Как построить график в физике по уравнению

Как построить график в физике по уравнению

Графическое представление равномерного прямолинейного движения

Механическое движение представляют графическим способом. Зависимость физических величин выражают при помощи функций. Обозначают:

V (t) — изменение скорости со временем

S(t) — изменение перемещения (пути) со временем

a(t) — изменение ускорения со временем

Как построить график в физике по уравнению

За висимость ускорения от времени. Так как при равномерном движении ускорение равно нулю, то зависимость a(t) — прямая линия, которая лежит на оси времени.

Как построить график в физике по уравнению

Зависимость скорости от времени. Так как тело движется прямолинейно и равномерно ( v = const ), т.е. скорость со временем не изменяется, то график с зависимостью скорости от времени v(t) — прямая линия, параллельная оси времени.

Как построить график в физике по уравнению

Проекция перемещения тела численно равна площади прямоугольника АОВС под графиком, так как величина вектора перемещения равна произведению вектора скорости на время, за которое было совершено перемещение.

Как построить график в физике по уравнению

Правило определения пути по графику v(t): при прямолинейном равномерном движении модуль вектора перемещения равен площади прямоугольника под графиком скорости.

Как построить график в физике по уравнению

Зависимость перемещения от времени. График s(t) — наклонная линия :

Из графика видно, что проекция скорости равна:

Как построить график в физике по уравнению

Рассмотрев эту формулу, мы можем сказать, чем больше угол, тем быстрей движется тело и оно проходит больший путь за меньшее время.

Правило определения скорости по графику s(t): Тангенс угла наклона графика к оси времени равен скорости движения.

Неравномерное прямолинейное движение.

Равномерное движение это движение с постоянной скоростью. Если скорость тела меняется, говорят, что оно движется неравномерно.

Движение, при котором тело за равные промежутки времени совершает неодинаковые перемещения, называют неравномерным или переменным движением.

Для характеристики неравномерного движения вводится понятие средней скорости.

Как построить график в физике по уравнению

Средняя скорость движения равна отношению всего пути, пройденного материальной точкой к промежутку времени, за который этот путь пройден.

В физике наибольший интерес представляет не средняя, а мгновенная скорость, которая определяется как предел, к которому стремится средняя скорость за бесконечно малый промежуток времени Δt:

Как построить график в физике по уравнению

Мгновенной скоростью переменного движения называют скорость тела в данный момент времени или в данной точке траектории.

Мгновенная скорость тела в любой точке криволинейной траектории направлена по касательной к траектории в этой точке.

Различие между средней и мгновенной скоростями показано на рисунке.

Как построить график в физике по уравнению

Движение тела, при котором его скорость за любые равные промежутки времени изменяется одинаково, называют равноускоренным или равнопеременным движением.

Ускорение — это векторная физическая величина, характеризующая быстроту изменения скорости, численно равная отношению изменения скорости к промежутку времени, в течение которого это изменение произошло.

Если скорость изменяется одинаково в течение всего времени движения, то ускорение можно рассчитать по формуле:

Как построить график в физике по уравнению

Vx — Скорость тела при равноускоренном движении по прямой

Vx o — Начальная скорость тела

ax — Ускорение тела

t — Время движения тела

Ускорение показывает, как быстро изменяетcя скорость тела. Если ускорение положительно, значит скорость тела увеличивается, движение ускоренное. Если ускорение отрицательно, значит скорость уменьшается, движение замедленное.

Единица измерения ускорения в СИ [м/с 2 ].

Ускорение измеряют акселерометром

Уравнение скорости для равноускоренного движения: vx = vxo + axt

Уравнение равноускоренного прямолинейного движения (перемещение при равноускоренном движении):

Как построить график в физике по уравнению

Sx — Перемещение тела при равноускоренном движении по прямой

Vx o — Начальная скорость тела

Vx — Скорость тела при равноускоренном движении по прямой

ax — Ускорение тела

t — Время движения тела

Еще формулы, для нахождения перемещения при равноускоренном прямолинейном движении, которые можно использовать при решении задач:

Как построить график в физике по уравнению

— если известны начальная, конечная скорости движения и ускорение.

