оси OY. Такие прямые целиком лежат на поверхности, «образуют» её, поэтому и называются образующими. Построенная поверхность называется параболическим цилиндром.
15. Построить поверхность, заданную уравнением .
Решение. Легко записать уравнение в каноническом виде: .
Так как переменной z нет, то это цилиндрическая поверхность. Строим в плоскости XOY гиперболу (её вершины находятся на оси OY). Через каждую точку гиперболы проводим прямую, параллельную оси OZ. Получаем гиперболический цилиндр.
16. Построить поверхность, заданную уравнением .
Решение. Так как уравнение не содержит произведений переменных, то для его преобразования к каноническому виду поворот осей не требуется, достаточно сделать параллельный перенос. Выделим полные квадраты:
Получили каноническое уравнение эллипсоида, центр которого находится в точке (1, —2, 0), полуоси a = 2, b = 3, c = 1.
17. Построить поверхность, заданную уравнением .
Решение. Заметим, что переменные x и y входят в уравнение только в составе суммы квадратов x 2 + ysup>2 . Значит, это поверхность вращения. Вокруг оси OZ вращается линия, уравнение которой получим, заменяя ременных, например, x:
Видео:Цилиндрические поверхностиСкачать
6.2. Цилиндрические поверхности
Или цилиндры. Под цилиндром также понимают геометрическое тело.
И это не совсем то, что обычно подразумевает обыватель – класс цилиндрических поверхностей не ограничивается чёрным цилиндром на голове:
Задача 167
Построить поверхность, заданную уравнением
…что за дела?! Не опечатка ли здесь? Вроде как дано уравнение эллипса…
Нет, здесь не опечатка и все дела происходят именно в пространстве! Исследуем предложенную поверхность тем же методом, что использовали для плоскостей. Перепишем уравнение в виде , из которого следует, что «зет» принимает любые значения. Зафиксируем и построим в плоскости эллипс . Так как «зет» принимает все значения, то построенный эллипс непрерывно «тиражируется» вверх и вниз до бесконечности.
Данная поверхность называется эллиптическим цилиндром. Эллипс (на любой высоте) называется направляющей цилиндра, а параллельные прямые, проходящие через каждую точку эллипса называются образующими цилиндра (которые в прямом смысле слова его и образуют).
Ось является осью симметрии поверхности (но не её частью!).
Координаты любой точки, принадлежащей данной поверхности, обязательно удовлетворяют уравнению .
Пространственное неравенство задаёт «внутренность» бесконечной «трубы», включая саму цилиндрическую поверхность, и, соответственно, противоположное неравенство определяет множество точек вне цилиндра.
В практических задачах наиболее популярен частный случай, когда направляющей цилиндра является окружность:
Задача 168
Построить поверхность, заданную уравнением
Бесконечную «трубу» изобразить невозможно, поэтому художества ограничиваются, как правило, «обрезком».
Сначала удобно построить окружность радиуса в плоскости , а затем ещё пару окружностей сверху и снизу.
Полученные окружности (направляющие цилиндра) аккуратно соединяем 4 параллельными прямыми (образующими цилиндра):
Не забываем использовать пунктир для невидимых нам линий!
Координаты любой точки, принадлежащей данному цилиндру, удовлетворяют уравнению . Координаты любой точки, лежащей строго внутри «трубы», удовлетворяют неравенству , а неравенство задаёт множество точек внешней части. Для лучшего понимания рекомендую рассмотреть несколько конкретных точек пространства и убедиться в этом самостоятельно.
Часто эту поверхность некорректно называют круговым цилиндром. Круглым! Круговой цилиндр, строго говоря – есть тело, по той причине, что его направляющей является круг. И тело, кстати, определяется неравенством .
Задача 169
Построить поверхность и найти её проекцию на плоскость
Перепишем уравнение в виде , из которого следует, что «икс» принимает любые значения. Зафиксируем и в плоскости изобразим окружность – с центром в начале координат, единичного радиуса. Так как «икс» непрерывно принимает все значения, то построенная окружность порождает цилиндр с осью симметрии . Рисуем ещё одну окружность (направляющую цилиндра) и аккуратно соединяем их прямыми (образующими цилиндра). Местами получились накладки, но что делать, такой уж наклон:
На этот раз я ограничился кусочком цилиндра на промежутке и это не случайно. На практике зачастую и требуется изобразить лишь небольшой фрагмент поверхности.
Тут, к слову, получилось 6 образующих – две дополнительные прямые «закрывают» поверхность с левого верхнего и правого нижнего углов.
Теперь разбираемся с проекцией цилиндра на плоскость . Многие читатели понимают, что такое проекция, но, тем не менее, проведём очередную физкульт-пятиминутку:
Пожалуйста, встаньте и склоните голову над чертежом так, чтобы остриё оси смотрело перпендикулярно вам в лоб. То, чем с этого ракурса кажется цилиндр – и есть его проекция на плоскость . А кажется он бесконечной полосой, заключенным между прямыми , включая сами прямые. Данная проекция – это в точности область определения функций (верхний «жёлоб» цилиндра), (нижний «жёлоб»).
Давайте заодно проясним ситуацию и с проекциями на другие координатные плоскости. Пусть лучи солнца светят на цилиндр со стороны острия и вдоль оси . Тенью (проекцией) цилиндра на плоскость является аналогичная бесконечная полоса – часть плоскости , ограниченная прямыми ( – любое), включая сами прямые.
А вот проекция на плоскость несколько иная. Если смотреть на цилиндр из острия оси , то он спроецируется в окружность (не круг!) единичного радиуса , с которой мы начинали построение.
Задача 170
Построить поверхность и найти её проекции на координатные плоскости
Это задача для самостоятельного решения. Если условие не очень понятно, возведите обе части в квадрат и проанализируйте результат – выясните, какую именно часть цилиндра задаёт функция . Используйте методику построения, неоднократно применявшуюся выше. Краткое решение, чертёж и комментарии в конце книги.
Цилиндрические поверхности могут быть смещены относительно координатных осей, например:
– данное уравнение (по знакомым мотивам линий 2-го порядка) задаёт цилиндр единичного радиуса с линией симметрии, проходящей через точку параллельно оси .
Однако на практике подобные цилиндры попадаются довольно редко, и совсем уж невероятно встретить «косую» относительно координатных осей цилиндрическую поверхность.
Параболические цилиндры
Как следует из названия, направляющей такого цилиндра является парабола.
Задача 171
Построить поверхность и найти её проекции на координатные плоскости.
Не мог удержаться от этого примера =)
Решение: идём проторенной тропой. Перепишем уравнение в виде , из которого следует, что «зет» может принимать любые значения. Зафиксируем и построим обычную параболу на плоскости , предварительно отметив тривиальные опорные точки . Поскольку «зет» принимает все значения, то построенная парабола непрерывно «тиражируется» вверх и вниз до бесконечности. Откладываем такую же параболу, скажем, на высоте (в плоскости) и аккуратно соединяем их параллельными прямыми (образующими цилиндра):
Напоминаю полезный технический приём: если изначально нет уверенности в качестве чертежа, то линии сначала лучше прочертить тонко-тонко карандашом. Затем оцениваем качество эскиза, выясняем участки, где поверхность скрыта от наших глаз, и только потом придаём нажим грифелю.
Теперь вторая часть задания, отыскание проекций:
1) Проекцией цилиндра на плоскость является парабола .
2) Проекция цилиндра на плоскость представляет собой полуплоскость , включая ось
3) И, наконец, проекцией цилиндра на плоскость является вся плоскость .
Задача 172
Построить параболические цилиндры:
а) , ограничиться фрагментом поверхности в ближнем полупространстве;
б) на промежутке
В случае затруднений не спешим и рассуждаем по аналогии с предыдущими примерами, благо, технология досконально отработана. Не критично, если поверхности будут получаться немного корявыми – важно правильно отобразить принципиальную картину.
Я и сам особо не заморачиваюсь над красотой линий – если получился сносный чертёж «на троечку», обычно не переделываю. В образце решения, кстати, использован ещё один приём, позволяющий улучшить качество чертежа 😉
Гиперболические цилиндры
Направляющими таких цилиндров являются гиперболы.
Этот тип поверхностей, по моим наблюдениям, встречается значительно реже, и поэтому я ограничился единственным схематическим чертежом гиперболического цилиндра .
Принцип рассуждения здесь точно такой же – обычная «школьная» гипербола из плоскости непрерывно «размножается» вверх и вниз до бесконечности.
Видео:Аналитическая геометрия, 8 урок, Поверхности второго порядкаСкачать
Поверхности второго порядка. Цилиндрические поверхности.
Поверхность S называется цилиндрической поверхностью с образующей , если для любой точки M0
этой поверхности прямая, проходящая через эту точку параллельно образующей , целиком принадлежит
Теорема (об уравнении цилиндрической поверхности).
Если в некоторой декартовой прямоугольной системе координат поверхность имеет
уравнение f(x,y)=0, то S — цилиндрическая поверхность с образующей, параллельной оси OZ.
Кривая, задаваемая уравнением f(x,y)=0 в плоскости z=0, называется направляющей цилиндрической
поверхности.
Если направляющая цилиндрической поверхности задаётся кривой второго порядка, то такая поверхность
называется цилиндрической поверхностью второго порядка.
📸 Видео
Поверхности второго порядкаСкачать
§63 Цилиндрические поверхностиСкачать
Аналитическая геометрия, 7 урок, Линии второго порядкаСкачать
Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать
Поверхности второго порядка. Поверхности вращенияСкачать
Как строить параболу? | TutorOnlineСкачать
553. Уравнение цилиндрической поверхности.Скачать
Лекция. Гиперболоиды, параболоиды, конус. Исследование методом сечений.Скачать
Поверхности 2-го порядка | Лекция 14 | ЛинАл | СтримСкачать
Видеоурок "Гипербола"Скачать
Построение гиперболического параболоидаСкачать
6 Поверхности второго порядкаСкачать
§31.1 Приведение уравнения кривой к каноническому видуСкачать
Математика без Ху!ни. Уравнение плоскости.Скачать
Цилиндр, вытянутый вдоль оси Z. Урок33.(Часть2.ПРОЕКЦИОННОЕ ЧЕРЧЕНИЕ)Скачать
Поверхности 2го порядка. КлассификацияСкачать
§24 Каноническое уравнение параболыСкачать
Практическое занятие: поверхности второго порядкаСкачать