статья по алгебре (5 класс) на тему
Уравнения — не только одна из самых распространенных, но и одна из самых проблемных математических задач. Рассмотрим некоторые приемы решения простейших уравнений на уроках в 5-6 классах, которые в дальнейшем используем при решении более сложных уравнений. К концу обучения в 6 классе формируем обобщенный метод решения уравнений.
Видео:Уравнение. 5 класс.Скачать
Скачать:
Вложение | Размер |
---|---|
priemy_zachetnaya_statya.docx | 22.86 КБ |
Видео:Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать
Предварительный просмотр:
Жарова Галия Шамратовна
Учитель математики МКОУ «Садовская СШ» Быковского района Волгоградской области тел. 8904-405-49-56
Приемы решения уравнений в 5-6 классах
Уравнение – самая простая и распространенная форма математической задачи. Решение уравнений — одна из проблем в математике. В 5-м классе изучение уравнений начинается с определения уравнения, его корней, что значит решить уравнение. Повторяются правила нахождения неизвестных компонентов сложения, вычитания. Решаются уравнения, которые содержат буквенные выражения только в одной части уравнения. Для их решения учащиеся должны выполнить последовательно несколько преобразований, каждое из которых освоено ими раньше: 395+х=864 или 59=81-k (№395 Математика 5 класс Н.Я. Виленкин и др.) Учащиеся 5 класса затрудняются решать уравнения такого типа, как (х + 121) — 38 =269. Алгоритм решения таких уравнений дан в №375 данного учебника.
Обычно такие уравнения решаются так:
чтобы найти уменьшаемое х +121,
надо к вычитаемому 38 прибавить разность 269:
х + 121 = 38 + 269;
Далее рассуждают так: чтобы найти неизвестное слагаемое Х, надо из суммы 307 вычесть известное слагаемое121:
Чаще всего ученики не видят в этом уравнении вычитаемого 38 и уменьшаемого (х+121). Если учащиеся имеют хорошие навыки решения простейших уравнений, можно решать подобные уравнения, приведя их к простейшим уравнениям. Рассмотрим этот прием на примерах решения уравнений из № 376 учебник Математика 5класс Н.Я.Виленкин и др.
Обозначим выражение, стоящее в скобках через a: х + 15 = а
Тогда получим такое уравнение:
Теперь возвращаемся к выражению, стоящему в скобках:
Подстановка 45-у = а;
Подстановка х+24= а;
Подстановка х – 15 = а;
Этот приём позволяет легко решать такие сложные уравнения.
Для тех учащихся, кто так и не усвоил правил нахождения неизвестных: слагаемого, вычитаемого, множителя и т.д., используется при решении простейших уравнений приём «по аналогии». Например, нужно решить уравнение: х – 284 = 127. В стороне от этого уравнения слабый ученик записывает простейший арифметический пример 7 — 3 = 4. Ученик смотрит, где в этом примере должен стоять х (на месте7). Как из этого простого примера найти 7? Надо к 3 прибавить 4. Значит, и в данном уравнении, чтобы найти х, надо 127 сложить с 284
Учащиеся 6-го класса осваивают новые методы решения уравнений. Вначале рассматривается возможность умножения или деления обеих частей на одно и то же отличное от нуля число. В обоих случаях делаются выводы о том, что при умножении (или делении) обеих частей уравнения на неравное нулю число получается новое уравнение с теми же корнями, что и заданное.
Далее осваивается способ переноса слагаемых из одной части уравнения в другую с переменой знака у слагаемого на противоположный. Так как обоснование этому способу также не дается (не изучались свойства равенства), то активно используется методические приемы с весами, с помощью которых учащиеся осознают смысл этого преобразования: все математические действия сопровождаются соответствующими действиями с весами. Покажем это на примере.
Решите уравнение х + 6 = 15
Вначале наполняем конкретным содержанием данную задачу: показываем картинку с весами или рассматриваем рисунок в учебнике. После выяснения соответствия картинки тексту задачи приступаем к решению уравнения.
Вынем из левой части уравнения число 6, это тоже самое, что снять с левой чаши весов гири в 5 кг и 1 кг. Чтобы равновесие не нарушилось, надо и с правой чаши весов снять гири массой в 6 кг, т.е. для сохранения равенства надо из правой части уравнения вычесть число 6.
После упрощения получаем
Просмотрев ход решения, можно сделать выводы: а) число 9 является корнем уравнения, б) при переносе членов из одной части уравнения в другую с переменой знаков получаем новое уравнение, но с тем же корнем.
После решения уравнения делаются выводы о возможности переноса членов, являющихся буквенными выражениями. Делается вывод, что любые слагаемые можно переносить из одной части уравнения в другую, изменяя при этом знаки.
В 6 классе учащиеся знакомятся с понятием модуля числа и учатся решать уравнения с модулем. Уравнения с модулем сводятся к простейшим уравнениям, в решении которых применяется определение модуля, учитывается, что под знаком модуля могут быть как положительные выражения, так и отрицательные, при этом модуль бывает только неотрицательным числом. Начнем с такого вида:
Решаем это уравнение как линейное: неизвестные — в одну сторону, известные — в другую, изменив при этом их знаки:
Теперь обе части уравнения делим на число, стоящее перед модулем икса:
Видео:Правила решения уравнений в 5 классе. Как запомнить и вывести их самому.Скачать
Ковалевская Н. Л. Образцы оформления заданий на уроках математики. № 10 2012
Н. Л. Ковалевская, учитель высшей категории, методист высшей категории, г. Минск
Образцы оформления заданий на уроках математики
В ходе работы на уроках математики возникают частные вопросы оформления отдельных заданий: решения задач, нахождения значения числовых выражений, уравнений, неравенств, выполнения геометрических заданий.
Рассмотрим примерные рекомендации по оформлению отдельных заданий младшими школьниками в тетрадях по математике.
Во-первых, необходимо научить младших школьников легко определять количество строк, которые следует пропускать. Между работами — 4 клетки, внутри работы между заданиями — 2 клетки, внутри заданий между действиями — 1 клетку (образец 1).
Требования к написанию цифр как в однозначных числах, так и в многозначных предъявляются единые. Каждая цифра пишется с наклоном в отдельной клетке, прислоняясь к её правой стороне. Особенно это требование актуально при выполнении действий с многозначными числами. Образцы написания цифр представлены в учебном наглядном пособии «Демонстрационный набор письменных цифр и математических знаков».
Во II классе учащимся удобнее все буквы в тетрадях по математике писать высотой в целую клетку (аналогично письму на уроках языка). В III и IV классах высота букв при повышении скорости письма может уменьшаться до 2/3 высоты клетки.
После даты, слов Домашняя работа, Классная работа, Задача точка не ставится. Слова Примеры, Уравнения, Неравенств, Математический диктант, Контрольный устный счёт в начальных классах не пишутся.
Как ученику II класса (именно в этом возрасте они начинают записывать дату выполнения работы) научиться определять место начала записи даты? Например, можно договориться отсчитывать от начала страницы (или от полей) 10 полных клеток, а в 11-й начинать запись даты, тогда будет достигнуто единство оформления письменных записей и ученику легко будет расположить дату посередине страницы.
Оформление математических диктантов может быть выполнено разными способами. Учащиеся I класса пишут под диктовку числа, учатся писать математические диктанты, записывая результаты в строку через запятую. Начиная со II класса результаты диктанта можно оформлять в строку или в столбики. Учащиеся должны быть научены фиксировать ответы поразному. Перед математическим диктантом учитель оговаривает с учащимися способ записи ответов. При записи результатов математического диктанта в строку учащиеся пишут каждый последующий результат через запятую. В случае отсутствия ответа на месте его ученик ставит прочерк. В противном случае проверка результатов выполненного диктанта вызовет затруднения, как у учителя, так и учащихся (при самопроверке и при взаимопроверке). (Образец 2.)
Запись результатов математического диктанта может быть выполнена в столбики. Для этого перед началом диктанта учитель сообщает классу количество заданий предстоящего диктанта (10 или 12). Учащиеся до диктанта записывают половину порядковых номеров ответов (5 или 6) в первый столбик, а вторую половину — во второй, отступив вправо от записанных номеров заданий первого столбика оговоренное количество клеток, например 10. Порядковые номера заданий записываются с круглой скобкой. В ходе выполнения математического диктанта учащиеся записывают ответ рядом с порядковым номером. Ответы, в которых учащийся сомневается, могут быть им пропущены. Заполнение их возможно и при самопроверке. Перед тем как отдать работу на проверку учителю или однокласснику, ученик должен рядом с номерами невыполненных заданий поставить прочерк. (Образец 3.)
В IV классе при изучении нумерации многозначных чисел фиксация результатов математического диктанта может производиться в один столбик. (Образец 4.)
В оформление задачи входит слово Задача, запись решения и ответа.
Слово Задача записывается с большой буквы посередине строки. Ориентировочно необходимо отступить от левого края страницы 10 клеток. Если запись слова Задача располагается на той же странице, что и дата, то учащимся удобно провести по воздуху линию от первой цифры даты вниз, так как первая буква слова будет расположена под первой цифрой даты. (См. образец 1.)
В I классе решение задачи записывается в виде числового выражения. Значение числового выражения (ответ задачи) подчёркивается. Полный ответ задачи проговаривается устно. (Образец 5.)
Задача. Наде 7 лет, а её сестра на 3 года старше. Сколько лет сестре?
Со ІІ класса пишутся слова Задача и Ответ. Второклассники учатся оформлять запись решения составной задачи. При записи решения задачи по действиям каждое действие пишется с новой строки. В начале строки ставится порядковый номер действия с круглой скобкой, отступается одна клетка и записывается действие. (Образец 6.)
Задача. В одном аквариуме было 24 рыбки, а во втором — на 8 рыбок меньше. Сколько рыбок было в двух аквариумах?
Запись решения задачи может быть оформлена выражением. В этом случае порядковый номер в начале строки не ставится. (Образец 7.)
В III и IV классах решение может быть оформлено по действиям без пояснений, с полными или краткими пояснениями, с вопросами, с планом, а также выражением. Если решение задачи записывается выражением, то нет необходимости делать пояснения после действия. Результат поясняется только в ответе.
Решение задачи по действиям с краткими пояснениями оформляется следующим образом. Пояснения к каждому из действий формулируются кратко (словосочетанием). Сразу после наименования ставится тире, и с маленькой буквы записывается пояснение, в котором заключается основной смысл ответа на поставленный вопрос. (Образец 8.)
Задача. В одной коробке 20 кг печенья, а в другой 12 кг. Из второй коробки продали 8 кг печенья. Во сколько раз в первой коробке стало больше печенья, чем во второй?
Решение задачи по действиям с полными пояснениями оформляется следующим образом. (Образец 9.)
Задача. Расфасовали 70 кг яблок и несколько килограммов груш в пакеты. Один пакет с яблоками весит 10 кг, а с грушами — 9 кг. Сколько было килограммов груш, если пакетов с яблоками и грушами получилось поровну?
Решение задачи с вопросами предполагает постановку вопросов к каждому из действий. Вопрос записывается с большой буквы с начала строки. После него ставится вопросительный знак, а затем с новой строки записывается действие. Порядковый номер действия в этом случае ставится один раз перед вопросом. (Образец 10.)
Задача. В коробке было 16 конфет. Четвёртую часть всех конфет съел брат, остальные конфеты разделили поровну между собой три сестры. Сколько конфет съела каждая сестра?
Решение этой же задачи можно оформить с планом. (Образец 11.)
При необходимости выполнить письменные вычисления решение задачи записывается сразу в столбик. (Образец 12.)
Задача. Из двух городов одновременно навстречу друг другу вышли два поезда. Расстояние между городами 564 км. Один поезд шёл со скоростью 42 км/ч. С какой скоростью шёл другой поезд, если они встретились через 6 ч?
Если решение задачи записывается выражением, при этом необходимо произвести письменные вычисления, они располагаются под выражением. (Образец 13.)
Задача. Товарный и пассажирский поезда вышли одновременно навстречу друг другу из двух городов. Товарный поезд шёл со скоростью 56 км/ч и прошёл 224 км. Пассажирский поезд шёл со скоростью 74 км/ч. Какое расстояние до встречи прошёл пассажирский поезд?
Наименование пишется после каждого действия задачи или после выражения в скобках с маленькой буквы. В записи наименования допускаются сокращения (обязательно должно заканчиваться на согласный). После сокращения ставится точка, в случаях, если это сокращение не является общепринятым. Точка не ставится в наименованиях, обозначающих единицы измерения длины: мм, см, дм, м, км, единицы измерения веса: г, кг, т, ц, единицы измерения времени: сут, ч, мин, с.
Слово Ответ записывается с начала строки, после него ставится двоеточие. После двоеточия на первом месте желательно записать число (результат решения задачи), а после него с маленькой буквы пояснение к нему. Ответ задачи может записываться как целыми словами, так и с использованием общепринятых сокращений (километров — км, метров — м, километров в час — км/ч и т. п.). Ответ записывается к каждой задаче. В случае если задача решается несколькими способами, делается пометка «1 способ, 2 способ» и ответ записывается один раз. Если решение задачи записано по действиям, а затем выражением, то ответ тоже записывается один раз. Если решение задачи выполнялось с полным пояснением, с записью вопросов по действиям, ответ может быть записан кратко. При этом записывается числовое значение и наименование либо число и словосочетание, отражающие ответ задачи. (См. образцы 9, 10, 11.) Если решение задачи записано выражением, по действиям с краткими пояснениями или без них, то ответ задачи должен быть полным (в виде числа и предложения). (См. образцы 6, 7, 8, 12, 13.)
К задаче может быть выполнена краткая запись. Она записывается после слова Задача. Между строками пропускается одна клетка. Буквы и цифры пишутся в соответствии с рассмотренными выше требованиями.
Запись нахождения значения математического выражения также оформляется единообразно. Если математическое выражение состоит из одного действия, которое решается устно, ученик записывает его в строку и рядом — его ответ. При записи нескольких таких выражений между столбиками рекомендуется пропускать в сторону 3 клетки, а вниз между столбиками — 2. (Образец 14.)
Если математическое выражение состоит из одного действия, и для его решения требуются письменные вычисления, то оно сразу записывается в столбик и вычисляется. В строке можно разместить несколько математических выражений с письменными вычислениями при условии, что вправо между ними необходимо пропускать не менее 3 клеток. (Образец 15.)
При письменном умножении на трёхзначное число следует рекомендовать учащимся размещать на одной строке только 2 примера, так как при записи происходит значительный сдвиг влево. При необходимости на строке размешается математическое выражение, а рядом проверка вычислений. (Образец 16.)
Учащийся вправе сам принять решение о рациональном размещении на странице выполненных заданий. К примеру, если необходимо выполнить несколько примеров на деление многозначных чисел и сделать к ним проверку, на одной строке можно разместить примеры на деление, а под ними проверку. В таких случаях рекомендуется отступать вниз 2 клетки. (Образец 17.)
Если математическое выражение состоит из нескольких действий, решение которых предполагает устные вычисления, то учащийся сначала определяет порядок действий (его можно надписать над выражением), затем производит устные вычисления и записывает ответ. Выполнять запись устных действий не нужно. (Образец 18.)
Если математическое выражение состоит из нескольких действий, решение которых предполагает письменные вычисления, то сначала оно записывается в строку. Определяется порядок выполнения действий. Затем каждое действие записывается под выражением и выполняется. Полученный конечный результат записывается в первоначальную запись после знака «равно». (Образец 19.)
Решение простейшего уравнения записывается в столбик: само уравнение, способ нахождения неизвестного, результат вычисления (значение неизвестного), проверка решения уравнения. Можно расположить решение двух уравнений в 2 столбика. При этом между уравнениями в сторону необходимо отступить 3 клетки. Слова Решение и Проверка, которые используются в образце оформления уравнения на страницах учебника, в тетрадях учащимися не записываются. (Образец 20.)
Решение уравнений в два действия также записывается в столбик. Расположение двух таких уравнений также допустимо на одной строке при условии, что их решение не требует письменных вычислений. (Образец 21.)
Если при решении уравнения необходимо выполнять письменные действия с многозначными числами, их следует располагать справа от записи решения уравнения. (Образец 22.)
Сравнение чисел, выражений, величин. При сравнении двух чисел они записываются на строке с интервалом в одну клетку. В ней учащийся ставит знак. (Образец 23.)
При сравнении многозначных чисел учащийся производит сравнение поразрядно. Достаточно обратить внимание на различающиеся цифры в разрядах, начиная с высшего, подчеркнуть их. Во второй строке можно записать только те цифры, которыми различаются числа. Это будет основанием для сравнения чисел. (Образец 24.)
Если число необходимо сравнить с выражением, то в записи между ними также оставляется клетка. Знак может быть вставлен только после нахождения значения выражения и сопоставления его с числом. (Образец 25.)
Если необходимо сравнить два выражения, то в записи между ними также оставляется клетка. Знак может быть вставлен только после нахождения значений обоих выражений. Найденные значения выражений целесообразно записать на следующей строке и после их сопоставления поставить знак сравнения между ними, а затем и на верхней строке в исходном выражении. (Образец 26.)
При сравнении величин обращается внимание на единицы их измерения. Если величины выражены в одинаковых единицах измерения, то сравнение производится так же, как и сравнение чисел. Знак ставится между величинами после установления их равенства или неравенства. (Образец 27.)
Если сравниваются величины, выраженные в разных единицах измерения, необходимо оценить возможность их сравнения без приведения их к единым единицам измерения; если это возможно, поставить требующийся знак. (Образец 28.)
При сравнении величин, выраженных в разных единицах измерения, чаще всего обязательным условием является приведение их к одинаковым единицам (меньшим или большим). Запись лучше зафиксировать на следующей строке. После сопоставления преобразованных величин можно поставить знак равенства или неравенства и затем перенести его в исходное выражение. (Образец 29.)
Задания геометрического характера могут включать только вычерчивание геометрических фигур, только нахождение параметров геометрических фигур, либо задание на нахождение параметров и вычерчивание фигур.
Если задание предполагает только вычерчивание фигуры (фигур), от предыдущего задания отступают две клетки и чертят заданную геометрическую фигуру.
Если задание предполагает только нахождение параметров геометрической фигуры, то ученик должен оформить выполнение задания как решение задачи: слово Задача, решение (нахождение параметров геометрической фигуры), ответ. Если в задаче не требуется вычерчивание фигуры, этого и не нужно делать. (Образец 30.)
Длина прямоугольника 12 см, а ширина в 4 раза меньше. Вычисли периметр прямоугольника.
Если задание предполагает нахождение параметров и вычерчивание фигуры, то оформляется это тоже как задача. Ученик должен привыкнуть к тому, что любые вычисления (даже устные) при нахождении параметров должны быть зафиксированы письменно. Сначала проводятся вычисления, затем вычерчивается фигура с полученными данными. (Образец 31.)
Начерти прямоугольник, длина которого 9 см, а ширина на 4 см меньше. Вычисли его периметр.
В задании может быть задана длина первого отрезка. Второй и третий отрезки необходимо найти, а затем начертить. В таком случае ребёнку удобно начертить данный отрезок, вычислить размер второго отрезка (с записью действия), начертить полученный отрезок, затем найти длину третьего отрезка (с записью действия) и тогда его начертить. (Образец 32.)
Начерти отрезки. Длина первого 1 дм 1 см, второй на 8 см короче первого, а третий — в два раза длиннее второго.
Это же задание учащийся может оформить иначе. (Образец 33.)
Если к заданию было записано слово Задача, значит, к нему предполагается и Ответ.
Если необходимо произвести сравнение отрезков, значит, записывается слово Задача, после вычерчивания отрезков записывается математическое действие, с помощью которого производилось сравнение (вычитание, деление). Завершается выполнение задания записью ответа.
Отметим некоторые особенности вычерчивания отрезков.
- Чертим отрезки, отступая от левого края страницы 1 полную клетку.
- Все отрезки необходимо чертить друг под другом, при этом их начальные точки должны находиться на одном расстоянии от левого края страницы.
- Пропуски между отрезками вниз составляют 1 клетку.
- Края отрезков отмечаются небольшими штрихами.
Нахождение значения выражения с переменной записывается следующим образом. (Образец 34.)
Видео:Уравнение. Практическая часть - решение задачи. 1 часть. 5 класс.Скачать
О решении уравнений в 5–6-х классах
Разделы: Математика
Сухие строки уравнений —
В них сила разума влилась.
В них объяснение явлений,
Вещей разгаданная связь.
Л.М.Фридман
Уравнения в школьном курсе математики занимают ведущее место. На их изучение отводится времени больше, чем на любую другую тему. Действительно, уравнения не только имеют важное теоретическое значение, но и служат чисто практическим целям. Подавляющее большинство задач о пространственных формах и количественных отношениях реального мира сводится к решению различных видов уравнений. Овладевая способами их решения, мы находим ответы на различные вопросы из науки и техники. Обучение детей умению решать уравнения начинается уже в начальной школе. У учеников формируется понятие уравнения, как равенства с неизвестным числом, которое требуется найти. Используя правила нахождения неизвестных компонентов, дети учатся находить корни простейших уравнений. Свое дальнейшее развитие содержательно-методическая линия уравнений получает в 5-6 классах, причем на этом этапе уже есть возможность и необходимость показать детям прикладную ценность уравнений. Однако, по моему мнению, чрезмерное стремление некоторых педагогов к использованию уравнений для решения текстовых задач в 5 классе, является необоснованным и в некоторой степени вредным. Оно не способствует в полной мере развитию мыслительных навыков детей. В пятом классе со своими учениками я рассматриваю арифметические подходы к решению задач разных типов. Учебные пособия “Математика-5” , “Математика-6” И.И. Зубаревой, А.Г. Мордковича нацеливают педагога на постепенное введение буквенных выражений, уравнений. Учащиеся учатся использовать их для перевода предложений, сформулированных на русском языке, на математический язык. Дети осознанно подходят к составлению уравнения по условию задачи, постепенно овладевают умением выделять величины, устанавливать связи и зависимости между ними. Но для того, чтобы ребенок мог полноценно решить задачу с помощью уравнения, ему необходимо уметь решать уравнения. Обучению приемам решения уравнений уделяю достаточно много времени. В пятом классе закрепляю и довожу до автоматизма умение решать уравнения “по компонентам”, ввожу прием “форточка” для решения двухшаговых уравнений, этот же приемом использую для решения более сложных уравнений. Дети часто затрудняются при выборе действия для нахождения неизвестного компонента. Чтобы избежать ошибки, использую прием “маленький пример”, который позволяет ребенку на однозначных числах выяснить, как найти неизвестное число и по аналогии выполнить действие. Например, надо решить уравнение (123х+ 34):18 = — 45. ребенок будет действовать следующим образом:
маленький пример”: 6:2=3 6=3*2
Таким образом, оставляя одно действие, заключая все остальное в “форточку”, ребенок придет к простейшему уравнению. Прием “форточка” вызывает интерес детей, привлекает их внимание, надолго запоминается. Кроме того, его использую как пропедевтику способа замены переменных.
Уже в шестом классе начинаю вводить способ решения уравнений, сводящихся к линейным, основанный на переносе слагаемых. Дети умеют раскрывать скобки, приводить подобные. Но при этом обязательно показываю, что, например, уравнение
2х-34= -56 можно решить двумя способами: использовать “форточку” или перенести слагаемые. Это делаю для того, чтобы дети привыкали к поиску разных способов выполнения одной и той же задачи, выбору наиболее рационального. Такая система работы дает положительный результат: даже самые слабые дети успешно решают уравнения. Этот подход к обучению умению решать уравнения был мной апробирован в классе компенсирующего обучения.
Далее предлагаю проекты уроков в 6 классе, на котором ввожу способ решения уравнений с переносом слагаемых. На уроках используются презентации, выполненные в программе PowerPoint. Более эффективно использовать интерактивную доску.
Тема урока: Решение уравнений
Цели урока:Повторение способов решения простейших и двухшаговых уравнений.
Оборудование: интерактивная доска, сканер, учебник “Математика-6”, И.И. Зубарева, А.Г. Мордкович.
Этап урока | Цель этапа урока | Содержание | Методический комментарий |
1. Проверка домашней работы | Закрепление навыка самопроверки, умения находить свои и чужие ошибки, объяснять их причину; |
Актуализация знаний по теме урока.
2. Решите уравнение:
б) 36: (12+х) = -6.
Какие рассуждения вы проводили при решении первого уравнения из домашней работы? Второго уравнения?
1) Попробуйте провести аналогичные рассуждения для решения уравнения
Как надо изменить уравнение, чтобы можно было применить имеющиеся знания по решению уравнений?
3) При переезде через государственную границу человек меняет свой паспорт, а слагаемое меняет свой знак.
4) Ребята! Как бы вы поступили при решении уравнения
5) А такого уравнения
6) Хорошо, а теперь давайте попробуем составить алгоритм решения уравнений, похожих на уравнение 7(2+у)-3у=5у-6.
1) Учитель создает проблемную ситуацию.
Учащиеся делают вывод о том, что известные им приемы не работают.
2) Дети говорят о том, что было бы хорошо, если бы все переменные были в одной стороне уравнения.
3) Далее учитель показывает, как перенести слагаемые из одной части уравнения в другую.
4) Перенесли бы слагаемые 14 и 5у, затем привели подобные и нашли значение переменной.
5) Сначала бы раскрыли скобки, затем выполнили перенос слагаемых, приведение подобных и нашли значение переменной.
6) Формулируют последовательность действий и вклеивают в свои справочники алгоритм решения уравнения, в котором есть скобки и переменная может находиться в разных частях уравнения.
е)-3(5а-1)+4а = 2а+7(5-3а)
Самопроверка по образцу, который дает учитель.
Синим цветом выделены уравнения повышенной для этого урока сложности, их выполняют те ученики, которые быстрее других справляются с работой.
Как вы думаете, это всегда будет так?
Давайте наше предположение проверим.
Предлагаю в группах обсудить решение следующих уравнений:
1 группа – решите уравнение 3х-12=0;
2 группа – решите уравнение
3 группа – решите уравнение
Сколько корней получилось у ваших уравнений?
Вывод: Уравнение вида ax = b может иметь один корень, может не иметь корней, может иметь бесконечно много корней.
Учащиеся работают в группах.
Учитель оказывает помощь группам при необходимости.
Организует обсуждение полученных результатов, помогает сделать выводы.
Таблица с выводами (заранее распечатанная) вклеивается в справочник
Тема урока: Решение уравнений.
Цели урока:
- Закрепление навыка решения простейших и двухшаговых уравнений.
- Формирование умения решать уравнения, используя перенос слагаемых из одной части в другую.
- Развитие коммуникативных навыков учащихся.
- Первичный контроль знаний и умений учеников по данной теме.
Оборудование: интерактивная доска, компьютерный класс, учебник “Математика-6”, И.И. Зубарева, А.Г. Мордкович.
Этап урока | Цель этапа урока | Содержание | Методический комментарий |
1. Проверка домашней работы | Закрепление навыка самопроверки, умения находить свои и чужие ошибки, объяснять их причину; |
Актуализация знаний по теме урока.
в) 17+3(15-с)=(4-с)-2(с-5).
Учитель оказывает помощь слабоуспевающим ученикам.
2) Повторение алгоритма решения уравнений. Дети обсуждают в парах , а один ученик на компьютере в режиме “пауза” перетаскивает фигуры в нужном порядке.
3) Решение уравнений (проектор переводится в режим “пауза”), один ребенок работает на компьютере, а затем работа проверяется детьми.
9 человек проходят тестирование на компьютерах, остальные самостоятельно работают на местах.
🎥 Видео
ВСЯ математика 5-го класса в одном видео! Альфа-школаСкачать
Сложные уравнения со скобками. Как решать уравнения в несколько действий в 5 классе.Скачать
Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать
Уравнения. 5 классСкачать
Уравнение с дробями видео урок ( Математика 5 класс )Скачать
Уравнение. Практическая часть - решение задачи. 2 часть. 5 класс.Скачать
11. Уравнения (Виленкин, 5 класс)Скачать
Уравнения со скобками - 5 класс (примеры)Скачать
Урок 14 Решение задач с помощью уравнений (5 класс)Скачать
Решение сложных уравнений 4-5 класс.Скачать
Сложные уравнения. Как решить сложное уравнение?Скачать
Как решать Уравнения с дробями ( Математика 5 класс )Скачать
Математика 5 класс. Уравнение. Корень уравненияСкачать
МАТЕМАТИКА 5 класс: Уравнение | Короткий видеоурокСкачать
Уравнение 5 классСкачать
Математика 5 класс. 28 октября. Вынесение множителя за скобки в уравнениях #2Скачать