Как построить график в физике по уравнению

— если известны начальная, конечная скорости движения и время всего движения

Графическое представление неравномерного прямолинейного движения

Механическое движение представляют графическим способом. Зависимость физических величин выражают при помощи функций. Обозначают:

V(t) — изменение скорости со временем

S(t) — изменение перемещения (пути) со временем

a(t) — изменение ускорения со временем

Зависимость ускорения от времени. Ускорение со временем не изменяется, имеет постоянное значение, график a(t) — прямая линия, параллельная оси времени.

Как построить график в физике по уравнению

Зависимость скорости от времени. При равномерном движении скорость изменяется, согласно линейной зависимости vx = vxo + axt . Графиком является наклонная линия.

Как построить график в физике по уравнению

Правило определения пути по графику v(t): Путь тела — это площадь треугольника (или трапеции) под графиком скорости.

Как построить график в физике по уравнению

Как построить график в физике по уравнению

Правило определения ускорения по графику v(t): Ускорение тела — это тангенс угла наклона графика к оси времени. Если тело замедляет движение, ускорение отрицательное, угол графика тупой, поэтому находим тангенс смежного угла.

Как построить график в физике по уравнению

Зависимость пути от времени. При равноускоренном движении путь изменяется, согласно квадратной зависимости:

Как построить график в физике по уравнению

В координатах зависимость имеет вид:

Видео:Физика - уравнения равноускоренного движенияСкачать

Физика - уравнения равноускоренного движения

Графики прямолинейного движения

Рассмотрим поступательное движение. Когда тело движется поступательно, его координаты изменяются.

Прямолинейное движение – это когда тело движется по прямой. Прямую, вдоль которой движется тело, назовем осью Ox.

Будем отдельно рассматривать:

  • движение без ускорения (равномерное), и
  • движение с ускорением (неравномерное).

1). Равномерное движение — скорость тела остается одной и той же (т. е. не изменяется). При таком движении ускорения нет: (vec =0).

2). Неравномерное движение — скорость меняется и появляется ускорение.

Пусть ускорение есть и, оно не изменяется: (vec =const). Такое неравномерное движение называют равнопеременным. Чтобы уточнить, увеличивается ли скорость, или уменьшается, вместо слова «равнопеременное» говорят:

  • Равноускоренное движение — скорость тела увеличивается.
  • Равнозамедленное движение — скорость уменьшается.

Примечание: Когда изменяется скорость, всегда появляется ускорение!

Движение будем изображать графически, используя две перпендикулярные оси.

На графиках будем откладывать:

  • по горизонтали — время в секундах.
  • по вертикали — координаты тела, или проекции скорости и ускорения.

Для каждого вида движения получим три графика. Графики будем называть так:

  1. x(t) – зависимость координаты от времени;
  2. v(t) – зависимость проекции скорости от времени;
  3. a(t) – зависимость проекции ускорения от времени.

Прочитайте вначале, что такое проекция вектора на ось, это поможет лучше усвоить материал.

Видео:Физика - перемещение, скорость и ускорение. Графики движения.Скачать

Физика - перемещение, скорость и ускорение. Графики движения.

Тело покоится, его координата не меняется, а скорость и ускорение отсутствуют

Пусть тело покоится на оси Ox – (рис 1а).
Точкой (x_) обозначена координата этого тела. Когда тело неподвижно, его координата не меняется. На графике неизменную координату обозначают горизонтальной линией, расположенной параллельно оси времени (рис. 1б).
[x=x_]

Как построить график в физике по уравнению

Скорость и ускорение неподвижного тела равны нулю:

Из-за этого, графики скорости (рис. 1в) и ускорения (рис. 1г) – это горизонтальные линии, лежащие на оси t времени.

Видео:9 класс, 3 урок, Графики прямолинейного равномерного движенияСкачать

9 класс, 3 урок, Графики прямолинейного равномерного движения

Скорость не меняется — движение равномерное

Разберём равномерное движение в направлении оси (рис. 2а).

Начальная координата тела – это точка (x_), а конечная координата — точка (x) на оси Ox. В точку «x» тело переместится к конечному времени «t».

Красной стрелкой обозначено направление, в котором тело движется.

Примечание: Тело движется туда, куда направлен вектор его скорости.

Как построить график в физике по уравнению

Координата возрастает со временем, так как тело движется туда же, куда указывает ось. Поэтому график координаты от времени — это возрастающая прямая x(t) – рис. б).

Уравнение, описывающее изменение координаты выглядят так:

[ x = x_ + v cdot t ]

Скорость на графике рис. в) изображена горизонтальной прямой линией, потому, что скорость остается одной и той же (не изменяется). Уравнение скорости записывается так:

Ускорение рис. г) изображается прямой, лежащей на оси времени, так как ускорения нет. Математики посмотрят на такой график и скажут: «Ускорение равно нулю и не изменяется». Эту фразу они запишут формулой:

Равномерное движение в направлении противоположном оси

Пусть теперь тело движется с одной и той же скоростью в направлении, противоположном оси (рис. 3а).

Как построить график в физике по уравнению

Так как тело теперь движется против направления оси, то координата тела будет уменьшаться. График (рис 3б) координаты x(t) выглядит, как убывающая прямая линия.

Так как скорость не изменяется, то график v(t) – это горизонтальная прямая.

Тело движется против оси, его вектор скорости направлен противоположно оси Ox. Поэтому проекция скорости будет отрицательной (рис 3в) и на графике v(t) скорость — это горизонтальная прямая, лежащая ниже оси времени.

А график ускорения (рис 3г) лежит на оси времени, так как ускорение нулевое.

Видео:Графическое представление равномерного движения.Скачать

Графическое представление равномерного движения.

Равноускоренное движение в направлении оси, скорость увеличивается

Следующий набор графиков – это случай, когда тело движется вдоль оси Ox с возрастающей скоростью (рис. 4). То есть, мы рассматриваем равноускоренное движение.

Как построить график в физике по уравнению

Координата «x» теперь изменяется не по линейному, а по квадратичному закону. На графике квадратичное изменение выглядит, как ветвь параболы (рис. 4б). Тело движется по оси и скорость его растет. Такое движение описывается правой ветвью параболы, направленной вверх.

Уравнение, которое описывает квадратичное изменение координаты, выглядит так:

Скорость, так же, растет (рис. 4в). Рост скорости описан наклонной прямой линией – то есть, линейной зависимостью:

[ v = v_ + a cdot t ]

Ускорение есть (рис. 4г) и оно не меняется:

Скорость и ускорение сонаправлены с осью Ox, поэтому их проекции на ось положительны, а их графики лежат выше оси времени.

Примечания:

1). Координата «x» будет изменяться:

  • по линейному закону, когда скорость не меняется — остается одной и той же.
  • по квадратичному закону, когда скорость будет изменяться (расти, или убывать).

2). Линейный закон – это уравнение первой степени, на графике – наклонная прямая линия.

3). Квадратичный закон – это уравнение второй степени, на графике — парабола.

4). Когда скорость увеличивается, для графика координаты x(t) выбираем правую ветвь параболы, а когда скорость уменьшается – то левую ветвь.

Равноускоренное движение против оси

Если тело будет увеличивать свою скорость, двигаясь в направлении, противоположном оси (рис. 5а), то ветвь параболы, описывающая изменение координаты тела, будет направлена вниз (рис. 5б).

Скорость направлена против оси и увеличивается в отрицательную область. Такое изменение скорости изображаем прямой, направленной вниз (рис. 5в).

Как построить график в физике по уравнению

Примечание: Чтобы скорость увеличивалась (по модулю), нужно, чтобы векторы скорости и ускорения были сонаправленными (ссылка).

Так как скорость увеличивается, то векторы скорости и ускорения сонаправлены. Но при этом, они направлены против оси, поэтому проекции векторов (vec) и (vec) на ось Ox будут отрицательными. Значит, графики скорости и ускорения будут лежать ниже горизонтальной оси времени.

Ускорение (рис. 5г) не изменяется, поэтому изображается горизонтальной прямой. Но эта прямая будет лежать ниже горизонтальной оси времени, так как ускорение имеет отрицательную проекцию на ось Ox.

Видео:Решение графических задач на тему Газовые законыСкачать

Решение графических задач на тему Газовые законы

Скорость уменьшается — движение равнозамедленное

Когда скорость тела уменьшается с постоянным ускорением, движение называют равнозамедленным. Координата в этом случае изменяется по квадратичному закону. График координаты – это ветвь параболы. Когда скорость уменьшается, координату описываем с помощью левой ветви параболы, с вершиной вверху (рис. 6б).

Как построить график в физике по уравнению

Примечание: Чтобы скорость уменьшалась по модулю, нужно, чтобы векторы скорости и ускорения были направлены в противоположные стороны (ссылка).

Скорость уменьшается, при этом, скорость направлена по оси. Поэтому, график скорости – это убывающая прямая линия, лежащая выше оси времени (рис. 6в).

А ускорение есть, оно не изменяется и направлено против оси. Поэтому, ускорение отрицательное, его график – это горизонтальная прямая, лежащая ниже оси времени (рис. 6г).

Равнозамедленное движение против оси

Если тело будет двигаться против оси, замедляясь, то график координаты — это левая ветвь параболы, вершиной вниз (рис. 7б).

Скорость вначале была большой, но так как тело замедляется, она падает до нуля. Но тело двигается против оси Ox, поэтому график скорости лежит ниже оси времени (рис. 7в).

Как построить график в физике по уравнению

Скорость отрицательная. А чтобы она уменьшалась, нужно, чтобы ускорение было направлено противоположно скорости. Поэтому ускорение будет положительным. Значит, график ускорения будет лежать выше оси времени. Так как ускорение не меняется, то его график изображен горизонтальной прямой линией (рис. 7г).

Примечание: Можно вычислить перемещение тела по графику скорости v(t), не пользуясь для этого графиком функции x(t) для координат тела.

Видео:Решение графических задач на равномерное движениеСкачать

Решение графических задач на равномерное движение

Выводы

1). Все, что лежит:

  • выше оси t – положительное;
  • ниже оси t – отрицательное;
  • на горизонтальной оси t – равно нулю.

2). Когда ускорение, или скорость направлены против оси, они будут отрицательными, т. е. будут лежать ниже горизонтальной оси t. Если график ускорения лежит на горизонтальной оси, то ускорение отсутствует (т. е. равно нулю, нулевое).

3). Если скорость не меняется, ускорения нет.

  • График x(t) координаты – это прямая линия.
  • График v(t) скорости – горизонтальная прямая.
  • График a(t) ускорения лежит на оси t.

4). Если скорость растет, ускорение и скорость направлены в одну и ту же сторону.

  • График x(t) координаты – это правая ветвь параболы.
  • График v(t) скорости – наклонная прямая.
  • График a(t) ускорения – горизонтальная прямая.

5). Если скорость уменьшается, ускорение и скорость направлены в противоположные стороны.

  • График x(t) координаты – это левая ветвь параболы.
  • График v(t) скорости – наклонная прямая.
  • График a(t) ускорения – горизонтальная прямая.

Видео:Графики зависимости пути и скорости от времениСкачать

Графики зависимости пути и скорости от времени

Построение графиков в курсе физики на основе функциональной заивисимости

Разделы: Физика

Графический метод, основа которого — математика, используется в курсе физики на различных этапах ее изучения. Это естественно, так как график позволяет показать специфику происходящего, прогнозировать ожидаемый результат, наглядно пояснить ответ.

Он используется в физике для формирования и анализа изучаемых физических понятий путем раскрытия их связей с другими понятиями, для решения задач обобщения, систематизации знаний.

Графические задачи делятся на две большие группы:

  • Задачи на построение графиков
  • Задачи на получение информации из графиков

В свою очередь задачи на построение графиков делятся (по способу задания) на два вида:

  • Табличный способ задания зависимости
  • Функциональный способ задания зависимости
  • Задачи на получение информации из графика делятся (по характеру информации) на три вида:
  • Словесное описание процессов
  • Аналитическое выражение функциональной зависимости, представленной графиком
  • Определение по графику неизвестных величин

Чаще всего при построении графиков на зависимость одних величин от других учащиеся запоминают вид графика, не вдаваясь в подробности, почему он проходит именно так, а не иначе. Когда зависимостей накапливается достаточно много, начинаются ошибки в построении графиков. В своей работе при построении графиков на различные зависимости физических величин я использую функциональный подход. В школьном курсе физики для построения графиков используются всего семь функций. Почти все физические величины положительные, поэтому графики функций будем рассматривать только в первой четверти.

Как построить график в физике по уравнению

Как построить график в физике по уравнению

Как построить график в физике по уравнению

Название функцииГрафик
Прямая пропорциональность y = k xКак построить график в физике по уравнению
Линейная y = k x + b
Обратная пропорциональность y = kx
Показательная y = k a x
Функция y = Как построить график в физике по уравнениюКак построить график в физике по уравнению
Квадратичная функция y = ax 2 + b x + c, y = ax 2Как построить график в физике по уравнению
Тригонометрическая функция y = k sin xКак построить график в физике по уравнению

Графики этих функций учащиеся изучают в курсе математики. Они знают эти графики либо умеют их строить по точкам. Моя задача сводится к тому, чтобы научить учащихся в физической формуле увидеть зависимость, определить ее вид, а затем установить соответствующий график.

Покажу это на примере:

Пример № 1. Необходимо построить график зависимости силы тока от напряжения, которая выражена зависимостью I = Как построить график в физике по уравнению. Учащиеся должны понимать, если необходимо построить зависимость силы тока от напряжения, то изменяться будет только напряжение и в зависимости от него сила тока, а остальные величины будут постоянными в частности сопротивление. Тогда нашу функцию (формулу) можно представить в виде Как построить график в физике по уравнению. Если R -сопротивление постоянная величина, то и единица, деленная на сопротивление величина постоянная. Заменим эту величину на k, получим I = k U. Определяем вид функции, это прямая пропорциональность. Графиком будет прямая проходящая через начало координат.

Пример № 2. Необходимо построить график зависимости силы тока от сопротивления, которая выражена зависимостью I = Как построить график в физике по уравнению. В донном примере изменяться будет сопротивление и в зависимости от него сила тока, а напряжение будет величиной постоянной. Сделаем следующие замены I = y; U = k; R = x; Получим функцию y = k x, графиком которой является ветвь гиперболы

Пример № 3. Постройте зависимость периода математического маятника от его длины. Запишем данную зависимость. Как построить график в физике по уравнению. Изменяться будет только длина маятника и в зависимости от нее период. Все остальные величины постоянные, сделаем замену. 2 Как построить график в физике по уравнению-число; Как построить график в физике по уравнению= k; T = y; l = x; . Получим функцию y = 2 Как построить график в физике по уравнению Как построить график в физике по уравнениюи строим ее график

План действий при построении графика физической зависимости:

Записываем аналитическое выражение данной зависимости (Формулу)

Устанавливаем, какие величины являются постоянными, и представляем их в виде коэффициента.

Если необходимо делаем замены: переменную величину обозначаем через x, зависящую через y.

  • Определяем вид функции
  • Определяем график

📹 Видео

Физика-9. "График проекции скорости"Скачать

Физика-9. "График проекции скорости"

ЭЛЕМЕНТАРНО, ВАТСОН! Квадратичная Функция и ее график ПараболаСкачать

ЭЛЕМЕНТАРНО, ВАТСОН! Квадратичная Функция и ее график Парабола

Построить график ЛИНЕЙНОЙ функции и найти:Скачать

Построить график  ЛИНЕЙНОЙ функции и найти:

Эта тема ВСЕГДА встречается на экзамене ЦТ — Изопроцессы (Физика для чайников)Скачать

Эта тема ВСЕГДА встречается на экзамене ЦТ — Изопроцессы (Физика для чайников)

Урок 15. Решение задач на графики движенияСкачать

Урок 15. Решение задач на графики движения

Физика. 7 класс. График равномерного движенияСкачать

Физика. 7 класс. График равномерного движения

Урок 12. Равномерное прямолинейное движениеСкачать

Урок 12. Равномерное прямолинейное движение

Квадратичная функция и ее график. 8 класс.Скачать

Квадратичная функция и ее график. 8 класс.

Урок 18 (осн). Координаты тела. График движения. График скоростиСкачать

Урок 18 (осн). Координаты тела. График движения. График скорости

Уравнения и графики механических гармонических колебаний. 11 класс.Скачать

Уравнения и графики механических гармонических колебаний. 11 класс.

Выполнялка 168. Равноускоренное движение. Как строить графики.Скачать

Выполнялка 168.   Равноускоренное движение. Как строить графики.

Равномерное прямолинейное движение - физика 9Скачать

Равномерное прямолинейное движение - физика 9

Построение графика квадратичной функцииСкачать

Построение графика квадратичной функции
Поделиться или сохранить к себе: