бы сразу. Для этого достаточно было разделить обе части на 7

Как правильно решать уравнения по алгебре

Этим методом мы тоже будем пользоваться часто.

Умножение на минус единицу

Если обе части уравнения умножить на минус единицу, то получится уравнение равносильное данному.

Это правило следует из того, что от умножения (или деления) обеих частей уравнения на одно и то же число, корень данного уравнения не меняется. А значит корень не поменяется если обе его части умножить на −1 .

Данное правило позволяет поменять знаки всех компонентов, входящих в уравнение. Для чего это нужно? Опять же, чтобы получить равносильное уравнение, которое проще решать.

Рассмотрим уравнение Как правильно решать уравнения по алгебре. Чему равен корень этого уравнения?

Прибавим к обеим частям уравнения число 5

Как правильно решать уравнения по алгебре

Приведем подобные слагаемые:

Как правильно решать уравнения по алгебре

А теперь вспомним про коэффициент буквенного выражения. Что же представляет собой левая часть уравнения Как правильно решать уравнения по алгебре. Это есть произведение минус единицы и переменной x

Как правильно решать уравнения по алгебре

То есть минус, стоящий перед переменной x, относится не к самой переменной x , а к единице, которую мы не видим, поскольку коэффициент 1 принято не записывать. Это означает, что уравнение Как правильно решать уравнения по алгебрена самом деле выглядит следующим образом:

Как правильно решать уравнения по алгебре

Имеем дело с компонентами умножения. Чтобы найти х , нужно произведение −5 разделить на известный сомножитель −1 .

Как правильно решать уравнения по алгебре

или разделить обе части уравнения на −1 , что еще проще

Как правильно решать уравнения по алгебре

Итак, корень уравнения Как правильно решать уравнения по алгебреравен 5 . Для проверки подставим его в исходное уравнение. Не забываем, что в исходном уравнении минус стоящий перед переменной x относится к невидимой единице

Как правильно решать уравнения по алгебре

Получилось верное числовое равенство. Значит уравнение решено верно.

Теперь попробуем умножить обе части уравнения Как правильно решать уравнения по алгебрена минус единицу:

Как правильно решать уравнения по алгебре

После раскрытия скобок в левой части образуется выражение Как правильно решать уравнения по алгебре, а правая часть будет равна 10

Как правильно решать уравнения по алгебре

Корень этого уравнения, как и уравнения Как правильно решать уравнения по алгебреравен 5

Как правильно решать уравнения по алгебре

Значит уравнения Как правильно решать уравнения по алгебреи Как правильно решать уравнения по алгебреравносильны.

Пример 2. Решить уравнение Как правильно решать уравнения по алгебре

В данном уравнении все компоненты являются отрицательными. С положительными компонентами работать удобнее, чем с отрицательными, поэтому поменяем знаки всех компонентов, входящих в уравнение Как правильно решать уравнения по алгебре. Для этого умнóжим обе части данного уравнения на −1 .

Понятно, что от умножения на −1 любое число поменяет свой знак на противоположный. Поэтому саму процедуру умножения на −1 и раскрытие скобок подробно не расписывают, а сразу записывают компоненты уравнения с противоположными знаками.

Так, умножение уравнения Как правильно решать уравнения по алгебрена −1 можно записать подробно следующим образом:

Как правильно решать уравнения по алгебре

либо можно просто поменять знаки всех компонентов:

Как правильно решать уравнения по алгебре

Получится то же самое, но разница будет в том, что мы сэкономим себе время.

Итак, умножив обе части уравнения Как правильно решать уравнения по алгебрена −1 , мы получили уравнение Как правильно решать уравнения по алгебре. Решим данное уравнение. Из обеих частей вычтем число 4 и разделим обе части на 3

Как правильно решать уравнения по алгебре

Когда корень найден, переменную обычно записывают в левой части, а её значение в правой, что мы и сделали.

Пример 3. Решить уравнение Как правильно решать уравнения по алгебре

Умнóжим обе части уравнения на −1 . Тогда все компоненты поменяют свои знаки на противоположные:

Как правильно решать уравнения по алгебре

Из обеих частей получившегося уравнения вычтем 2x и приведем подобные слагаемые:

Как правильно решать уравнения по алгебре

Прибавим к обеим частям уравнения единицу и приведем подобные слагаемые: Как правильно решать уравнения по алгебре

Приравнивание к нулю

Недавно мы узнали, что если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.

А что будет если перенести из одной части в другую не одно слагаемое, а все слагаемые? Верно, в той части откуда забрали все слагаемые останется ноль. Иными словами, не останется ничего.

В качестве примера рассмотрим уравнение Как правильно решать уравнения по алгебре. Решим данное уравнение, как обычно — слагаемые, содержащие неизвестные сгруппируем в одной части, а числовые слагаемые, свободные от неизвестных оставим в другой. Далее выполняя известные тождественные преобразования, найдем значение переменной x

Как правильно решать уравнения по алгебре

Теперь попробуем решить это же уравнение, приравняв все его компоненты к нулю. Для этого перенесем все слагаемые из правой части в левую, изменив знаки:

Как правильно решать уравнения по алгебре

Приведем подобные слагаемые в левой части:

Как правильно решать уравнения по алгебре

Прибавим к обеим частям 77 , и разделим обе части на 7

Альтернатива правилам нахождения неизвестных

Очевидно, что зная о тождественных преобразованиях уравнений, можно не заучивать наизусть правила нахождения неизвестных.

К примеру, для нахождения неизвестного в уравнении Как правильно решать уравнения по алгебремы произведение 10 делили на известный сомножитель 2

Как правильно решать уравнения по алгебре

Но если в уравнении Как правильно решать уравнения по алгебреобе части разделить на 2 корень найдется сразу. В левой части уравнения в числителе множитель 2 и в знаменателе множитель 2 сократятся на 2. А правая часть будет равна 5

Как правильно решать уравнения по алгебре

Уравнения вида Как правильно решать уравнения по алгебремы решали выражая неизвестное слагаемое:

Как правильно решать уравнения по алгебре

Как правильно решать уравнения по алгебре

Как правильно решать уравнения по алгебре

Но можно воспользоваться тождественными преобразованиями, которые мы сегодня изучили. В уравнении Как правильно решать уравнения по алгебреслагаемое 4 можно перенести в правую часть, изменив знак:

Как правильно решать уравнения по алгебре

Как правильно решать уравнения по алгебре

Далее разделить обе части на 2

Как правильно решать уравнения по алгебре

В левой части уравнения сократятся две двойки. Правая часть будет равна 2. Отсюда Как правильно решать уравнения по алгебре.

Либо можно было из обеих частей уравнения вычесть 4. Тогда получилось бы следующее:

Как правильно решать уравнения по алгебре

В случае с уравнениями вида Как правильно решать уравнения по алгебреудобнее делить произведение на известный сомножитель. Сравним оба решения:

Как правильно решать уравнения по алгебре

Первое решение намного короче и аккуратнее. Второе решение можно значительно укоротить, если выполнить деление в уме.

Тем не менее, необходимо знать оба метода, и только затем использовать тот, который больше нравится.

Когда корней несколько

Уравнение может иметь несколько корней. Например уравнение x(x + 9) = 0 имеет два корня: 0 и −9 .

Как правильно решать уравнения по алгебре

В уравнении x(x + 9) = 0 нужно было найти такое значение x при котором левая часть была бы равна нулю. В левой части этого уравнения содержатся выражения x и (x + 9) , которые являются сомножителями. Из законов умножения мы знаем, что произведение равно нулю, если хотя бы один из сомножителей равен нулю (или первый сомножитель или второй).

То есть в уравнении x(x + 9) = 0 равенство будет достигаться, если x будет равен нулю или (x + 9) будет равно нулю.

Приравняв к нулю оба этих выражения, мы сможем найти корни уравнения x(x + 9) = 0 . Первый корень, как видно из примера, нашелся сразу. Для нахождения второго корня нужно решить элементарное уравнение x + 9 = 0 . Несложно догадаться, что корень этого уравнения равен −9 . Проверка показывает, что корень верный:

Пример 2. Решить уравнение Как правильно решать уравнения по алгебре

Данное уравнение имеет два корня: 1 и 2. Левая часть уравнения является произведение выражений (x − 1) и (x − 2) . А произведение равно нулю, если хотя бы один из сомножителей равен нулю (или сомножитель (x − 1) или сомножитель (x − 2) ).

Найдем такое x при котором выражения (x − 1) или (x − 2) обращаются в нули:

Как правильно решать уравнения по алгебре

Подставляем по-очереди найденные значения в исходное уравнение Как правильно решать уравнения по алгебреи убеждаемся, что при этих значениях левая часть равняется нулю:

Как правильно решать уравнения по алгебре

Когда корней бесконечно много

Уравнение может иметь бесконечно много корней. То есть подставив в такое уравнение любое число, мы получим верное числовое равенство.

Пример 1. Решить уравнение Как правильно решать уравнения по алгебре

Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения и привести подобные слагаемые, то получится равенство 14 = 14 . Это равенство будет получаться при любом x

Как правильно решать уравнения по алгебре

Пример 2. Решить уравнение Как правильно решать уравнения по алгебре

Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения, то получится равенство 10x + 12 = 10x + 12. Это равенство будет получаться при любом x

Когда корней нет

Случается и так, что уравнение вовсе не имеет решений, то есть не имеет корней. Например уравнение Как правильно решать уравнения по алгебрене имеет корней, поскольку при любом значении x , левая часть уравнения не будет равна правой части. Например, пусть Как правильно решать уравнения по алгебре. Тогда уравнение примет следующий вид

Как правильно решать уравнения по алгебре

Пусть Как правильно решать уравнения по алгебре

Как правильно решать уравнения по алгебре

Пример 2. Решить уравнение Как правильно решать уравнения по алгебре

Раскроем скобки в левой части равенства:

Как правильно решать уравнения по алгебре

Приведем подобные слагаемые:

Как правильно решать уравнения по алгебре

Видим, что левая часть не равна правой части. И так будет при любом значении y . Например, пусть y = 3 .

Как правильно решать уравнения по алгебре

Буквенные уравнения

Уравнение может содержать не только числа с переменными, но и буквы.

Например, формула нахождения скорости является буквенным уравнением:

Как правильно решать уравнения по алгебре

Данное уравнение описывает скорость движения тела при равноускоренном движении.

Полезным навыком является умение выразить любой компонент, входящий в буквенное уравнение. Например, чтобы из уравнения Как правильно решать уравнения по алгебреопределить расстояние, нужно выразить переменную s .

Умнóжим обе части уравнения Как правильно решать уравнения по алгебрена t

Как правильно решать уравнения по алгебре

В правой части переменные t сократим на t и перепишем то, что у нас осталось:

Как правильно решать уравнения по алгебре

В получившемся уравнении левую и правую часть поменяем местами:

Как правильно решать уравнения по алгебре

У нас получилась формула нахождения расстояния, которую мы изучали ранее.

Попробуем из уравнения Как правильно решать уравнения по алгебреопределить время. Для этого нужно выразить переменную t .

Умнóжим обе части уравнения на t

Как правильно решать уравнения по алгебре

В правой части переменные t сократим на t и перепишем то, что у нас осталось:

Как правильно решать уравнения по алгебре

В получившемся уравнении v × t = s обе части разделим на v

Как правильно решать уравнения по алгебре

В левой части переменные v сократим на v и перепишем то, что у нас осталось:

Как правильно решать уравнения по алгебре

У нас получилась формула определения времени, которую мы изучали ранее.

