Как построить уравнение в одной системе координат

Как построить уравнение в одной системе координат

Другими словами, если задано несколько уравнений с одной, двумя или больше неизвестными, и все эти уравнения (равенства) должны одновременно выполняться , такую группу уравнений мы называем системой.

Объединяем уравнения в систему с помощью фигурной скобки:

Как построить уравнение в одной системе координат

Графический метод

Недаром ответ записывается так же, как координаты какой-нибудь точки.

Ведь если построить графики для каждого уравнения в одной системе координат, решениями системы уравнений будут точки пересечения графиков.

Например, построим графики уравнений из предыдущего примера.

Пример 1

Для этого сперва выразим y y y в каждом уравнении, чтобы получить функцию (ведь мы привыкли строить функции относительно x x x ):

Как построить уравнение в одной системе координат

Для того чтобы графически решить систему уравнений с двумя переменными нужно:

1) построить графики уравнений в одной системе координат;
2) найти координаты точек пересечения этих графиков (координаты точек пересечения графиков и есть решения системы);

Разберем это задание на примере.

Решить графически систему линейных уравнений.

Графическое решение системы уравнений с двумя переменными сводится к отыскиванию координат общих точек графиков уравнений.

Пример 2

Как построить уравнение в одной системе координат

Графиком линейной функции является прямая. Две прямые на плоскости могут пересекаться в одной точке, быть параллельными или совпадать. Соответственно система уравнений может:

а) иметь единственное решение;

б) не иметь решений;

в) иметь бесконечное множество решений.

2) Решением системы уравнений является точка (если уравнения являются линейными) пересечения графиков.

Пример 3

Графическое решение системы Как построить уравнение в одной системе координат

Как построить уравнение в одной системе координат

Пример 4

Решить графическим способом систему уравнений.

Как построить уравнение в одной системе координатГрафиком каждого уравнения служит прямая линия, для построения которой достаточно знать координаты двух точек. Мы составили таблицы значений х и у для каждого из уравнений системы.

Прямую y=2x-3 провели через точки (0; -3) и (2; 1).

Прямую y=x+1 провели через точки (0; 1) и (2; 3).

Графики данных уравнений системы 1) пересекаются в точке А(4; 5). Это и есть единственное решение данной системы.

Пример 5

Как построить уравнение в одной системе координатВыражаем у через х из каждого уравнения системы 2), а затем составим таблицу значений переменных х и у для каждого из полученных уравнений.

Прямую y=2x+9 проводим через точки (0; 9) и (-3; 3). Прямую y=-1,5x+2 проводим через точки (0; 2) и (2; -1).

Наши прямые пересеклись в точке В(-2; 5).

ОБЯЗАТЕЛЬНО: Познакомимся с видео, где нам объяснят как решаются системы линейных уравнений графическим способом. РАССКАЖУТ, КАК РЕШАТЬ СИСТЕМЫ ГРАФИЧЕСКИ.

Видео YouTube

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Построение графиков функций

Как построить уравнение в одной системе координат

О чем эта статья:

11 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:Построить график ЛИНЕЙНОЙ функции и найти:Скачать

Построить график  ЛИНЕЙНОЙ функции и найти:

Понятие функции

Функция — это зависимость y от x, где x является переменной или аргументом функции, а y — зависимой переменной или значением функции.

Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:

  • Табличный способ — помогает быстро определить конкретные значения без дополнительных измерений или вычислений.
  • Графический способ — наглядно.
  • Аналитический способ — через формулы. Компактно, и можно посчитать функцию при произвольном значении аргумента из области определения.
  • Словесный способ.

Область определения — множество х, то есть область допустимых значений выражения, которое записано в формуле.

Например, для функции вида Как построить уравнение в одной системе координатобласть определения выглядит так

  • х ≠ 0, потому что на ноль делить нельзя. Записать можно так: D (y): х ≠ 0.

Область значений — множество у, то есть это значения, которые может принимать функция.

Например, естественная область значений функции y = x² — это все числа больше либо равные нулю. Можно записать вот так: Е (у): у ≥ 0.

Видео:Математика Без Ху!ни. Полярные координаты. Построение графика функции.Скачать

Математика Без Ху!ни. Полярные координаты. Построение графика функции.

Понятие графика функции

Графиком функции y = f(x) называется множество точек (x; y), координаты которых связаны соотношением y = f(x). Само равенство y = f(x) называется уравнением данного графика.

График функции — это множество точек (x; y), где x — это аргумент, а y — значение функции, которое соответствует данному аргументу.

Проще говоря, график функции показывает множество всех точек, координаты которых можно найти, просто подставив в функцию любые числа вместо x.

Для примера возьмём самую простую функцию, в которой аргумент равен значению функции, то есть y = x.

В этом случае нам не придётся вычислять для каждого аргумента значение функции, так как они равны, поэтому у всех точек нашего графика абсцисса будет равна ординате.

Отметим любые три точки на координатной плоскости, например: L (-2; -2), M (0; 0) и N (1; 1).

Как построить уравнение в одной системе координат

Если мы последовательно от наименьшего значения аргумента к большему соединим отмеченные точки, то у нас получится прямая линия. Значит графиком функции y = x является прямая. На графике это выглядит так:

Как построить уравнение в одной системе координат

Надпись на чертеже y = x — это уравнение графика. Ставить надпись с уравнением на чертеже удобно, чтобы не запутаться в решении задач.

Важно отметить, что прямая линия бесконечна в обе стороны. Хоть мы и называем часть прямой графиком функции, на самом деле на чертеже изображена только малая часть графика.

Видео:Как построить график линейной функции.Скачать

Как построить график линейной функции.

Исследование функции

Важные точки графика функции y = f(x):

  • стационарные и критические точки;
  • точки экстремума;
  • нули функции;
  • точки разрыва функции.

Стационарные точки — точки, в которых производная функции f(x) равна нулю.

Критические точки — точки, в которых производная функции f(x) равна нулю либо не существует. Стационарные точки являются подмножеством множества критических точек.

Экстремум в математике — максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум, называется точкой экстремума. Соответственно, если достигается минимум — точка экстремума называется точкой минимума, а если максимум — точкой максимума.

Нули функции — это значения аргумента, при которых функция равна нулю.

Асимптота — прямая, которая обладает таким свойством, что расстояние от точки графика функции до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат. По способам их отыскания выделяют три вида асимптот: вертикальные, горизонтальные, наклонные.

Функция непрерывна в точке k, если предел функции в данной точке равен значению функции в этой точке: Как построить уравнение в одной системе координат

Если функция f(x) не является непрерывной в точке x = a, то говорят, что f(x) имеет разрыв в этой точке.

Как построить уравнение в одной системе координат

Если нам нужно построить график незнакомой функции, когда заранее невозможно представить вид графика, полезно применять схему исследования свойств функции. Она поможет составить представление о графике и приступить к построению по точкам.

Схема построения графика функции:

  1. Найти область определения функции.
  2. Найти область допустимых значений функции.
  3. Проверить не является ли функция четной или нечетной.
  4. Проверить не является ли функция периодической.
  5. Найти нули функции.
  6. Найти промежутки знакопостоянства функции, то есть промежутки, на которых она строго положительна или строго отрицательна.
  7. Найти асимптоты графика функции.
  8. Найти производную функции.
  9. Найти критические точки в промежутках возрастания и убывания функции.
  10. На основании проведенного исследования построить график функции.

У нас есть отличные курсы по математике для учеников с 1 по 11 классы!

Видео:Построение кривой в полярной системе координатСкачать

Построение кривой в полярной системе координат

Построение графика функции

Чтобы понять, как строить графики функций, потренируемся на примерах.

Задача 1. Построим график функции Как построить уравнение в одной системе координат

Упростим формулу функции:

Как построить уравнение в одной системе координатпри х ≠ -1.

График функции — прямая y = x — 1 с выколотой точкой M (-1; -2).

Задача 2. Построим график функцииКак построить уравнение в одной системе координат

Выделим в формуле функции целую часть:

Как построить уравнение в одной системе координат

График функции — гипербола, сдвинутая на 3 вправо по x и на 2 вверх по y и растянутая в 10 раз по сравнению с графиком функции Как построить уравнение в одной системе координат

Как построить уравнение в одной системе координат

Выделение целой части — полезный прием, который применяется в решении неравенств, построении графиков и оценке целых величин.

Задача 3. По виду графика определить знаки коэффициентов общего вида функции y = ax2 + bx + c.

  1. Как построить уравнение в одной системе координат
  2. Как построить уравнение в одной системе координат
  3. Как построить уравнение в одной системе координат

Вспомним, как параметры a, b и c определяют положение параболы.

Ветви вниз, следовательно, a 0.

Точка пересечения с осью Oy — c = 0.

Координата вершины Как построить уравнение в одной системе координат, т.к. неизвестное число при делении на положительное дает отрицательный результат, то это число отрицательное, следовательно, b > 0.

Ветви вниз, следовательно, a 0.

Координата вершины Как построить уравнение в одной системе координат, т.к. неизвестное число при делении на отрицательное дает в результате положительное, то это число отрицательное, следовательно, b

xy
0-1
12

Как построить уравнение в одной системе координат

Как видим, k = 3 > 0 и угол наклона к оси Ox острый, b = -1 — смещение по оси Oy.

xy
02
11

Как построить уравнение в одной системе координат

k = -1 > 0 и b = 2 можно сделать аналогичные выводы, как и в первом пункте.

xy
00
12

Как построить уравнение в одной системе координат

k = 2 > 0 — угол наклона к оси Ox острый, B = 0 — график проходит через начало координат.

Как построить уравнение в одной системе координат

k = 0 — константная функция, прямая проходит через точку b = -1 и параллельно оси Ox.

Задача 5. Построить график функции Как построить уравнение в одной системе координат

Это дробно-рациональная функция. Область определения функции D(y): x ≠ 4; x ≠ 0.

Нули функции: 3, 2, 6.

Промежутки знакопостоянства функции определим с помощью метода интервалов.

Вертикальные асимптоты: x = 0, x = 4.

Если x стремится к бесконечности, то у стремится к 1. Значит, y = 1 — горизонтальная асимптота.

Вот так выглядит график:

Как построить уравнение в одной системе координат

Задача 6. Построить графики функций:

б) Как построить уравнение в одной системе координат

г) Как построить уравнение в одной системе координат

д) Как построить уравнение в одной системе координат

Когда сложная функция получена из простейшей через несколько преобразований, то преобразования графиков можно выполнить в порядке арифметических действий с аргументом.

а) Как построить уравнение в одной системе координат

Преобразование в одно действие типа f(x) + a.

Как построить уравнение в одной системе координат

Сдвигаем график вверх на 1:

Как построить уравнение в одной системе координат

б)Как построить уравнение в одной системе координат

Преобразование в одно действие типа f(x — a).

Как построить уравнение в одной системе координат

Сдвигаем график вправо на 1:

Как построить уравнение в одной системе координат

В этом примере два преобразования, выполним их в порядке действий: сначала действия в скобках f(x — a), затем сложение f(x) + a.

Как построить уравнение в одной системе координат

Сдвигаем график вправо на 1:

Как построить уравнение в одной системе координат

Сдвигаем график вверх на 2:

Как построить уравнение в одной системе координат

г) Как построить уравнение в одной системе координат

Преобразование в одно действие типа Как построить уравнение в одной системе координат

Как построить уравнение в одной системе координат

Растягиваем график в 2 раза от оси ординат вдоль оси абсцисс:

Как построить уравнение в одной системе координат

Как построить уравнение в одной системе координат

д) Как построить уравнение в одной системе координат

Мы видим три преобразования вида f(ax), f (x + a), -f(x).

Чтобы выполнить преобразования, посмотрим на порядок действий: сначала умножаем, затем складываем, а уже потом меняем знак. Чтобы применить умножение ко всему аргументу модуля в целом, вынесем двойку за скобки в модуле.

Как построить уравнение в одной системе координат
Как построить уравнение в одной системе координат
Как построить уравнение в одной системе координат

Сжимаем график в два раза вдоль оси абсцисс:

Как построить уравнение в одной системе координат
Как построить уравнение в одной системе координат

Сдвигаем график влево на 1/2 вдоль оси абсцисс:

Как построить уравнение в одной системе координат
Как построить уравнение в одной системе координат

Отражаем график симметрично относительно оси абсцисс:

Видео:МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэСкачать

МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэ

Построение графиков в Excel. Практическая работа

Цель работы:

  • научиться строить графики в Excel;
  • развить самостоятельность;
  • развить навыки мыслительной деятельности, включая каждого учащегося в учебно – познавательный процесс и создавая условия для работы каждого в индивидуальном темпе;

Оборудование:

  • ПЭВМ, сеть, проектор;
  • опорный конспект, план практической работы, варианты для самостоятельной работы учащихся.
ЭтапыПлан урока + опорный конспектСредства обучения
IПодготовительный.
Постановка учебных задач.
Устное разъяснение порядка работы на уроке, тема урока.
IIПовторение.

Фронтальный опрос изученного материала.

  • предназначение Excel:
  • Расчеты по формулам
  • Графики и диаграммы
  • путь к папке, где сохранить работу.
проектор
IIIОбъяснение нового материала и подготовка к практической работе:

  • объяснение построения графиков в Excel;
  • работа с проектором. Показать, как и что должно получиться;
  • Раздача вариантов работы.
Проектор, раздаточный материал
IVВыполнение проектной практической работы:

  • сохранение работы в папку «ГРАФИКИ» под своими идентификаторами;
  • помощь ученикам.
Компьютер
VИтоги:

  • демонстрация работ учащимися на проекторе и оценка за работы;
  • определение лучшей работы;
  • подведение итогов.
Проектор, раздаточный материал,
компьютер

Опорный конспект

Построение совмещенных графиков в Microsoft Office Excel -2007.

Для построения графиков функций Y(X) в Microsoft Office Excel используется тип диаграммы Точечная:

Как построить уравнение в одной системе координат

Для этого требуется два ряда значений: Х и Y значения, которые должны быть соответственно расположены в левом и правом столбцах.
Можно совместить построение нескольких графиков. Такая возможность используется для графического решения систем уравнений с двумя перемен­ными, при проведении сравнения анализа значений y при одних и тех же значениях x.

ПРИМЕР.
(Используется при объяснении материала через проектор.)
Построить графики функций y1= x 2 и y2= x 3 на интервале [- 3 ; 3] с шагом 0,5.
Алгоритм выполнения задания:
1. Заполнить таблицу значений:

Как построить уравнение в одной системе координат

2. Выделить таблицу и указать тип диаграммы Точечная.
3. Выбрать формат точечной диаграммы с гладкими кривыми.
4. В Макете указать название диаграммы «Графики», дать название осей: X и Y

Как построить уравнение в одной системе координат

5. Должен получиться график:

Как построить уравнение в одной системе координат

P.S. В версии 97-2003 для получения графика, представленного на рисунке надо провести редактирование.

Раздаточный материал

Варианты

ВАРИАНТ 1
Построить графики функций y1= x 2 -1, y2= x 2 +1 и y=К·(y1/ y2)на интервале [- 3 ; 3] с шагом 0,3.

Как построить уравнение в одной системе координат

ВАРИАНТ 2
Построить графики функций y1= Как построить уравнение в одной системе координати y2= 2 х на интервале [- 3 ; 3] с шагом 0,5.

Как построить уравнение в одной системе координат

ВАРИАНТ 3
Построить графики функций y1= Как построить уравнение в одной системе координат, y2= Как построить уравнение в одной системе координатна интервале [- 0,5 ; 9] с шагом 0,5.

Как построить уравнение в одной системе координат

ВАРИАНТ 4
Построить графики функций y1=Как построить уравнение в одной системе координат, y2= Как построить уравнение в одной системе координатна интервале [- 5 ; -0,5] с шагом 0,5.

Как построить уравнение в одной системе координат

ВАРИАНТ 5
Построить графики функций y1= Как построить уравнение в одной системе координат, y2= Как построить уравнение в одной системе координатна интервале [0,5 ; 5] с шагом 0,5.

🎬 Видео

Как построить точки в системе координат OXYZСкачать

Как построить точки в системе координат OXYZ

Точки пересечения графика линейной функции с координатными осями. 7 класс.Скачать

Точки пересечения графика линейной функции с координатными осями. 7 класс.

Решение системы линейных уравнений графическим методом. 7 класс.Скачать

Решение системы линейных уравнений графическим методом. 7 класс.

9 класс, 7 урок, Уравнение прямойСкачать

9 класс, 7 урок, Уравнение прямой

Эглит М.Э.- Основы механики сплошных сред - 12. Об определяющих соотношениях в моделях сплошных средСкачать

Эглит М.Э.- Основы механики сплошных сред - 12. Об определяющих соотношениях в моделях сплошных сред

Решение системы неравенств с двумя переменными. 9 класс.Скачать

Решение системы неравенств с двумя переменными. 9 класс.

93 Алгебра 9 класс. Постройте в одной системе координат графики функцииСкачать

93 Алгебра 9 класс. Постройте в одной системе координат графики функции

Как построить график функции без таблицыСкачать

Как построить график функции без таблицы

Математика это не ИсламСкачать

Математика это не Ислам

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

Матан за час. Шпаргалка для первокурсника. Высшая математикаСкачать

Матан за час. Шпаргалка для первокурсника. Высшая математика

92 Алгебра 9 класс. Постройте в одной системе координат графикиСкачать

92 Алгебра 9 класс. Постройте в одной системе координат графики

Полярная система координатСкачать

Полярная система координат

Видеоурок "Преобразование координат"Скачать

Видеоурок "Преобразование координат"
Поделиться или сохранить к себе: