Как правильно найти произведение корней уравнения

Теорема Виета для квадратного уравнения

Как правильно найти произведение корней уравнения

О чем эта статья:

Видео:Найти произведение корней уравнений,√(x+5)-∛(x+5)=0Скачать

Найти произведение корней уравнений,√(x+5)-∛(x+5)=0

Основные понятия

Квадратное уравнение — это ax 2 + bx + c = 0, где a — первый коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Существует три вида квадратных уравнений:

  • не имеют корней;
  • имеют один корень;
  • имеют два различных корня.

Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Формула для его поиска записывается так: D = b 2 − 4ac. Его свойства:

  • если D 0, есть два различных корня.

В случае, когда второй коэффициент четный, можно воспользоваться формулой нахождения дискриминанта , где .

В математике теоремой принято называть утверждение, у которого ранее было сформулировано доказательство.

Видео:Найти значение суммы и произведения корней квадратного уравненияСкачать

Найти значение суммы и произведения корней квадратного уравнения

Формула Виета

Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так:

Рассмотрим квадратное уравнение, в котором первый коэффициент равен 1: . Такие уравнения называют приведенными квадратными уравнениями. Сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.

Если дано x 2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:

Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.

Рассмотрим теорему Виета на примере: x 2 + 4x + 3 = 0.

Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:

Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:
Как правильно найти произведение корней уравнения

Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x 2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента:
2 + 4x + 3 = 0″ height=»215″ src=»https://lh5.googleusercontent.com/E_X403ETh_88EANRWdQN03KRT8yxP2HO4HoCrxj__c8G0DqmNJ1KDRqtLH5Z1p7DtHm-rNMDB2tEs41D7RHpEV5mojDTMMRPuIkcW33jVNDoOe0ylzXdHATLSGzW4NakMkH2zkLE» width=»393″>

Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное.
2 + 4x + 3 = 0″ height=»52″ src=»https://lh5.googleusercontent.com/VzGPXO9B0ZYrr9v0DpJfXwuzeZtjYnDxE_ma76PUC8o7jVWwa8kZjTJhq2Lof0TiJXAp_ny3yRwI_OyRzeucv9xUZ63yoozGPP4xd4OxvElVT7Pt-d6xL5w17e_mQNs5qZJQiwfG» width=»125″>

Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется:
2 + 4x + 3 = 0″ height=»52″ src=»https://lh4.googleusercontent.com/Cq-LCFmY3YGNSan1VF3l3CqIeojoJYAvGAiTBWnzyoZu_xJFrF5NfQ3xCe59apJklw6uYbmQ4lAkBTeC-TJmEGicN3rgGtsezhuqdNiOWjZT39NziOB5uOmQr3cr9-5fNnepdZDo» width=»112″>

Результат проделанных вычислений в том, что мы убедились в справедливости выражения:

Обучение на курсах по математике помогает быстрее разобраться в новых темах и подтянуть оценки в школе.

Видео:Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnlineСкачать

Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnline

Доказательство теоремы Виета

Дано квадратное уравнение x 2 + bx + c = 0. Если его дискриминант больше нуля, то оно имеет два корня, сумма которых равна второму коэффициенту с противоположным знаком, а произведение корней равно свободному члену:

Докажем, что следующие равенства верны

  • x₁ + x₂ = −b,
  • x₁ * x₂ = c.

Чтобы найти сумму корней x₁ и x₂ подставим вместо них то, что соответствует им из правой части формул корней. Напомним, что в данном квадратном уравнении x 2 + bx + c = 0 старший коэффициент равен единице. Значит после подстановки знаменатель будет равен 2.

    Объединим числитель и знаменатель в правой части.

Раскроем скобки и приведем подобные члены:

Сократим дробь полученную дробь на 2, остается −b:

Мы доказали: x₁ + x₂ = −b.

Далее произведем аналогичные действия, чтобы доказать о равенстве x₁ * x₂ свободному члену c.

    Подставим вместо x₁ и x₂ соответствующие части из формул корней квадратного уравнения:

Перемножаем числители и знаменатели между собой:

Очевидно, в числителе содержится произведение суммы и разности двух выражений. Поэтому воспользуемся тождеством (a + b) * (a − b) = a 2 − b 2 . Получаем:

Далее произведем трансформации в числителе:

Нам известно, что D = b2 − 4ac. Подставим это выражение вместо D.

Далее раскроем скобки и приведем подобные члены:

Сократим:

Мы доказали: x₁ * x₂ = c.

Значит сумма корней приведённого квадратного уравнения x 2 + bx + c = 0 равна второму коэффициенту с противоположным знаком (x₁ + x₂ = −b), а произведение корней равно свободному члену (x₁ * x₂= c). Теорема доказана.

Видео:Формула корней квадратного уравнения. Алгебра, 8 классСкачать

Формула корней квадратного уравнения. Алгебра, 8 класс

Обратная теорема Виета

Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Она формулируется так:

Обратная теорема Виета

Если числа x₁ и x₂ таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа являются корнями x 2 + bx + c = 0.

Обратные теоремы зачастую сформулированы так, что их утверждением является заключение первой теоремы. Так, при доказательстве теоремы Виета стало понятно, что сумма x₁ и x₂ равна −b, а их произведение равно c. В обратной теореме это является утверждением.

Видео:Алгебра 8 класс Произведение корнейСкачать

Алгебра 8 класс Произведение корней

Докажем теорему, обратную теореме Виета

Корни x₁ и x₂ обозначим как m и n. Тогда утверждение будет звучать следующим образом: если сумма чисел m и n равна второму коэффициенту x 2 + bx + c = 0, взятому с противоположным знаком, а произведение равно свободному члену, то числа m и n являются корнями x 2 + bx + c = 0.

Зафиксируем, что сумма m и n равна −b, а произведение равно c.

Чтобы доказать, что числа m и n являются корнями уравнения, нужно поочередно подставить буквы m и n вместо x, затем выполнить возможные тождественные преобразования. Если в результате преобразований левая часть станет равна нулю, то это будет означать, что числа m и n являются корнями x 2 + bx + c = 0.

    Выразим b из равенства m + n = −b. Это можно сделать, умножив обе части на −1:

Подставим m в уравнение вместо x, выражение −m − n подставим вместо b, а выражение mn — вместо c:

При x = m получается верное равенство. Значит число m является искомым корнем.

  1. Аналогично докажем, что число n является корнем уравнения. Подставим вместо x букву n, а вместо c подставим m * n, поскольку c = m * n.

    При x = n получается верное равенство. Значит число n является искомым корнем.

Мы доказали: числа m и n являются корнями уравнения x 2 + bx + c = 0.

Видео:Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСССкачать

Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСС

Примеры

Для закрепления знаний рассмотрим примеры решения уравнений по теореме, обратной теореме Виета.

Дано: x 2 − 6x + 8 = 0.

Для начала запишем сумму и произведение корней уравнения. Сумма будет равна 6, так как второй коэффициент равен −6. А произведение корней равно 8.
2 − 6x + 8 = 0″ height=»59″ src=»https://lh6.googleusercontent.com/tFokx3SM93Hwlr7ZM9BqX1xiHKv_2dUIB9MoNa8RAwSTmQKXdCcqcFXxTZmxNGw7bOVek-RzRXqBkoCqnYMiqIYVwKhfnHeU-7mA03feEqJTlyKB7e-OsTTKgPaOlddfiaTGszcv» width=»99″>

Имея эти два равенства можно подобрать подходящие корни, которые будут удовлетворять как равенству обоим равенствам системы.

Подбор корней удобнее выполнять с помощью их произведения. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x₁ и x₂ надо подбирать так, чтобы они удовлетворяли и второму равенству тоже.

Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x₁ + x₂ = 6. Значения 4 и 2 подходят обоим равенствам:

Значит числа 4 и 2 являются корнями уравнения x 2 − 6x + 8 = 0.
2 − 6x + 8 = 0″ height=»57″ src=»https://lh3.googleusercontent.com/rohB7Bvd-elMhTxEUuOhKqLJjqLAvo9VlJxZvOnMeDAHARfKT-SYOWb1WXTTWEN2h0oKbLl6wH7lc0IWL_vH3Si2AJGAGXVn8TPFDT_J1Wu2WeoQ-WP1qgXjCnZ99tWUkK2BOvF2″ width=»64″>

Видео:🔴 Найдите корень уравнения 2+9x=4x+3 | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 7 | ШКОЛА ПИФАГОРАСкачать

🔴 Найдите корень уравнения 2+9x=4x+3 | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 7 | ШКОЛА ПИФАГОРА

Неприведенное квадратное уравнение

Теорема Виета выполняется только тогда, когда квадратное уравнение является приведённым, то есть его первый коэффициент равен единице:

ax 2 + bx + c = 0, где а = 1.

Если квадратное уравнение не является приведенным, но задание связано с применением теоремы, нужно обе части разделить на коэффициент, который располагается перед x 2 .

  1. Получилось следующее приведенное уравнение:

    Получается, второй коэффициент при x равен, свободный член —. Значит сумма и произведение корней будут иметь вид:

Рассмотрим пример неприведенного уравнения: 4x 2 + 5x + 1 = 0. Разделим обе его части на коэффициент перед x 2 , то есть на 4.

  • Получилось приведённое квадратное уравнение. Второй коэффициент которого равен, а свободный член.
  • Тогда в соответствии с теоремой Виета получаем:

  • Метод подбора помогает найти корни: −1 и
  • Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

    Решение квадратных уравнений. Дискриминант. 8 класс.

    Теорема Виета, обратная формула Виета и примеры с решением для чайников

    Теорема Виета помогает решать квадратные уравнения путём подбора. В этой статье даны определения, доказательства, формулы и примеры решений квадратных уравнений для чайников.

    Видео:АЛГЕБРА 7 класс : Уравнение и его корни | ВидеоурокСкачать

    АЛГЕБРА 7 класс : Уравнение и его корни | Видеоурок

    Что такое теорема Виета

    Как правильно найти произведение корней уравнения

    Франсуа Виет (1540-1603 гг) – математика, создатель знаменитых формул Виета

    Теорема Виета нужна для быстрого решения квадратных уравнений (простыми словами).

    Если более подробно, то т еорема Виета – это сумма корней данного квадратного уравнения равняется второму коэффициенту, который взят с противоположным знаком, а произведение равно свободному члену. Это свойство обладает любым приведённым квадратным уравнением, у которого есть корни.

    При помощи теоремы Виета можно легко решать квадратные уравнения путём подбора, поэтому скажем “спасибо” этому математику с мечем в руках за наш счастливый 7 класс.

    Нужна помощь в написании работы?

    Мы — биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

    Видео:5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

    5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

    Доказательство теоремы Виета

    Чтобы доказать теорему, можно воспользоваться известными формулами корней, благодаря которым составим сумму и произведение корней квадратного уравнения. Только после этого мы сможем убедиться, что они равны Как правильно найти произведение корней уравненияи, соответственно, Как правильно найти произведение корней уравнения.

    Допустим у нас есть уравнение: Как правильно найти произведение корней уравнения. У этого уравнения есть такие корни: Как правильно найти произведение корней уравненияи Как правильно найти произведение корней уравнения. Докажем, что Как правильно найти произведение корней уравнения, Как правильно найти произведение корней уравнения.

    По формулам корней квадратного уравнения:

    Как правильно найти произведение корней уравнения, Как правильно найти произведение корней уравнения.

    1. Найдём сумму корней:

    Как правильно найти произведение корней уравнения.

    Разберём это уравнение, как оно у нас получилось именно таким:

    Как правильно найти произведение корней уравнения= Как правильно найти произведение корней уравнения.

    Шаг 1 . Приводим дроби к общему знаменателю, получается:

    Как правильно найти произведение корней уравнения= Как правильно найти произведение корней уравнения= Как правильно найти произведение корней уравнения.

    Шаг 2 . У нас получилась дробь, где нужно раскрыть скобки:

    Как правильно найти произведение корней уравнения= Как правильно найти произведение корней уравнения= Как правильно найти произведение корней уравнения. Сокращаем дробь на 2 и получаем:

    Как правильно найти произведение корней уравнения.

    Мы доказали соотношение для суммы корней квадратного уравнения по теореме Виета.

    2. Найдём произведение корней:

    Как правильно найти произведение корней уравнения=

    = Как правильно найти произведение корней уравнения= Как правильно найти произведение корней уравнения= Как правильно найти произведение корней уравнения= Как правильно найти произведение корней уравнения= Как правильно найти произведение корней уравнения.

    Докажем это уравнение:

    Как правильно найти произведение корней уравнения.

    Шаг 1 . Есть правило умножение дробей, по которому мы и умножаем данное уравнение:

    Как правильно найти произведение корней уравнения.

    Шаг 2 . Далее выполняется умножение скобку на скобку (в числителе). Можно воспользоваться формулой сокращённого умножения (ФСУ) – формула разности, откуда получается:

    Как правильно найти произведение корней уравнения.

    Теперь вспоминаем определение квадратного корня и считаем:

    Как правильно найти произведение корней уравнения= Как правильно найти произведение корней уравнения.

    Шаг 3 . Вспоминаем дискриминант квадратного уравнения: Как правильно найти произведение корней уравнения. Поэтому в последнюю дробь вместо D (дискриминанта) мы подставляем Как правильно найти произведение корней уравнения, тогда получается:

    Как правильно найти произведение корней уравнения= Как правильно найти произведение корней уравнения.

    Шаг 4 . Раскрываем скобки и приводим подобные слагаемые к дроби:

    Как правильно найти произведение корней уравнения.

    Шаг 5 . Сокращаем «4a» и получаем Как правильно найти произведение корней уравнения.

    Вот мы и доказали соотношение для произведения корней по теореме Виета.

    ВАЖНО! Если дискриминант равняется нулю, тогда у квадратного уравнения всего один корень.

    Видео:Математика 5 класс. Уравнение. Корень уравненияСкачать

    Математика 5 класс. Уравнение. Корень уравнения

    Теорема, обратная теореме Виета

    По теореме, обратной теореме Виета можно проверять, правильно ли решено наше уравнение. Чтобы понять саму теорему, нужно более подробно её рассмотреть.

    Если числа Как правильно найти произведение корней уравненияи Как правильно найти произведение корней уравнениятакие:

    Как правильно найти произведение корней уравненияи Как правильно найти произведение корней уравнения, тогда они и есть корнями квадратного уравнения Как правильно найти произведение корней уравнения.

    Видео:Задание 9 на ОГЭ по математике 2023 / Разбираем все типы уравнений за 5 минут!Скачать

    Задание 9 на ОГЭ по математике 2023 / Разбираем все типы уравнений за 5 минут!

    Доказательство обратной теоремы Виета

    Шаг 1. Подставим в уравнение Как правильно найти произведение корней уравнениявыражения для его коэффициентов:

    Как правильно найти произведение корней уравнения

    Шаг 2. Преобразуем левую часть уравнения:

    Как правильно найти произведение корней уравнения;

    Как правильно найти произведение корней уравнения.

    Шаг 3 . Найдём Корни уравнения Как правильно найти произведение корней уравнения, а для этого используем свойство о равенстве произведения нулю:

    Как правильно найти произведение корней уравненияили Как правильно найти произведение корней уравнения. Откуда и получается: Как правильно найти произведение корней уравненияили Как правильно найти произведение корней уравнения.

    Видео:Как решают уравнения в России и СШАСкачать

    Как решают уравнения в России и США

    Примеры с решениями по теореме Виета

    Найдите сумму, произведение и сумму квадратов корней квадратного уравнения Как правильно найти произведение корней уравнения, не находя корней уравнения.

    Шаг 1 . Вспомним формулу дискриминанта Как правильно найти произведение корней уравнения. Подставляем наши цифры под буквы. То есть, Как правильно найти произведение корней уравнения, Как правильно найти произведение корней уравнения– это заменяет Как правильно найти произведение корней уравнения, а Как правильно найти произведение корней уравнения. Отсюда следует:

    Как правильно найти произведение корней уравнения. Получается:

    Как правильно найти произведение корней уравнения0″ title=»Rendered by QuickLaTeX.com» height=»13″ width=»170″ style=»vertical-align: -1px;» />. Если дискриминант больше нуля, тогда у уравнения есть корни. По теореме Виета их сумма Как правильно найти произведение корней уравнения, а произведение Как правильно найти произведение корней уравнения.

    Выразим сумму квадратов корней через их сумму и произведение:

    Как правильно найти произведение корней уравнения.

    Решите уравнение Как правильно найти произведение корней уравнения. При этом не применяйте формулы квадратного уравнения.

    У данного уравнения есть корни, которые по дискриминанту (D) больше нуля. Соответственно, по теореме Виета сумма корней этого уравнения равна 4, а произведение – 5. Сначала определяем делители числа Как правильно найти произведение корней уравнения, сумма которых равняется 4. Это числа «5» и «-1». Их произведение равно – 5, а сумма – 4. Значит, по теореме, обратной теореме Виета, они являются корнями данного уравнения.

    Как правильно найти произведение корней уравненияи Как правильно найти произведение корней уравнения

    Задание

    Найдите, если это возможно, сумму и произведение корней уравнения:

    Как правильно найти произведение корней уравнения

    Решение

    Как правильно найти произведение корней уравнения. Так как дискриминант меньше нуля, значит у уравнения нет корней.

    Ответ

    Задание

    Составьте уравнение, каждый корень которого в два раза больше соответствующего корня уравнения:

    Как правильно найти произведение корней уравнения

    Решение

    По теореме Виета сумма корней данного уравнения равна 12, а произведение = 7. Значит, два корня положительны.

    Сумма корней нового уравнения будет равна:

    Как правильно найти произведение корней уравнения, а произведение Как правильно найти произведение корней уравнения.

    По теореме, обратной теореме Виета, новое уравнение имеет вид:

    Как правильно найти произведение корней уравнения

    Ответ

    Получилось уравнение, каждый корень которого в два раза больше: Как правильно найти произведение корней уравнения

    Итак, мы рассмотрели, как решать уравнение при помощи теоремы Виета. Очень удобно пользоваться данной теоремой, если решаются задания, которые связаны со знаками корней квадратных уравнений. То есть, если в формуле Как правильно найти произведение корней уравнениясвободный член Как правильно найти произведение корней уравнения– число положительное, и если в квадратном уравнении имеются действительные корни, тогда они оба могут быть либо отрицательными, либо положительными.

    А если свободный член – отрицательное число, и если в квадратном уравнении есть действительные корни, тогда оба знака будут разными. То есть, если один корень положительный, тогда другой корень будет только отрицательный.

    Полезные источники:

    1. Дорофеев Г. В., Суворова С. Б., Бунимович Е. А. Алгебра 8 класс: Москва “Просвещение”, 2016 – 318 с.
    2. Рубин А. Г., Чулков П. В. – учебник Алгебра 8 класс:Москва “Баласс”, 2015 – 237 с.
    3. Никольский С. М., Потопав М. К., Решетников Н. Н., Шевкин А. В. – Алгебра 8 класс: Москва “Просвещение”, 2014 – 300

    Видео:СЛОЖИТЕ ДВА КОРНЯСкачать

    СЛОЖИТЕ ДВА КОРНЯ

    Квадратное уравнение. Дискриминант. Теорема Виета.

    теория по математике 📈 уравнения

    Уравнение вида ax 2 +bx+c=0, где a,b,c – любые числа, причем a≠0, называют квадратным уравнением. Числа a,b,c принято называть коэффициентами, при этом a – первый коэффициент, b – второй коэффициент, c – свободный член.

    Квадратное уравнение может иметь не более двух корней. Решить такое уравнение – это значит найти все его корни или доказать, что их нет.

    Видео:Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать

    Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?

    Дискриминант

    Количество корней квадратного уравнения зависит от такого элемента, как дискриминант (обозначают его буквой D).

    Нахождение корней квадратного уравнения

    Дискриминант – это такой математический инструмент, который позволяет нам определять количество корней. Он выражается определенной формулой:

    D=b 2 –4ac

      Если D>0, то уравнение имеет два различных

    Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

    Пример №1. Решить уравнение х 2 –2х–3=0. Определяем коэффициенты: а=1, b=–2, c=–3. Находим дискриминант: D=b 2 –4ac=(–2) 2 –41(–3)=4+12=16. Видим, что дискриминант положительный, значит, уравнение имеет два различных корня, находим их:

    Как правильно найти произведение корней уравненияПример №2. Решить уравнение 5х 2 +2х+1=0. Определяем коэффициенты: а=5, b=2, c=1. D=b 2 –4ac=2 2 –4=4–20=–16, D 2 –6х+9=0. Определяем коэффициенты: а=1, b=–6, c=9.

    D=b 2 –4ac=(–6) 2 –4=36–36=0, D=0, 1

    Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

    Как правильно найти произведение корней уравнения

    Видео:Вариант 17, № 2. Теорема Виета. Сумма корней квадратного уравненияСкачать

    Вариант 17, № 2. Теорема Виета. Сумма корней квадратного уравнения

    Теорема Виета

    Среди квадратных уравнений встречаются такие, у которых первый коэффициент равен 1 (обратим внимание на пример 1 и 3), такие уравнения называются приведенными.

    Приведенные квадратные уравнения можно решать не только с помощью дискриминанта, но и с помощью теоремы Виета.

    Сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком; произведение корней равно третьему коэффициенту.

    Корни с помощью данной теоремы находятся устно способом подбора. Рассмотрим это на примерах.

    Пример №4. Решить уравнение х 2 –10х+21=0. Выпишем коэффициенты: а=1, b=–10, c=21. Применим теорему Виета:

    Начинаем с произведения корней, которое является положительным числом, значит оба корня либо отрицательные, либо положительные. Предполагаем, что это могут быть либо 3 и 7, либо противоположные им числа. Теперь смотрим на сумму, она является положительным числом, поэтому нам подходит пара чисел 3 и 7. Проверяем: 3+7=10, 37=21. Значит, корнями данного уравнения являются числа 3 и 7.

    Пример №5. Решить уравнение: х 2 +5х+4=0. Выпишем коэффициенты: а=1, b=5, c=4. По теореме Виета:

    Видим, что произведение корней равно 4, значит оба корня либо отрицательные, либо положительные. Видим, что сумма отрицательная, значит, будем брать два отрицательных числа, нам подходят –1 и –4. Проверим:

    Данное уравнение является квадратным. Но в его условии присутствует квадратный

    Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

    Записываем обязательно в начале решения, что подкоренное выражение может быть только равным нулю или положительным числом (правило извлечения квадратного

    Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

    Решаем полученное неравенство: − х ≥ − 5 , отсюда х ≤ 5 . Следовательно, для ответа мы будем выбирать значения, которые меньше или равны 5.

    Решаем наше квадратное уравнение, перенося все слагаемые из правой части в левую, изменяя при этом знаки на противоположные и приводя подобные слагаемые (выражения с квадратным корнем взаимоуничтожаются):

    х 2 − 2 х + √ 5 − х − √ 5 − х − 24 = 0

    Получим приведенное квадратное уравнение, корни которого можно найти подбором по теореме Виета:

    х 2 − 2 х − 24 = 0

    Итак, корнями уравнения х 2 − 2 х − 24 = 0 будут числа -4 и 6.

    Теперь выбираем корень, обращая внимание на наше ограничение на х, т.е. корень должен быть меньше или равен 5. Таким образом, запишем, что 6 – это посторонний корень, так как 6 н е ≤ 5 , а число минус 4 записываем в ответ нашего уравнения, так как − 4 ≤ 5 .

    pазбирался: Даниил Романович | обсудить разбор | оценить

    💡 Видео

    Найти произведение корней уравнения x 2x 3x+4x+5=170 по свободному члену Д213Скачать

    Найти произведение корней уравнения x 2x 3x+4x+5=170 по свободному члену Д213

    Быстрый способ решения квадратного уравненияСкачать

    Быстрый способ решения квадратного уравнения

    Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать

    Как решать уравнения? уравнение 7 класс. Линейное уравнение

    ТЕОРЕМА ВИЕТА ЗА 2 МИНУТЫСкачать

    ТЕОРЕМА ВИЕТА ЗА 2 МИНУТЫ
    Поделиться или сохранить к себе: