Как построить сферу по каноническому уравнению

Содержание
  1. Как построить сферу по каноническому уравнению
  2. Поверхности второго порядка: их виды, уравнения, примеры
  3. Общее уравнение поверхности второго порядка и инварианты поворота и переноса декартовой прямоугольной системы координат
  4. Виды поверхностей второго порядка и приведение общего уравнения поверхности второго порядка к каноническому
  5. Эллипсоид
  6. Мнимый эллипсоид
  7. Мнимый конус
  8. Однополостный гиперболоид
  9. Двуполостный гиперболоид
  10. Конус
  11. Эллиптический параболоид
  12. Гиперболический параболоид
  13. Эллиптический цилиндр
  14. Мнимый эллиптический цилиндр
  15. Мнимые пересекающиеся плоскости
  16. Гиперболический цилиндр
  17. Пересекающиеся плоскости
  18. Параболический цилиндр
  19. Параллельные плоскости
  20. Мнимые параллельные плоскости
  21. Совпадающие плоскости
  22. Решение примеров на определение вида поверхности второго порядка
  23. Определить вид поверхности второго порядка самостоятельно, а затем посмотреть решение
  24. Как построить сферу по каноническому уравнению
  25. 📺 Видео

Видео:Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

Математика без Ху!ни. Кривые второго порядка. Эллипс.

Как построить сферу по каноническому уравнению

8.4. Построение поверхностей

Мы приступаем к изучению формы поверхностей второго порядка, определённых в предыдущем разделе своими каноническими уравнениями. Напомним, что это вторая из двух основных задач аналитической геометрии: зная уравнение поверхности, изучить её геометрические свойства.

Метод, который мы будем применять, называется методом сечений: пересекая поверхность плоскостями, параллельными координатным плоскостям, будем рассматривать линии пересечения и по их виду делать выводы о форме поверхности.

Каноническое уравнение эллипсоида:

Отметим симметрию поверхности: если точка (x, у, z) лежит на эллипсоиде, то и все точки (±x, ±у, ±z) тоже лежат на эллипсоиде. Значит, поверхность симметрична относительно любой из координатных плоскостей. Пересечём эллипсоид плоскостью z = h. Получим линию

Это эллипс, полуоси которого убывают с увеличением |h|. При h = c эллипс превращается в точку, при h > c плоскость z = h не пересекает эллипсоид. Эллипсы получаются и при сечении эллипсоида плоскостями x = h, у = h. Используя эти данные, изображаем поверхность. Числа a, b, c называются полуосями эллипсоида. Если две полуоси равны, то получается эллипсоид вращения. Например, эллипсоид, образованный при вращении эллипса (лежит в плоскости XOZ) вокруг оси OZ. Если a = b = c, то эллипсоид превращается в сферу.

Видео:11 класс, 20 урок, Уравнение сферыСкачать

11 класс, 20 урок, Уравнение сферы

Поверхности второго порядка: их виды, уравнения, примеры

Видео:11 класс, 19 урок, Сфера и шарСкачать

11 класс, 19 урок, Сфера и шар

Общее уравнение поверхности второго порядка и инварианты поворота и переноса декартовой прямоугольной системы координат

Общее уравнение поверхности второго порядка имеет вид

Для определения вида поверхности второго порядка по общему уравнению и приведения общего уравнения к каноническому, нам понадобятся выражения, которые называются инвариантами. Инварианты — это определители и суммы определителей, составленные из коэффициентов общего уравнения, которые не меняются при переносе и повороте системы координат. Эти инварианты следующие:

Как построить сферу по каноническому уравнению

Следующие два выражения, называемые семиинвариантами, являются инвариантами поворота декартовой прямоугольной системы координат:

Как построить сферу по каноническому уравнению

В случае, если I 3 = 0 , K 4 = 0 , семиинвариант K 3 будет также и инвариантом переноса; в случае же I 3 = 0 , K 4 = 0 , I 2 = 0 , K 3 = 0 семиинвариант K 2 = 0 будет также и инвариантом переноса.

Видео:11 класс, 22 урок, Касательная плоскость к сфереСкачать

11 класс, 22 урок, Касательная плоскость к сфере

Виды поверхностей второго порядка и приведение общего уравнения поверхности второго порядка к каноническому

I. Если I 3 ≠ 0 , то общее уравнение поверхности второго порядка при помощи поворота и переноса прямоугольной системы координат может быть приведено к следующему виду:

Как построить сферу по каноническому уравнению,

где λ 1 , λ 2 , λ 3 — корни характеристического уравнения

Как построить сферу по каноническому уравнению.

В зависимости от того, какие знаки у чисел λ 1 , λ 2 , λ 3 и K 4 /I 3 , определяется вид поверхности второго порядка.

Эллипсоид

Если числа λ 1 λ 2 , λ 3 одного знака, а K 4 /I 3 имеет знак им противоположный, то общее уравнение поверхности второго порядка определяет эллипсоид.

После решения характеристического уравнения общее уравнение можно переписать в следующем виде:

Как построить сферу по каноническому уравнению.

Тогда полуоси эллипсоида будут

Как построить сферу по каноническому уравнению, Как построить сферу по каноническому уравнению, Как построить сферу по каноническому уравнению.

Поэтому каноническое уравнение эллипсоида имеет вид

Как построить сферу по каноническому уравнению.

Как построить сферу по каноническому уравнению

Мнимый эллипсоид

Если числа λ 1 λ 2 , λ 3 и K 4 /I 3 одного знака, то общее уравнение поверхности второго порядка определяет мнимый эллипсоид.

После решения характеристического уравнения общее уравнение можно привести к каноническому уравнению мнимого эллипсоида:

Как построить сферу по каноническому уравнению,

Как построить сферу по каноническому уравнению, Как построить сферу по каноническому уравнению, Как построить сферу по каноническому уравнению.

Мнимый конус

Если числа λ 1 λ 2 , λ 3 , а K 4 = 0 , то общее уравнение поверхности второго порядка определяет мнимый конус.

После решения характеристического уравнения общее уравнение можно привести к каноническому уравнению мнимого конуса:

Как построить сферу по каноническому уравнению,

Как построить сферу по каноническому уравнению, Как построить сферу по каноническому уравнению, Как построить сферу по каноническому уравнению.

Однополостный гиперболоид

Если два корня характеристического уравнения имеют один знак, а третий корень и K 4 /I 3 имеют знак, им противоположный, то общее уравнение поверхности второго порядка определяет однополостный гиперболоид.

Обозначая в этом случае через λ 1 и λ 2 корни характеристического уравнения, имеющие один знак, общее уравнение можно переписать в виде:

Как построить сферу по каноническому уравнению.

Как построить сферу по каноническому уравнению, Как построить сферу по каноническому уравнению, Как построить сферу по каноническому уравнению,

то каноническое уравнение однополостного гиперболоида будет иметь вид

Как построить сферу по каноническому уравнению.

Как построить сферу по каноническому уравнению

Двуполостный гиперболоид

Если два корня характеристического уравнения и K 4 /I 3 имеют один и тот же знак, а третий корень характеристического уравнения им противоположный, то общее уравнение поверхности второго порядка определяет двуполостный гиперболоид.

Обозначая в этом случае через λ 1 и λ 2 корни, имеющие один знак, общее уравнение можно переписать в виде:

Как построить сферу по каноническому уравнению

Как построить сферу по каноническому уравнению.

Последняя запись и есть каноническое уравнение двуполостного гиперболоида.

Как построить сферу по каноническому уравнению

Конус

Если два корня характеристического уравнения имеют один знак, третий корень имеет знак, им противоположный, а K 4 = 0 , то общее уравнение поверхности второго порядка определяет конус.

Считая, что одинаковый знак имеют корни λ 1 и λ 2 , общее уравнение можно переписать в виде:

Как построить сферу по каноническому уравнению

Как построить сферу по каноническому уравнению,

известном как каноническое уравнение конуса.

Как построить сферу по каноническому уравнению

II. Если I 3 = 0 , а K 4 ≠ 0 , то общее уравнение поверхности второго порядка при помощи поворота и переноса прямоугольной системы координат может быть приведено к следующему виду:

Как построить сферу по каноническому уравнению,

где λ 1 и λ 2 — отличные от нуля корни характеристического уравнения.

Эллиптический параболоид

Если λ 1 и λ 2 имеют один знак, то общее уравнение поверхности второго порядка определяет эллиптический параболоид.

Общее уравнение можно переписать в виде:

Как построить сферу по каноническому уравнению.

Выбирая перед корнем знак, противоположный знаку λ 1 и λ 2 , и полагая

Как построить сферу по каноническому уравнению,

Как построить сферу по каноническому уравнению,

получим каноническое уравнение эллиптического параболоида:

Как построить сферу по каноническому уравнению.

Как построить сферу по каноническому уравнению

Гиперболический параболоид

Если λ 1 и λ 2 имеют разные знаки, то общее уравнение поверхности второго порядка определяет гиперболический параболоид.

Обозначая через λ 1 положительный корень, а через λ 2 — отрицательный и беря перед корнем Как построить сферу по каноническому уравнениюзнак минус, переписываем уравнение в виде:

Как построить сферу по каноническому уравнению.

Как построить сферу по каноническому уравнению, Как построить сферу по каноническому уравнению,

получим каноническое уравнение гиперболического параболоида:

Как построить сферу по каноническому уравнению.

Как построить сферу по каноническому уравнению

III. Если I 3 = 0 , а K 4 = 0 , I 2 ≠ 0 то общее уравнение поверхности второго порядка при помощи поворота и переноса прямоугольной системы координат может быть приведено к следующему виду:

Как построить сферу по каноническому уравнению,

где λ 1 и λ 2 — отличные от нуля корни характеристического уравнения.

Эллиптический цилиндр

Если λ 1 и λ 2 одного знака, а K 3 /I 2 имеет знак, им противоположный, то общее уравнение поверхности второго порядка определяет эллиптический цилиндр.

Переписываем уравнение, получившееся после решения характеристического уравнения, в виде:

Как построить сферу по каноническому уравнению.

Как построить сферу по каноническому уравнению, Как построить сферу по каноническому уравнению,

получим каноническое уравнение эллиптического цилиндра:

Как построить сферу по каноническому уравнению.

Как построить сферу по каноническому уравнению

Мнимый эллиптический цилиндр

Если λ 1 , λ 2 и K 3 /I 2 одного знака, то общее уравнение поверхности второго порядка определяет мнимый эллиптический цилиндр.

Переписываем уравнение, получившееся после решения характеристического уравнения, в виде:

Как построить сферу по каноническому уравнению

Как построить сферу по каноническому уравнению.

Последняя запись — каноническое уравнение мнимого эллиптического цилиндра.

Мнимые пересекающиеся плоскости

Если λ 1 и λ 2 имеют один знак, а K 3 = 0 , то общее уравнение поверхности второго порядка определяет две мнимые пересекающиеся плоскости.

Переписываем уравнение, получившееся после решения характеристического уравнения, в виде:

Как построить сферу по каноническому уравнению.

Как построить сферу по каноническому уравнению, Как построить сферу по каноническому уравнению,

получим каноническое уравнение мнимых пересекающихся плоскостей:

Как построить сферу по каноническому уравнению.

Гиперболический цилиндр

Если λ 1 и λ 2 имеют разные знаки, а K 3 ≠ 0 , то общее уравнение поверхности второго порядка определяет гиперболический цилиндр.

Переписываем уравнение, получившееся после решения характеристического уравнения, в виде:

Как построить сферу по каноническому уравнению,

Как построить сферу по каноническому уравнению, Как построить сферу по каноническому уравнению.

Таким образом, каноническое уравнение гиперболического цилиндра:

Как построить сферу по каноническому уравнению.

Как построить сферу по каноническому уравнению

Пересекающиеся плоскости

Если λ 1 и λ 2 имеют разные знаки, а K 3 = 0 , то общее уравнение поверхности второго порядка определяет две пересекающиеся плоскости.

Переписываем уравнение, получившееся после решения характеристического уравнения, в виде:

Как построить сферу по каноническому уравнению,

Как построить сферу по каноническому уравнению, Как построить сферу по каноническому уравнению.

Таким образом, пересекающихся плоскостей:

Как построить сферу по каноническому уравнению.

IV. Если I 3 = 0 , K 4 = 0 , I 2 = 0 , K 3 ≠ 0 , то общее уравнение поверхности второго порядка при помощи поворота и переноса прямоугольной системы координат может быть приведено к следующему виду:

Как построить сферу по каноническому уравнению,

где λ 1 = I 1 — отличный от нуля корень характеристического уравнения.

Параболический цилиндр

Уравнение, получившееся после решения характеристического уравнения, можно переписать в виде:

Как построить сферу по каноническому уравнению,

Как построить сферу по каноническому уравнению.

Это уравнение параболического цилиндра, в каноническом виде оно записывается так:

Как построить сферу по каноническому уравнению.

Как построить сферу по каноническому уравнению

V. Если I 3 = 0 , K 4 = 0 , I 2 = 0 , K 3 = 0 , то общее уравнение поверхности второго порядка при помощи поворота и переноса прямоугольной системы координат может быть приведено к следующему виду:

Как построить сферу по каноническому уравнению

Как построить сферу по каноническому уравнению,

Как построить сферу по каноническому уравнению.

Параллельные плоскости

Если K 2 , то общее уравнение поверхности второго порядка определяет две параллельные плоскости.

Как построить сферу по каноническому уравнению,

перепишем его в виде

Как построить сферу по каноническому уравнению.

Мнимые параллельные плоскости

Если K 2 > 0 , то общее уравнение поверхности второго порядка определяет две мнимые параллельные плоскости.

Как построить сферу по каноническому уравнению,

перепишем его в виде

Как построить сферу по каноническому уравнению.

Совпадающие плоскости

Если K 2 = 0 , то общее уравнение поверхности второго порядка определяет две совпадающие плоскости:

Как построить сферу по каноническому уравнению.

Видео:Видеоурок "Гипербола"Скачать

Видеоурок "Гипербола"

Решение примеров на определение вида поверхности второго порядка

Пример 1. Определить вид и составить каноническое уравнение поверхности, заданной относительно прямоугольной системы координат общим уравнением

Решение. Найдём I 3 :

Как построить сферу по каноническому уравнению(как вычислить определитель).

I 1 = 1 + 5 + 1 = 7 ,

Следовательно, данная поверхность — однополостный гиперболоид.

Как построить сферу по каноническому уравнению.

Составляем и решаем характеристическое уравнение:

Как построить сферу по каноническому уравнению;

Как построить сферу по каноническому уравнению.

Как построить сферу по каноническому уравнению

Как построить сферу по каноническому уравнению

Как построить сферу по каноническому уравнению,

Как построить сферу по каноническому уравнению, Как построить сферу по каноническому уравнению, Как построить сферу по каноническому уравнению.

Пример 2. Определить вид и составить каноническое уравнение поверхности, заданной относительно прямоугольной системы координат общим уравнением

Решение. Найдём I 3 :

Как построить сферу по каноническому уравнению.

Как построить сферу по каноническому уравнению.

Следовательно, общее уравнение определяет эллиптический параболоид.

Как построить сферу по каноническому уравнению.

I 1 = 2 + 2 + 3 = 7 .

Решаем характеристическое уравнение:

Как построить сферу по каноническому уравнению.

Как построить сферу по каноническому уравнению.

Как построить сферу по каноническому уравнению

Как построить сферу по каноническому уравнению,

Как построить сферу по каноническому уравнению, Как построить сферу по каноническому уравнению.

Пример 3. Определить вид и составить каноническое уравнение поверхности, заданной относительно прямоугольной системы координат общим уравнением

Как построить сферу по каноническому уравнению,

Как построить сферу по каноническому уравнению,

Как построить сферу по каноническому уравнению,

Как построить сферу по каноническому уравнению

I 1 = 5 + 2 + 5 = 12 .

Так как I 3 = К 4 = 0 , I 2 > 0 , I 1 K 3 , то данное общее уравнение определяет эллиптический цилиндр.

Как построить сферу по каноническому уравнению

Как построить сферу по каноническому уравнению.

Как построить сферу по каноническому уравнению

Как построить сферу по каноническому уравнению.

Определить вид поверхности второго порядка самостоятельно, а затем посмотреть решение

Пример 4. Определить вид и составить каноническое уравнение поверхности, заданной относительно прямоугольной системы координат общим уравнением

Видео:Геометрия 11 класс (Урок№8 - Сфера и шар.)Скачать

Геометрия 11 класс (Урок№8 - Сфера и шар.)

Как построить сферу по каноническому уравнению

С помощью векторов мы ввели понятие пространства и его размерности, в частности трехмерного. Рассмотрим в нем поверхности, которые «похожи» на поверхности, образованные вращением кривой второго порядка вокруг ее оси симметрии. Например, сфера может быть получена вращением окружности вокруг диаметра. Поверхность, описываемая некоторой линией, вращающейся вокруг неподвижной прямой d, называется поверхностью вращения с осью вращения d. Наряду с такими поверхностями мы встретимся и с более сложными случаями.

Пусть в пространстве задана прямоугольная декартова система координат.

Поверхность второго порядка – геометрическое место точек, декартовы прямоугольные координаты которых, удовлетворяют уравнению вида

в котором хотя бы один из коэффициентов Как построить сферу по каноническому уравнению отличен от нуля. Уравнение (2.48) называется общим уравнением поверхности второго порядка.

Уравнение (2.48) может и не определять действительного геометрического образа, но для сохранения общности в таких случаях говорят, что оно определяет мнимую поверхность второго порядка. В зависимости от значений коэффициентов общего уравнения (2.48) оно может быть преобразовано с помощью параллельного переноса и поворота системы координат к одному из канонических видов, каждому из которых соответствует определённый класс поверхностей второго порядка. Среди них выделяют пять основных классов поверхностей: эллипсоиды, гиперболоиды, параболоиды, конусы и цилиндры. Для каждой из этих поверхностей существует декартова прямоугольная система координат, в которой поверхность задается простым уравнением, называемым каноническим уравнением.

Перечисленные поверхности второго порядка относятся к так называемым нераспадающимся поверхностям второго порядка. Можно говорить о случаях вырождения – распадающихся поверхностях второго порядка, к которым относятся: пары пересекающихся плоскостей, пары мнимых пересекающихся плоскостей, пары параллельных плоскостей, пары мнимых параллельных плоскостей, пары совпадающих плоскостей.

Наша цель – указать канонические уравнения для поверхностей второго порядка и показать, как выглядят эти поверхности.

Поверхность, задаваемая в некоторой прямоугольной декартовой системе координат уравнением

называется эллипсоидом (рис. 2.22) .

1. Эллипсоид – ограниченная поверхность, поскольку из его уравнения следует, что Как построить сферу по каноническому уравнению .

2. Эллипсоид обладает

· центральной симметрией относительно начала координат,

· осевой симметрией относительно координатных осей,

· плоскостной симметрией относительно начала координат.

3. В сечении эллипсоида плоскостью, перпендикулярной любой из координатных осей, получается эллипс (см. рис. 2.22).

Как построить сферу по каноническому уравнениюТак же, как для эллипса, точки пересечения эллипсоида с координатными осями называются вершинами эллипсоида, центр симметрии – центром эллипсоида. Числа а, b , с называются полуосями. Если полуоси попарно различны, то эллипсоид называется трехосным.

Если две полуоси равны друг другу, то эллипсоид называется эллипсоидом вращения. Эллипсоид вращения может быть получен вращением эллипса вокруг одной из осей.

Примечание. Сфера является частным случаем эллипсоида при а= b . Тогда все равные полуоси обозначают R и уравнение (2.49) после умножения на R 2 принимает вид Как построить сферу по каноническому уравнению .

Поверхность, задаваемая в некоторой прямоугольной декартовой системе координат уравнением

называется эллиптическим параболоидом (рис. 2.23) .

Как построить сферу по каноническому уравнению

1. Эллиптический параболоид – неограниченная поверхность, поскольку из его уравнения следует, что z ≥ 0 и принимает сколь угодно большие значения.

2. Эллиптический параболоид обладает

· осевой симметрией относительно оси 0z ,

· плоскостной симметрией относительно координатных осей 0xz и 0yz .

3. В сечении эллиптического параболоида плоскостью, ортогональной оси 0z , получается эллипс, а плоскостями, ортогональными осям 0x и 0y –парабола. (см. рис. 2.23).

Можно получить эллиптический параболоид симметричный относительно оси 0х или 0у, для чего нужно в уравнении (2.50) поменять между собой переменные х и z или у и z соответственно.

Если полуоси равны a = b , то параболоид называется параболоидом вращения и может быть получен вращением параболы вокруг ее оси симметрии. При этом в сечении параболоида вращения плоскостью, перпендикулярной оси 0z , получается окружность.

Поверхность, задаваемая в некоторой прямоугольной декартовой системе координат уравнением

называется гиперболическим параболоидом (рис . 2.24).

Свойства гиперболического параболоида.

1. Гиперболический параболоид – неограниченная поверхность, поскольку из его уравнения следует, что z – любое число.

2. Гиперболический параболоид обладает

· осевой симметрией относительно оси 0z ,

· плоскостной симметрией относительно координатных плоскостей 0xz и 0yz .

Как построить сферу по каноническому уравнению

4. Гиперболический параболоид может быть получен поступательным перемещением в пространстве параболы так, что ее вершина перемещается вдоль другой параболы, ось которой параллельна оси первой параболы, а ветви направлены противоположно, причем их плоскости взаимно перпендикулярны.

5. Поверхность, задаваемая в некоторой прямоугольной декартовой системе координат уравнением

называется однополостным гиперболоидом (рис. 2.25) .

Как построить сферу по каноническому уравнению

Свойства однополостного гиперболоида.

1. Однополостный гиперболоид – неограниченная поверхность, поскольку из его уравнения следует, что z – любое число.

2. Однополостный гиперболоид обладает

· центральной симметрией относительно начала координат,

· осевой симметрией относительно всех координатных осей,

· плоскостной симметрией относительно всех координатных плоскостей.

3. В сечении однополостного гиперболоида плоскостью, перпендикулярной оси координат 0z , получается эллипс, а плоскостями, ортогональными осям 0x и 0y, – гипербола (см. рис. 2.25).

Если в уравнении (2.52) a = b , то сечения однополостного гиперболоида плоскостями, параллельными плоскости х0у, являются окружностями. В этом случае поверхность называется однополостным гиперболоидом вращения.

Поверхность, задаваемая в некоторой прямоугольной декартовой системе координат уравнением

называется двуполостным гиперболоидом (рис. 2.26) .

Как построить сферу по каноническому уравнению

1. Двуполостный гиперболоид – неограниченная поверхность, поскольку из его уравнения следует, что | z | c и неограничен сверху.

2. Двуполостный гиперболоид обладает

· центральной симметрией относительно начала координат,

· осевой симметрией относительно всех координатных осей,

· плоскостной симметрией относительно всех координатных плоскостей.

3. В сечении однополостного гиперболоида плоскостью, перпендикулярной оси координат 0z , при | z |> c получается эллипс, при | z |= c – точка, а в сечении плоскостями, перпендику­лярными осям 0x и 0y , – гипербола (см. рис. 2.26).

Если в уравнении (2.53) a = b , то сечения двуполостного гиперболоида плоскостями, параллельными плоскости х0у, являются окружностями. В этом случае поверхность называется двуполостным гиперболоидом вращения.

Примечание. Если уравнение поверхности в прямоугольной системе координат имеет вид: F ( x 2 + y 2 ; z )=0, то эта поверхность – поверхность вращения с осью вращения 0z. Аналогично: F ( x 2 + z 2 ; y )=0 – поверхность вращения с осью вращения 0у, F ( z 2 + y 2 ; x )=0 – с осью вращения 0х

С учетом данного примечания могут быть записаны уравнения для рассмотренных выше поверхностей вращения, если осью вращения являются оси 0х или 0у.

Цилиндрическая поверхность образуется движением прямой линии, скользящей по некоторой неподвижной замкнутой или незамкнутой кривой и остающейся параллельной своему исходному положению. Множество прямолинейных образующих представляет собой непрерывный каркас цилиндрической поверхности. Через каждую точку поверхности проходит одна прямолинейная образующая. Неподвижная кривая, по которой скользит образующая, называется направляющей. Если направляющая линия является кривой второго порядка, то и цилиндрическая поверхность – второго порядка.

Если уравнение поверхности не содержит в явном виде какой–либо переменной, то это уравнение определяет в пространстве цилиндрическую поверхность с образующими, параллельными оси отсутствующего переменного и направляющей, которая в плоскости двух других переменных имеет то же самое уравнение.

Достаточно нарисовать на плоскости х0у направляющую, уравнение которой на этой плоскости совпадает с уравнением самой поверхности, и затем через точки направляющей провести образующие параллельно оси 0z. Для наглядности следует построить также одно–два сечения плоскостями, параллельными плоскости х0у. В каждом таком сечении получим такую же кривую, как и исходная направляющая. Аналогично поступают, рассматривая направляющую в плоскости х0z или у0z.

Цилиндрическая поверхность является бесконечной в направлении своих образующих. Часть замкнутой цилиндрической поверхности, заключенная между двумя плоскими параллельными сечениями, называется цилиндром, а фигуры сечения – его основаниями. Сечение цилиндрической поверхности плоскостью, перпендикулярной ее образующим, называется нормальным. В зависимости от формы нормального сечения цилиндры бывают:

1) эллиптические – нормальное сечение представляет собой эллипс (рис. 2.27а), каноническое уравнение

2) круговые – нормальное сечение круг, при a = b = r уравнение

3) гиперболические – нормальное сечение гипербола (рис. 2.27б), каноническое уравнение

4) параболические – нормальное сечение парабола (рис. 2.27в), каноническое уравнение

5) общего вида – нормальное сечение кривая случайного вида.

Если за основание цилиндра принимается его нормальное сечение, цилиндр называют прямым (рис. 2.27). Если за основание цилиндра принимается одно из косых сечений, цилиндр называют наклонным. Например, наклонные сечения прямого кругового цилиндра являются эллипсами. Наклонные сечения прямого эллиптического цилиндра в общем случае – эллипсы. Однако его всегда можно пересечь плоскостью, наклонной к его образующим, таким образом, что в сечении получится круг.

Как построить сферу по каноническому уравнению

Конической поверхностью называется поверхность, производимая движением прямой, перемещающейся в пространстве так, что она при этом постоянно проходит через неподвижную точку и пересекает данную линию. Данная прямая называется образующей, линия – направляющей, а точка – вершиной конической поверхности (рис. 2.28).

Как построить сферу по каноническому уравнению

Конусом называется тело, ограниченное частью конической поверхности, расположенной по одну сторону от вершины, и плоскостью, пересекающей все образующие по ту же сторону от вершины. Часть конической поверхности, ограниченная этой плоскостью, называется боковой поверхностью, а часть плоскости, отсекаемая боковой поверхностью, – основанием конуса. Перпендикуляр, опущенный из вершины на плоскость основания, называется высотой конуса.

Конус называется прямым круговым, если его основание есть круг, а высота проходит через центр основания. Такой конус можно рассматривать как тело, происходящее от вращения прямоугольного треугольника, вокруг катета как оси. При этом гипотенуза описывает боковую поверхность, а катет – основание конуса.

В курсе геометрии общеобразовательной школы рассматривается только прямой круговой конус, который для краткости называется просто конусом.

Если вершина конуса расположена в начале координат, направляющая кривая — эллипс с полуосями а и b, плоскость которого находится на расстоянии с от начала координат, то уравнение эллиптического конуса имеет вид:

Как построить сферу по каноническому уравнению ( a >0, b >0, c >0). (2.58)

При а = b конус становится круговым.

Примечание. По аналогии с коническими сечениями (аналогично теореме 2.1) существуют и вырожденные поверхности второго порядка. Так, уравнением второго порядка x 2 = 0 описывается пара совпадающих плоскостей, уравнением x 2 = 1 – пара параллельных плоскостей, уравнением x 2 – y 2 = 0 – пара пересекающихся плоскостей. Уравнение x 2 + y 2 + z 2 = 0 описывает точку с координатами (0;0;0). Существуют и другие вырожденные случаи. Полная теория поверхностей второго порядка рассматривается в курсе аналитической геометрии Как построить сферу по каноническому уравнению

📺 Видео

Аналитическая геометрия, 8 урок, Поверхности второго порядкаСкачать

Аналитическая геометрия, 8 урок, Поверхности второго порядка

§23 Построение гиперболыСкачать

§23 Построение гиперболы

Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

Геометрия 11 класс: Сфера и шар. Уравнение сферы. Площадь сферыСкачать

Геометрия 11 класс: Сфера и шар. Уравнение сферы. Площадь сферы

§31.1 Приведение уравнения кривой к каноническому видуСкачать

§31.1 Приведение уравнения кривой к каноническому виду

Поверхности второго порядкаСкачать

Поверхности второго порядка

Кривые второго порядка. Эллипс. Приведение к каноническому виду и чертежСкачать

Кривые второго порядка. Эллипс. Приведение к каноническому виду и чертеж

Урок 5 Уравнение сферыСкачать

Урок 5  Уравнение сферы

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

§65 ЭллипсоидСкачать

§65 Эллипсоид

Эллипс, парабола и гипербола. Конические сечения | Ботай со мной #055 | Борис Трушин |Скачать

Эллипс, парабола и гипербола. Конические сечения | Ботай со мной #055 | Борис Трушин |

Приведение кривой второго порядка к каноническому виду. ПримерСкачать

Приведение кривой второго порядка к каноническому виду. Пример

Геометрия. 10 класс. Уравнение сферы /16.03.2021/Скачать

Геометрия. 10 класс. Уравнение сферы /16.03.2021/

Семинар №9 "Приведение уравнения второго порядка к каноническому виду"Скачать

Семинар №9 "Приведение уравнения второго порядка к каноническому виду"
Поделиться или сохранить к себе: