Урок: как построить параболу или квадратичную функцию?
- ТЕОРЕТИЧЕСКАЯ ЧАСТЬ
- ПРАКТИЧЕСКАЯ ЧАСТЬ
- Квадратичная функция. Построение параболы
- Основные понятия
- Построение квадратичной функции
- Алгоритм построения параболы
- Уравнение квадратичной функции имеет вид y = ax 2 + bx + c.
- Уравнение квадратичной функции имеет вид y = a * (x — x₀) 2 + y₀
- Уравнение квадратичной функции имеет вид y = (x + a) × (x + b)
- Квадратичная функция.
- Видеоуроки с параболой.
- Графики квадратичной функции и коэффициенты квадратного трёхчлена.
- Построение параболы по характерным точкам.
- Задачи на анализ графика квадратичной функции.
- 💡 Видео
ТЕОРЕТИЧЕСКАЯ ЧАСТЬ
Парабола — это график функции описанный формулой ax 2 +bx+c=0.
Чтобы построить параболу нужно следовать простому алгоритму действий:
1 ) Формула параболы y=ax 2 +bx+c,
если а>0 то ветви параболы направленны вверх,
а 2 +bx+c=0;
a) Полное квадратное уравнение имеет вид ax 2 +bx+c=0 и решается по дискриминанту;
b) Неполное квадратное уравнение вида ax 2 +bx=0. Чтобы его решить нужно вынести х за скобки, потом каждый множитель приравнять к 0:
ax 2 +bx=0,
х(ax+b)=0,
х=0 и ax+b=0;
c)Неполное квадратное уравнение вида ax 2 +c=0. Чтобы его решить нужно неизвестные перенести в одну сторону, а известные в другую. x =±√(c/a);
4) Найти несколько дополнительных точек для построения функции.
ПРАКТИЧЕСКАЯ ЧАСТЬ
И так теперь на примере разберем все по действиям:
Пример №1:
y=x 2 +4x+3
c=3 значит парабола пересекает OY в точке х=0 у=3. Ветви параболы смотрят вверх так как а=1 1>0.
a=1 b=4 c=3 x=(-b)/2a=(-4)/(2*1)=-2 y= (-2) 2 +4*(-2)+3=4-8+3=-1 вершина находится в точке (-2;-1)
Найдем корни уравнения x 2 +4x+3=0
По дискриминанту находим корни
a=1 b=4 c=3
D=b 2 -4ac=16-12=4
x=(-b±√(D))/2a
x1=(-4+2)/2=-1
x2=(-4-2)/2=-3
Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=-2
х -4 -3 -1 0
у 3 0 0 3
Подставляем вместо х в уравнение y=x 2 +4x+3 значения
y=(-4) 2 +4*(-4)+3=16-16+3=3
y=(-3) 2 +4*(-3)+3=9-12+3=0
y=(-1) 2 +4*(-1)+3=1-4+3=0
y=(0) 2 +4*(0)+3=0-0+3=3
Видно по значениям функции,что парабола симметрична относительно прямой х=-2
Пример №2:
y=-x 2 +4x
c=0 значит парабола пересекает OY в точке х=0 у=0. Ветви параболы смотрят вниз так как а=-1 -1 2 +4*2=-4+8=4 вершина находится в точке (2;4)
Найдем корни уравнения -x 2 +4x=0
Неполное квадратное уравнение вида ax 2 +bx=0. Чтобы его решить нужно вынести х за скобки, потом каждый множитель приравнять к 0.
х(-x+4)=0, х=0 и x=4.
Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=2
х 0 1 3 4
у 0 3 3 0
Подставляем вместо х в уравнение y=-x 2 +4x значения
y=0 2 +4*0=0
y=-(1) 2 +4*1=-1+4=3
y=-(3) 2 +4*3=-9+13=3
y=-(4) 2 +4*4=-16+16=0
Видно по значениям функции,что парабола симметрична относительно прямой х=2
Пример №3
y=x 2 -4
c=4 значит парабола пересекает OY в точке х=0 у=4. Ветви параболы смотрят вверх так как а=1 1>0.
a=1 b=0 c=-4 x=(-b)/2a=0/(2*(1))=0 y=(0) 2 -4=-4 вершина находится в точке (0;-4)
Найдем корни уравнения x 2 -4=0
Неполное квадратное уравнение вида ax 2 +c=0. Чтобы его решить нужно неизвестные перенести в одну сторону, а известные в другую. x =±√(c/a)
x 2 =4
x1=2
x2=-2
Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=0
х -2 -1 1 2
у 0 -3 -3 0
Подставляем вместо х в уравнение y= x 2 -4 значения
y=(-2) 2 -4=4-4=0
y=(-1) 2 -4=1-4=-3
y=1 2 -4=1-4=-3
y=2 2 -4=4-4=0
Видно по значениям функции,что парабола симметрична относительно прямой х=0
Подписывайтесь на канал на YOUTUBE, чтобы быть в курсе всех новинок и готовится с нами к экзаменам.
Видео:Как строить параболу? | TutorOnlineСкачать
Квадратичная функция. Построение параболы
О чем эта статья:
8 класс, 9 класс, ЕГЭ/ОГЭ
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Видео:Всё о квадратичной функции. Парабола | Математика TutorOnlineСкачать
Основные понятия
Функция — это зависимость «y» от «x», при которой «x» является переменной или аргументом функции, а «y» — зависимой переменной или значением функции.
Задать функцию означает определить правило в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:
- Табличный способ. Помогает быстро определить конкретные значения без дополнительных измерений или вычислений.
- Графический способ: наглядно.
- Аналитический способ, через формулы. Компактно и можно посчитать функцию при произвольном значении аргумента из области определения.
- Словесный способ.
График функции — это объединение всех точек, когда вместо «x» можно подставить в функцию произвольные значения и найти координаты этих точек.
Еще быстрее разобраться в теме и научиться строить график квадратичной функции можно на курсах по математике в онлайн-школе Skysmart.
Видео:ЭЛЕМЕНТАРНО, ВАТСОН! Квадратичная Функция и ее график ПараболаСкачать
Построение квадратичной функции
Квадратичная функция задается формулой y = ax 2 + bx + c, где x и y — переменные, a, b, c — заданные числа, обязательное условие — a ≠ 0. В уравнении существует следующее распределение:
|
График квадратичной функции — парабола, которая имеет следующий вид для y = x 2 :
Точки, обозначенные зелеными кружками называют базовыми точками. Чтобы найти их координаты для функции y = x 2 , нужно составить таблицу:
x
y
Если в уравнении квадратичной функции старший коэффициент равен единице, то график имеет ту же форму, как y = x 2 при любых значениях остальных коэффициентов.
График функции y = –x 2 выглядит, как перевернутая парабола:
Зафиксируем координаты базовых точек в таблице:
x
y
Посмотрев на оба графика можно заметить их симметричность относительно оси ОХ. Отметим важные выводы:
- Если старший коэффициент больше нуля a > 0, то ветви параболы напрaвлены вверх.
- Если старший коэффициент меньше нуля a 2 + bx + c, для построения которой нужно решить квадратное уравнение ax 2 + bx + c = 0. В процессе найдем дискриминант D = b 2 — 4ac, который даст нам информацию о количестве корней квадратного уравнения.
Рассмотрим три случая:
- Если D 0,то график выглядит так:
- Если D = 0, то уравнение имеет одно решение, а парабола пересекает ось ОХ в одной точке. Если a > 0, то график имеет такой вид:
- Если D > 0, то уравнение имеет два решения, а парабола пересекает ось ОХ в двух точках, которые можно найти следующим образом:
Если a > 0, то график выглядит как-то так:
0″ height=»671″ src=»https://lh6.googleusercontent.com/8ryBuyxmK9S2EbnsNc4AE5PEl_NpIg0RAM_Y_V8wUP-zREEHNgi9QoQTl8FXxoujjWRAvf3s-MPRsXsoepaLLSTHDX-ReGtrsnLQp4dW3WaEyPF2ywjVpYFXlDIpAEHoIiwlxiB7″ width=»602″>
На основе вышеизложенного ясно, что зная направление ветвей параболы и знак дискриминанта, у нас есть понимание, как будет выглядеть график конкретной функции.
Координаты вершины параболы также являются важным параметром графика квадратичной функции и находятся следующим способом:
Ось симметрии параболы — прямая, которая проходит через вершину параболы параллельно оси OY.
Чтобы построить график, нам нужна точка пересечения параболы с осью OY. Так как абсцисса каждой точки оси OY равна нулю, чтобы найти точку пересечения параболы y = ax 2 + bx + c с осью OY, нужно в уравнение вместо х подставить ноль: y(0) = c. То есть координаты этой точки будут соответствовать: (0; c).
На изображении отмечены основные параметры графика квадратичной функции:
Видео:Построение параболыСкачать
Алгоритм построения параболы
Рассмотрим несколько способов построения квадратичной параболы. Наиболее удобный способ можно выбрать в соответствии с тем, как задана квадратичная функция.
Видео:Алгебра 9 класс (Урок№10 - Построение графика квадратичной функции.)Скачать
Уравнение квадратичной функции имеет вид y = ax 2 + bx + c.
Разберем общий алгоритм на примере y = 2x 2 + 3x — 5.
Как строим:
- Определим направление ветвей параболы. Так как а = 2 > 0, ветви параболы направлены вверх.
- Найдем дискриминант квадратного трехчлена 2x 2 + 3x — 5.
D = b 2 — 4ac = 9 — 4 * 2 * (-5) = 49 > 0
В данном случае дискриминант больше нуля, поэтому парабола имеет две точки пересечения с осью ОХ. Чтобы найти их координаты, решим уравнение:
2x 2 + 3x — 5 = 0 2 + 3x — 5 = 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAPoAAAAyCAYAAAB1V8bkAAAJyElEQVR4Ae2c16sUwRLGfdRX/wXFB30QFFQUQUyIKCIGBEEQzCCoKIgB01ExZwVz4JpzztljwJxzzjlnrcuvL33unD2zOzO7OzvuThU0u5N6uuvrr7u6unrKiYpqQDVQ8BooV/A11AqqBlQDokTXRqAaiIEGlOgxAFmrqBpQomsbUA3EQANK9BiArFVUDSjRtQ2oBmKgASV6DEDWKqoGlOjaBlQDMdBAQRH9z58/8vv3b5P+/v2bMXy/fv0S8kxMGWesGRgNpIMXz7jhkg28CxmWgiH69+/f5dSpU7JixQpZtmyZXLx4UX7+/JkUOxoGjSaVTJw4UVatWiUbNmwoSYcPH071iF7zqYGgeNlsT58+LZMnTy7BA2y2bNkib9++tbfor4sGCobogD19+nR5/fq1nDx5Upo0aSLHjh2TZD39x48f5ebNmy4q+d8pRo327dtLo0aNTF6NGzeWevXqCeRXyVwDQfHijXTMmzZtMjiAL6lu3brSuXNnuXfvXuaFKuAcCobojOQDBgwwgD948EAg5ubNm42Z54bfjRs3ZMqUKW6XzDk6jP379wsjD/LmzRtZt26dvHr1KukzesG/BoLiRc5gceXKFZM4/vbtmxw6dEguXbokP3788P/yGN5ZMET/8uWLvHv3Tt6/f2/Muh49esj169eTQupF9MQHIfm1a9cST+txmhoIipfba86fPy9Hjx4VrDOV1BooGKJTTYh++fJlGTt2rCxevNgcJ6t+EKIz3587d26yrPR8mhoIglfiK549e2Y6dHBU8dZA3hH9+PHjYhNmnFO+fv1qTOwDBw5Ily5dhF+nQ47ndu/ebdLChQule/fuJcecp9E477d5d+zYUW7fvm0P9TeABixW/AbBCz+LffbChQtl3rh69WpZsmSJjuZlNON+Iu+IDkGZW+N427Ztm6nVp0+f5MiRI6Zh2Dl1hw4dZOjQoaVGdebc1oM+a9Ys48Sxx/y6zfUePnwoVapUcdeenvXUQLp4LV261OA8bdo0g5nzRR8+fJBhw4YJeav400DeEf3Ro0dmZGD+/fLlS1NLzLjhw4fLmDFjhEaA4DHv16+fGeHdVOHXdKczqVy5slsWes6HBtLF6/HjxwZn/CLPnz8v9aZbt25Jt27dlOiltJL6IO+I7lYdTPY1a9bIjBkz5M6dO7Jjxw5hRN++fXtSb6xfos+ZM0cqVark9trQzrEmXFxc7LnOH1oBQs44HbycRTpz5oy0a9funyA6DkGW/NavX19mauIsc+J/OkCmJliRL168ME7FVM7jxOeDHhcE0ak05KD3P3v2rFkWO3HihHz+/DmpPlh3XbRoUdLr9gL5LF++3B6G+nv//n3ZuHGjDBw4UDp16pS0kwq1EDnKPChezmI9efJEtm7dmnJVxXl/WP8PHjxopoxXr141RG3Tpo0JsPLzPqaaLVq0kDp16kjDhg2lb9++JgbEz7Pp3FMwRKfyBLkwX2fpxivqjbm8Nf1TKY77WK/NhVBuGvGoUaNMHID1N+Ti3VG8IwhezvIR5gwm/EYlrBgMGTJE9u3bZxy4YDV69Gjf/py9e/fKypUrjSVKLEDYqwcFRfSoQM/2e2fOnGmivgqd6NnWWy7zI3CqefPmUlRUVOIXgrzly5cXfEZewr2Y/XTuyaI3vfIIcj1tolM4lpyIBZ83b56MGzdO9uzZY0YjwkSfPn0apBx6r0MDYRBd8XIoOAt/sRiZU0N4az2OHz9eKlSo4MvSgOgs6RKIBYdIYUraRMfsYpkL84m5cc+ePY1DYv78+dKnTx/B2eAlmKldu3b1TISy5luII8s/XnWbNGmSMC9PlDCIrniJcXB6YcJ15s9+JHEkrlq1qixYsMDPowLRcRqzSgSHiOkI0xeUNtHpxXBUIQQ3tGrVKnLniC8N58FNYRBd8QoOPES2Php8Agw2dvR25gZRcaaNHDnSeTrlf/JxdhTsuMQacJ5LmUHAi2kT3b6HyrNBoXXr1uYUBXVThr3f+YuCcGp4JZRsFYAV8K8lt1hremqveuE4RAeJEgbR7Tvigpfb1JG6e2HCde5DCJbCM16rVi2T2D9BiLVT6Agwv3GsgSXPumHqfAZ+sLqCNWfbNQ455ve8MwxJm+gsXeF0YFcXPRlRaAiebD/OCO5l/XDQoEGeCTPHhqZWq1ZN/rVElF2iTJ061bNemHkEhiRKGESPG141atRIVKtZevXT3tjz7kcYgIioZDRmtyM6Zk09sf0zbYIndkBgabFt27ZmeZeYAgQzvmLFimWe9VMOP/ekTXTWMXv37m16uF69esmECRNMZdgDzgcgVIJrwLm8Vr9+fSECjM4wG6J4ZUOL/8+DgQdSwwGccIRkk4jITBRGaZZM8V/ZlRRGdIJlwJzBsX///gKPwpK0iY7HkArSgKgwu8XYMnju3LmkgSr0ZNZUCatCfvLFtKIHtj2sn2dycY8NmCGcF6cQIwXx+dmQfMMLfEj/qjA1Yx29ZcuWpRLmfaLcvXtXBg8eLCNGjChxUoM1mBAdt3btWmP9ZatTT3w/x2kTHcKytAB5EeYmyYiDecpWz9mzZyf9EIRb4cI6Rw/KikGcLI98w4vlWkKYC0Uw5xkEMeGt4A/Akc28P+wBMG2i28L6+WV7IruRmjVrVmK6+HkujHuYL+3atcuUhbm/SlkNRI0Xn/iqWbOmaTNlS5d/ZzDzITOhslFJTohO5Rg98WDaOUoUFabXpBExV2JThBI9OQpR4YX1x3SQb/UxOBSCYO2yA48RPCqJFdGZmxN8w/q/Ej11k4uK6ERXMqflw4+FQvTUms7N1VgRnYgndq2RlOipG1gURCf2myhLpldNmzZVoqeGKNDV2BAdj+bOnTuNcpTo3m0k10THrCVohCAiRInujVGQO2JDdJYA8bQTpIJHt3bt2mZtk1FEpawGck10PrRB4BEf4QQjgqIIK2UbqErmGsgJ0fE2AmL16tWFj/oRwpprYcRgVCcR+URsPkELBCyolNZAFHgRVcZyrcWoQYMGwtd97KfBSpdQj4JqICdEZ3kBkwwQIZZXLHDQSvi9H687G/wJgyREkl+7McdvHnG4L0q8WG9mUOCDnASf4DxVyVwDOSF65sXMXg6QnYbMMh+/fjfgZK8EmlMqDYAPzji7WyyqQSFVGfPxWuyIno8gaZlVA5lqQImeqQb1edVAHmhAiZ4HIGkRVQOZakCJnqkGI3m+WIrKlZOi45G8XF+ahxpQouchaKbIx4uU6PmKXQTlVqJHoPTMX/lM/tOuSIozz0hziIkGlOgxAVqrGW8NKNHjjb/WPiYaUKLHBGitZrw1oESPN/5a+5hoQIkeE6C1mvHWwH8BSUfSiO3XWNEAAAAASUVORK5CYII=»>
- Координаты вершины параболы:
- Точка пересечения с осью OY находится: (0; -5) и ей симметричная.
- Нанести эти точки на координатную плоскость и построить график параболы:
2 + 3x — 5 = 0″ height=»671″ src=»https://lh6.googleusercontent.com/TYyA5dFfh0ZKINaPSps3Y_X1mCv8Mhv_8bNG3_dPbZud1AEsvo7UBFmVQNm1GcR1CQFo6HE1lNjYaAgepQUTQiK_ay_Fnuv7LEsB53woHkFO66W0R1PP8QfGsFcYzaR_h4AJdLxC» width=»602″>
Видео:Построение графика квадратичной функции. Алгебра, 9 классСкачать
Уравнение квадратичной функции имеет вид y = a * (x — x₀) 2 + y₀
Координаты его вершины: (x₀; y₀). В уравнении квадратичной функции y = 2x 2 + 3x — 5 при а = 1, то второй коэффициент является четным числом.
Рассмотрим пример: y = 2 * (x — 1) 2 + 4.
Как строим:
- Воспользуемся линейным преобразованием графиков функций. Для этого понадобится:
- построить y = x 2 ,
- умножить ординаты всех точек графика на 2,
- сдвинуть его вдоль оси ОХ на 1 единицу вправо,
- сдвинуть его вдоль оси OY на 4 единицы вверх.
- Построить график параболы для каждого случая. 2 + y₀» height=»431″ src=»https://lh5.googleusercontent.com/_zgF-CXWf4Yy0p2OnBYSJkUm0zO-mNetq5feU6LIPEbIgSrO9kdr2ti_tr7Gg3yTMOlJVnuZgG0HleAFfAzG7yr7ELHT6KSMqMrRHkHqt-VcgIiSZx80cVj0zlPMBzEM0wAWQ-L6″ width=»602″>
Видео:Построение графика квадратичной функцииСкачать
Уравнение квадратичной функции имеет вид y = (x + a) × (x + b)
Рассмотрим следующий пример: y = (x − 2) × (x + 1).
Как строим:
Данный вид уравнения позволяет быстро найти нули функции:
(x − 2) × (x + 1) = 0, отсюда х₁ = 2, х₂ = −1.
Определим координаты вершины параболы:
Найти точку пересечения с осью OY:
с = ab = (−2) × (1) = −2 и ей симметричная.
Отметим эти точки на координатной плоскости и соединим плавной прямой.
Видео:Парабола. Квадратичная функцияСкачать
Квадратичная функция.
Видео-уроки по теме «График квадратичной функции — парабола» расположены в конце страницы.
Квадратным трёхчленом называется многочлен 2-ой степени, то есть выражение вида ax 2 + bx + c, где a ≠ 0, b, c — (обычно заданные) действительные числа, называемые его коэффициентами, x — переменная величина.
Обратите внимание: коэффициент a может быть любым действительным числом, кроме нуля. Действительно, если a = 0, то ax 2 + bx + c = 0·x 2 + bx + c = 0 + bx + c = bx + c. В этом случае в выражении не остаётся квадрата, поэтому его нельзя считать квадратным трёхчленом. Однако, такие выражения-двучлены как, например, 3x 2 − 2x или x 2 + 5 можно рассматривать как квадратные трёхчлены, если дополнить их недостающими одночленами с нулевыми коэффициентами: 3x 2 − 2x = 3x 2 − 2x + 0 и x 2 + 5 = x 2 + 0x + 5.
Если стоит задача, определить значения переменной х, при которых квадратный трёхчлен принимает нулевые значения, т.е. ax 2 + bx + c = 0, то имеем квадратное уравнение.
Если существуют действительные корни x1 и x2 некоторого квадратного уравнения, то соответствующий трёхчлен можно разложить на линейные множители: ax 2 + bx + c = a(x − x1)(x − x2)
Замечание: Если квадратный трёхчлен рассматривать на множестве комплексных чисел С, которое, возможно, вы еще не изучали, то на линейные множители его можно разложить всегда.
Когда стоит другая задача, определить все значения, которые может принимать результат вычисления квадратного трёхчлена при различных значениях переменной х, т.е. определить y из выражения y = ax 2 + bx + c, то имеем дело с квадратичной функцией.
При этом корни квадратного уравнения являются нулями квадратичной функции.
Квадратный трёхчлен также можно представить в виде
Это представление удобно использовать при построении графика и изучении свойств квадратичной функции действительного переменного.
Квадратичной функцией называется функция, заданная формулой y = f(x), где f(x) — квадратный трёхчлен. Т.е. формулой вида
где a ≠ 0, b, c — любые действительные числа. Или преобразованной формулой вида
.
Графиком квадратичной функции является парабола, вершина которой находится в точке .
Обратите внимание: Здесь не написано, что график квадратичной функции назвали параболой. Здесь написано, что графиком функции является парабола. Это потому, что такую кривую математики открыли и назвали параболой раньше (от греч. παραβολή — сравнение, сопоставление, подобие), до этапа подробного изучения свойств и графика квадратичной функции.
Парабола — линия пересечения прямого кругового конуса плоскостью, не проходящей через вершину конуса и параллельной одной из образующих этого конуса.
Парабола обладает еще одним интересным свойством, которое также используется как её определение.
Парабола представляет собой множество точек плоскости, расстояние от которых до определенной точки плоскости, называемой фокусом параболы, равно расстоянию до определенной прямой, называемой директрисой параболы.
Построить эскиз графика квадратичной функции можно по характерным точкам.
Например, для функции y = x 2 берем точки
x | 0 | 1 | 2 | 3 |
y | 0 | 1 | 4 | 9 |
Соединяя их от руки, строим правую половинку параболы. Левую получаем симметричным отраженим относительно оси ординат.
Для построения эскиза графика квадратичной функции общего вида в качестве характерных точек удобно брать координаты её вершины, нули функции (корни уравнения), если они есть, точку пересечения с осью ординат (при x = 0, y = c) и симметричную ей относительно оси параболы точку (−b/a; c).
x | −b/2a | x1 | x2 | 0 | −b/a |
y | −(b 2 − 4ac)/4a | 0 | 0 | с | с |
при D ≥ 0 |
Но в любом случае по точкам можно построить только эскиз графика квадратичной функции, т.е. приблизительный график. Чтобы построить параболу точно, нужно использовать её свойства: фокус и директрису.
Вооружесь бумагой, линейкой, угольником, двумя кнопками и крепкой нитью. Прикрепите одну кнопку примерно в центре листа бумаги — в точке, которая будет фокусом параболы. Вторую кнопку прикрепите к вершине меньшего угла угольника. На основаниях кнопок закрепите нить так, чтобы её длина между кнопками равнялась большому катету угольника. Начертите прямую линию, непроходящую через фокус будущей параболы, — директрису параболы. Приложите линейку к директрисе, а угольник к линейке так, как показано на рисунке. Перемещайте угольник вдоль линейки, одновременно прижимая карандаш к бумаге и к угольнику. Следите за тем, чтобы нить была натянута.
Измерьте расстояние между фокусом и директрисой (напоминаю — расстояние между точкой и прямой определяется по перпендикуляру). Это фокальный параметр параболы p. В системе координат, представленной на правом рисунке, уравнение нашей параболы имеет вид: y = x 2 /2p. В масштабе моего рисунка получился график функции y = 0,15x 2 .
Замечание: чтобы построить заданную параболу в заданном масштабе, делать нужно всё то же самое, но в другом порядке. Начинать нужно с осей координат. Затем начертить директрису и определить положение фокуса параболы. И только потом конструировать инструмент из угольника и линейки. Например, чтобы на клетчатой бумаге построить параболу, уравнение которой у = x 2 , нужно расположить фокус на расстоянии 0,5 клеточки от директрисы.
Свойства функции у = x 2
- Область определения функции — вся числовая прямая: D(f) = R = (−∞; ∞).
- Область значений функции — положительная полупрямая: E(f) = [0; ∞).
- Функция у = x 2 четная: f(−x) = (−x) 2 = x 2 = f(x) .
Ось ординат является осью симметрии параболы. - На промежутке (−∞; 0) функция монотонно убывает.
На промежутке (0; + ∞) функция монотонно возрастает. - В точке x = 0 достигает минимального значения.
Точка с координатами (0;0) является вершиной параболы. - Функция непрерывна на всей области определения.
- Асимптот не имеет.
- Нули функции: y = 0 при x = 0.
Свойства квадратичной функции общего вида.
- Область определения функции — вся числовая прямая: D(f) = R = (−∞; ∞).
- Область значений функции зависит от знака коэффициента a.
При a > 0 ветви параболы направлены вверх, функция имеет наименьшее (ymin), но не имеет наибольшего значения: E(f) = [ ymin; ∞) ;
при aE(f) = (−∞; ymax ] . - В общем случае функция у = ax 2 + bx + c не является ни четной, ни нечетной.
Осью симметрии параболы является прямая x = −b/2a .
Функция будет четной только в случае, когда эта прямая совпадает с осью Oy, т.е. при b = 0. - При a > 0 функция монотонно убывает на промежутке (−∞; −b/2a) и монотонно возрастает на промежутке (−b/2a; ∞).
При a 0 — минимум функции.
Оба значения определяются по формуле y = − b 2 − 4ac _______ . 4a
Точка с координатами является вершиной параболы.
Если квадратный трёхчлен имеет дейтсивтельные корни x1 ≠ x2, то парабола пересекает ось абсцисс в точках (x1;0) и (x2;0).
При x1 = x2 парабола касается оси абсциcс в точке (x1;0).
Производная квадратичной функции вычисляется по формуле (ax 2 + bx + c)’ = 2ax + b.
График квадратичной функции, заданной общей формулой, лучше всего строить и изучать пользуясь Правилами преобразования графиков функций.
Для этого нужно сначала перейти от формулы y = ax 2 + bx + c к виду, удобному для преобразований, y = m(kx + l) 2 + n, где k, l, m, n — числа, зависящие от a, b, c, т.е. к виду
.
Затем взять за основу параболу y = x 2 и применить к ней следующие преобразования:
- Параллельный перенос (сдвиг) исходной параболы на l = b/2a единиц влево (если l 2 − 4ac)/4a единиц вверх или вниз в зависимости от знака n (при n >0 вверх).
Формулы для такого перехода можно выучить наизусть, а можно научиться выделять полный квадрат из трёхчлена с заданными коэффициентами. Это умение весьма полезно также для решения некоторых уравнений и неравенств, для вычисления интегралов и т.д.
Рассмотрим пример:
Пусть y = 3x 2 − 5x + 2
1) Объединяем в скобки первые два слагаемых и выносим за скобки коэффициент при х 2 .
2) В скобках умножим и одновременно разделим на 2 коэффициент при x.
3) Сравним с формулой возведения двучлена в квадрат: имеем внутри скобок квадрат числа x, удвоенное произведение x на дробь 5/6. Чтобы применить эту формулу не хватает второго квадрата, поэтому добавим недостающее слагаемое 5 2 /6 2 и одновременно вычтем его, чтобы сохранилось исходное значение выражения.
4) Сворачиваем квадрат по формуле и раскрываем большую скобку.
5) Оставшиеся числовые дроби приводим к общему знаменателю и складываем.
Итак, чтобы построить график функции y = 3x 2 − 5x + 2 из графика y = x 2 нужно последний сдвинуть по оси Ox вправо на 5/6 ≈ 0,83 единицы. Затем растянуть вдоль оси Oy в 3 раза и, наконец, опустить по оси Oy на 1/12 ≈ 0,08 единицы.
Посмотрите, что получилось.
Если Вы являетесь моим учеником или подписчиком, то можете поработать с интерактивными версиями этих графиков.
Упражнение:
Постройте по характерным точкам эскиз графика функции y = x 2 .
Методом преобразования получите эскиз графика функции y = −x 2 + 4x + 6 .
Посмотрите в каких точках график этой функции пересекает ось Ox и сравните их координаты (абсциссы) с корнями уравнения −x 2 + 4x + 6 = 0 , вычисленными через дискриминант. Насколько точным оказалось ваше графическое решение уравнения?
Преобразуем выражение с выделением полного квадрата:
Строим график функции
.
Для этого применяем следующие шаги: сдвиг на 2 клетки вправо, разворот ветвей вниз (вершина — точка, относительно которой поворачиваем), поднимаем вершину и, соответственно, всю параболу вверх на 10 клеточек. Вот что должно получиться
.
Визуально определяем корни. Парабола пересекает ось Ox примерно на одну пятую часть клетки левее минус единицы и настолько же правее пятерки, т.е. x1 ≈ −1,2 , x2 ≈ 5,2 .
Решение по формулам нахождения корней квадратного уравнения дает ответы x1 = 2 − √10 __ , x2 = 2 + √10 __ .
С помощью калькулятора вычисляем x1 = −1,162277660. , x2 = 5,162277660.
Парабола — очень интересная кривая, квадратичная функция часто встречается при описании различных природных явлений, экономических процессов.
Видео:КВАДРАТИЧНАЯ ФУНКЦИЯ парабола 9 классСкачать
Видеоуроки с параболой.
Графики квадратичной функции и коэффициенты квадратного трёхчлена.
Положение и вид параболы в зависимости от знака и значения коэффициента а — коэффициента при х 2 .
Положение и вид параболы в зависимости от знака и значения коэффициента b — коэффициента при х.
Положение и вид параболы в зависимости от знака и значения параметра c.
Построение параболы по характерным точкам.
Быстрое построение параболы как графика квадратичной функции.
Другие случаи. Примеры построения.
Задачи на анализ графика квадратичной функции.
Задания вида «Установить соответствие между коэффициентами квадратного трёхчлена и приведенными графиками квадратичной функции» встречаются в ОГЭ по математике в 9-ом классе, а также необходимы сдающим ЕГЭ за 11 класс в качестве промежуточного действия.
Понравились материалы сайта? Узнайте, как поддержать сайт и помочь его развитию.
Есть вопросы? пожелания? замечания? Обращайтесь — mathematichka@yandex.ru
Внимание, ©mathematichka. Прямое копирование материалов на других сайтах запрещено.
💡 Видео
КВАДРАТИЧНАЯ ФУНКЦИЯ 8 и 9 класс график квадратичной функцииСкачать
метод парабол для решения квадратных неравенствСкачать
ТЕПЕРЬ ТЫ ЛЕГКО ПОЙМЕШЬ свойства квадратичной функции — ПараболаСкачать
Квадратичная функция за 5 минутСкачать
Решение квадратных неравенств | МатематикаСкачать
Квадратичная функция и ее график. 8 класс.Скачать
122 алгебра 9 класс Построение графика квадратичной функцииСкачать
График квадратичной функции. Построение параболы. Алгебра 9 класс.Скачать
Квадратичная функция, ее график и свойства - 9 класс алгебраСкачать
9 класс. Алгебра. Квадратичная функция и её графикиСкачать
КВАДРАТИЧНАЯ ФУНКЦИЯ y=ax2+bx+c свойства и график квадратичной функцииСкачать