Предположим, что скорость поезда равна 50 км/ч

А расстояние равно 100 км

Тогда буквенное уравнение Как правильно решать уравнения по алгебрепримет следующий вид

Как правильно решать уравнения по алгебре

Из этого уравнения можно найти время. Для этого нужно суметь выразить переменную t . Можно воспользоваться правилом нахождения неизвестного делителя, разделив делимое на частное и таким образом определить значение переменной t

Как правильно решать уравнения по алгебре

либо можно воспользоваться тождественными преобразованиями. Сначала умножить обе части уравнения на t

Как правильно решать уравнения по алгебре

Затем разделить обе части на 50

Как правильно решать уравнения по алгебре

Пример 2. Дано буквенное уравнение Как правильно решать уравнения по алгебре. Выразите из данного уравнения x

Вычтем из обеих частей уравнения a

Как правильно решать уравнения по алгебре

Разделим обе части уравнения на b

Как правильно решать уравнения по алгебре

Теперь, если нам попадется уравнение вида a + bx = c , то у нас будет готовое решение. Достаточно будет подставить в него нужные значения. Те значения, которые будут подставляться вместо букв a, b, c принято называть параметрами. А уравнения вида a + bx = c называют уравнением с параметрами. В зависимости от параметров, корень будет меняться.

Решим уравнение 2 + 4x = 10 . Оно похоже на буквенное уравнение a + bx = c . Вместо того, чтобы выполнять тождественные преобразования, мы можем воспользоваться готовым решением. Сравним оба решения:

Как правильно решать уравнения по алгебре

Видим, что второе решение намного проще и короче.

Для готового решения необходимо сделать небольшое замечание. Параметр b не должен быть равным нулю (b ≠ 0) , поскольку деление на ноль на допускается.

Пример 3. Дано буквенное уравнение Как правильно решать уравнения по алгебре. Выразите из данного уравнения x

Раскроем скобки в обеих частях уравнения

Как правильно решать уравнения по алгебре

Воспользуемся переносом слагаемых. Параметры, содержащие переменную x , сгруппируем в левой части уравнения, а параметры свободные от этой переменной — в правой.

Как правильно решать уравнения по алгебре

В левой части вынесем за скобки множитель x

Как правильно решать уравнения по алгебре

Разделим обе части на выражение a − b

Как правильно решать уравнения по алгебре

В левой части числитель и знаменатель можно сократить на a − b . Так окончательно выразится переменная x

Как правильно решать уравнения по алгебре

Теперь, если нам попадется уравнение вида a(x − c) = b(x + d) , то у нас будет готовое решение. Достаточно будет подставить в него нужные значения.

Допустим нам дано уравнение 4(x − 3) = 2(x + 4) . Оно похоже на уравнение a(x − c) = b(x + d) . Решим его двумя способами: при помощи тождественных преобразований и при помощи готового решения:

Для удобства вытащим из уравнения 4(x − 3) = 2(x + 4) значения параметров a, b, c, d . Это позволит нам не ошибиться при подстановке:

Как правильно решать уравнения по алгебре

Как правильно решать уравнения по алгебре

Как и в прошлом примере знаменатель здесь не должен быть равным нулю (a − b ≠ 0) . Если нам встретится уравнение вида a(x − c) = b(x + d) в котором параметры a и b будут одинаковыми, мы сможем не решая его сказать, что у данного уравнения корней нет, поскольку разность одинаковых чисел равна нулю.

Например, уравнение 2(x − 3) = 2(x + 4) является уравнением вида a(x − c) = b(x + d) . В уравнении 2(x − 3) = 2(x + 4) параметры a и b одинаковые. Если мы начнём его решать, то придем к тому, что левая часть не будет равна правой части:

Как правильно решать уравнения по алгебре

Пример 4. Дано буквенное уравнение Как правильно решать уравнения по алгебре. Выразите из данного уравнения x

Приведем левую часть уравнения к общему знаменателю:

Как правильно решать уравнения по алгебре

Умнóжим обе части на a

Как правильно решать уравнения по алгебре

В левой части x вынесем за скобки

Как правильно решать уравнения по алгебре

Разделим обе части на выражение (1 − a)

Как правильно решать уравнения по алгебре

Линейные уравнения с одним неизвестным

Рассмотренные в данном уроке уравнения называют линейными уравнениями первой степени с одним неизвестным.

Если уравнение дано в первой степени, не содержит деления на неизвестное, а также не содержит корней из неизвестного, то его можно назвать линейным. Мы еще не изучали степени и корни, поэтому чтобы не усложнять себе жизнь, слово «линейный» будем понимать как «простой».

Большинство уравнений, решенных в данном уроке, в конечном итоге сводились к простейшему уравнению, в котором нужно было произведение разделить на известный сомножитель. Таковым к примеру является уравнение 2 (x + 3) = 16 . Давайте решим его.

Раскроем скобки в левой части уравнения, получим 2 x + 6 = 16. Перенесем слагаемое 6 в правую часть, изменив знак. Тогда получим 2 x = 16 − 6. Вычислим правую часть, получим 2x = 10. Чтобы найти x , разделим произведение 10 на известный сомножитель 2. Отсюда x = 5.

Уравнение 2 (x + 3) = 16 является линейным. Оно свелось к уравнению 2x = 10 , для нахождения корня которого потребовалось разделить произведение на известный сомножитель. Такое простейшее уравнение называют линейным уравнением первой степени с одним неизвестным в каноническом виде. Слово «канонический» является синонимом слов «простейший» или «нормальный».

Линейное уравнение первой степени с одним неизвестным в каноническом виде называют уравнение вида ax = b.

Полученное нами уравнение 2x = 10 является линейным уравнением первой степени с одним неизвестным в каноническом виде. У этого уравнения первая степень, одно неизвестное, оно не содержит деления на неизвестное и не содержит корней из неизвестного, и представлено оно в каноническом виде, то есть в простейшем виде при котором легко можно определить значение x . Вместо параметров a и b в нашем уравнении содержатся числа 2 и 10. Но подобное уравнение может содержать и другие числа: положительные, отрицательные или равные нулю.

Если в линейном уравнении a = 0 и b = 0 , то уравнение имеет бесконечно много корней. Действительно, если a равно нулю и b равно нулю, то линейное уравнение ax = b примет вид 0x = 0 . При любом значении x левая часть будет равна правой части.

Если в линейном уравнении a = 0 и b ≠ 0 , то уравнение корней не имеет. Действительно, если a равно нулю и b равно какому-нибудь числу, не равному нулю, скажем числу 5, то уравнение ax = b примет вид 0x = 5 . Левая часть будет равна нулю, а правая часть пяти. А ноль не равен пяти.

Если в линейном уравнении a ≠ 0 , и b равно любому числу, то уравнение имеет один корень. Он определяется делением параметра b на параметр a

Как правильно решать уравнения по алгебре

Действительно, если a равно какому-нибудь числу, не равному нулю, скажем числу 3 , и b равно какому-нибудь числу, скажем числу 6 , то уравнение Как правильно решать уравнения по алгебрепримет вид Как правильно решать уравнения по алгебре.
Отсюда Как правильно решать уравнения по алгебре.

Существует и другая форма записи линейного уравнения первой степени с одним неизвестным. Выглядит она следующим образом: ax − b = 0 . Это то же самое уравнение, что и ax = b , но параметр b перенесен в левую часть с противоположным знаком. Такие уравнение мы тоже решали в данном уроке. Например, уравнение 7x − 77 = 0 . Уравнение вида ax − b = 0 называют линейным уравнением первой степени с одним неизвестным в общем виде.

В будущем после изучения рациональных выражений, мы рассмотрим такие понятия, как посторонние корни и потеря корней. А пока рассмотренного в данном уроке будет достаточным.

Поделиться или сохранить к себе: