Разделы: Математика
Тема: Графическое решение квадратных уравнений, содержащих модуль.
Цель:
- закрепить навыки построения графика квадратичной функции;
- научить выполнять преобразования графиков функций;
- используя графики функций, решать уравнения.
Ход урока
1. Построим график квадратичной функции y = x² – 8x + 12
Преобразуем функцию, выделив полный квадрат, получим y = (x — 4)² — 4
График этой функции получается из графика функции y = x² путем параллельного переноса на вектор
2. Выполним преобразования и построим график функции y = x² – 8|x| +12
Так как противоположным значениям аргумента соответствуют одинаковые значения функции ,то график данной функции будет симметричным относительно оси ординат, поэтому построим график функции y = x² – 8|x| = 12 для x ≥ 0 (т.е. y = x² — 8х + 12) и
отобразим его симметрично относительно оси ординат.
Таким образом, получим:
3. Построим график функции y = | x² – 8|x| + 12 |
График данной функции получим из графика функции y = x² – 8|x| + 12 путем
симметрии относительно оси абсцисс того участка, где у 12;
б) при k = 12;
в) при k = 0;
г) при k = 4;
д) при k (0; 4);
е) при k 15.06.2010
Видео:Задание 23 из ОГЭ Построение графиков функций с модулем | МатематикаСкачать
График квадратичной функции с модулем
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
Описание презентации по отдельным слайдам:
График квадратичной функции, содержащей переменную под знаком абсолютной величины. Знание только тогда знание, когда оно приобретено усилиями своей мысли, а не памятью. Л. Н. Толстой. Выполнила: Асламурзаева Белла, ученица 9 «А» класса, СОШ №46 им. И .Дзусова Руководитель: Дряева М.Г. Преподаватель математики СОШ №46 им. И .Дзусова
Содержание: 1.Введение 2.Основные определения и свойства. 3.Построение графика квадратичной функции, содержащей переменную под знаком модуля. 4.Выводы. 5. Используемая литература.
Цель работы – рассмотреть построение графика квадратичной функции, содержащей переменную под знаком модуля. Объект исследования: график квадратичной функции. Предмет исследования: изменения графика квадратичной функции в зависимости от расположения знака абсолютной величины. Задачи: 1) Изучить литературу о свойствах абсолютной величины и квадратичной функции. 2) Исследовать изменения графика квадратичной функции в зависимости от расположения знака абсолютной величины. Практическая значимость моей работы заключается: 1) в использовании приобретенных знаний по данной теме, а также углубление их и применение к другим функциям и уравнениям; 2) в использовании навыков исследовательской работы в дальнейшей учебной деятельности.
Основные определения и свойства Функция, определяемая формулой у=ах²+вх+с, где х и у переменные, а параметры а, в и с – любые действительные числа, причём а≠0, называется квадратичной. Абсолютной величиной неотрицательного числа называется само это число, абсолютной величиной отрицательного числа называется противоположное ему положительное число. Свойства: 1.|a| ≥0, 2. |a|²= a², 3.|a∙b|=|a|∙|b|, 4. |a/b|=|a|/|b|, b≠0
Построение графика линейной функции, содержащей переменную под знаком модуля. 1)f(x)= |x-1|. x = 1- корень подмодульного выражения. Возьмем x=0, (0 1). Вычисляя функции в точках 1,0 и 2,получаем график, состоящий из двух отрезков.
2) f(x)= |x-1|+|x-2|. Вычисляя значение функции в точках 1, 2, 0 и 3, получаем график, состоящий из трех отрезков прямых.
Построение графика квадратичной функции, содержащей переменную под знаком модуля На примере функции у = x ²-6х +5 рассмотрим всевозможные случаи расположения модуля. у = |x 2 – 6х +5| у = | х | 2 – 6х +5 у = х² – 6|х| +5 у = |х|² — 6|х|+5 у = |х² – 6х| +5 у = |х² – 6|х| +5| у = x 2 -|6х + 5| |y|= x 2 – 6х +5
Построим график функции у = |x 2 – 6х +5| Пользуясь определением модуля, рассмотрим два случая: Пользуясь определением модуля, рассмотрим два случая: Пользуясь определением модуля, рассмотрим два случая: Пользуясь определением модуля, рассмотрим два случая: . Выделим все точки параболы с неотрицательной ординатой. . Выделим все точки параболы с неотрицательной ординатой. . Выделим все точки параболы с неотрицательной ординатой. . Выделим все точки параболы с неотрицательной ординатой. . Выделим все точки параболы с неотрицательной ординатой. . Выделим все точки параболы с неотрицательной ординатой. Выделим все точки параболы с неотрицательной ординатой. x ²– 6х +5≥ 0, тогда у= x² – 6х +5.Выделим все точки параболы с неотрицательной ординатой. 2) x² – 6х +5 0, y= -x² + 6х -5.
Рассмотрим график функции у = |х|²– 6х +5 Т.к. |x|²= x² , то функция у = |х|² – 6х +5 совпадает с функцией у = x ²-6х +5 ,а , значит, имеют один и тот же график.
Рассмотрим график функции у = х² – 6|х| +5 Пользуясь определением модуля, рассмотрим два случая: 1)Пусть x≥0, тогда y= х² — 6х +5. Построим параболу у = х² — 6х +5 и обведём ту её часть, которая соответствует неотрицательным значениям х, т.е. часть, расположенную правее оси Оу. 2)Пусть x 0 имеем 2. » onclick=»aa_changeSlideByIndex(14, 0, true)» >
Равенство |y|= x 2 – 6х +5 не задает функции т. к. при x 2 – 6х +5 >0 имеем 2 значения y, соответствующих данному значению x, а при x 2 – 6х +5 0, y= x² – 6х +5 2)при x² – 6х +5
Краткое описание документа:
1)Для построения графика функции y = | f ( x )| , надо сохранить ту часть графика функции y = f ( x ), точки которой находятся на оси Ох или выше оси Ох, и симметрично отразить относительно оси Ох ту часть графика функции y = f ( x ), которая расположена ниже оси Ох.
2) Для построения графика y = f (| x |) надо сохранить ту часть графика функции y = f (| x |), точки которой на оси Оу или справа от неё и симметрично отразить эту часть графика относительно оси Оу .
3) Чтобы построить график уравнения | y |= f(x) нужно:
Отбросить ту часть графика , которая лежит ниже оси
Ох, а оставшуюся часть симметрично отобразить
Видео:График квадратичной функции с модулемСкачать
Графики прямой, параболы, гиперболы, с модулем
Пошаговое построение графиков.
«Навешивание» модулей на прямые, параболы, гиперболы.
Графики — самая наглядная тема по алгебре. Рисуя графики, можно творить, а если еще и сможешь задать уравнения своего творчества, то и учитель достойно это оценит.
Для понимания друг друга введу немного «обзываний» системы координат:
Для начала построим график прямой y = 2x − 1.
Не сомневаюсь, что ты помнишь. Я напомню себе, что через 2 точки можно провести одну прямую.
Возьмем значение X = 0 и Х = 1 и подставим в выражение y = 2x − 1, тогда соответственно Y = − 1 и Y = 1
Через данные две точки А = (0; −1) и B = (1; 1) проводим единственную прямую:
А если теперь добавить модуль y = |2x − 1|.
Модуль — это всегда положительное значение , получается, что «y» должен быть всегда положительным.
Значит, если модуль «надет» на весь график, то, что было в нижней части «−y», отразится в верхнюю (как будто сворачиваете лист по оси х и то, что было снизу, отпечатываете сверху).
Получается такая зеленая «галочка».
Красота! А как же будет выглядеть график, если надеть модуль только на «х»: y = 2|x| − 1?
Одна строчка рассуждений и рисуем:
Модуль на «x», тогда в этом случае x = −x, то есть все, что было в правой части, отражаем в левую. А то, что было в плоскости «−x», убираем.
Здесь отражаем относительно оси «y» . Такая же галочка, только теперь через другую ось.
Смертельный номер: y = |2|x| − 1|.
Черную прямую y = 2x − 1 отражаем относительно оси Х, получим y = |2x − 1|. Но мы выяснили, что модуль на х влияет только на левую часть.
В правой части: y = |2x − 1| и y = |2|x| − 1| идентичны!
А после этого отражаем относительно оси «y» то, что мы получили справа налево:
Если ты человек амбициозный, то прямых тебе будет мало! Но то, что описано выше, работает на всех остальных графиках, значит делаем по аналогии.
Разберем по винтикам параболу y = x² + x − 2. Точки пересечения с осью «x» получим с помощью дискриминанта: x ₁ = 1 и x ₂ = -2.
Можно найти вершину у параболы и взять пару точек для точного построения.
А как будет выглядеть график: y = |x²| + x − 2? Слышу: «Такого мы еще не проходили», а если подумаем? Модуль на x², он же и так всегда положителен, от модуля тут толку, как от стоп-сигнала зайцу − никакого.
При y = x² + |x| − 2 все так же стираем всю левую часть, и отражаем справа налево:
А дальше что мелочиться: рассмотри сразу остальные графики с модулем!
Следующий смертельный номер: |y| = x² + x − 2, подумай хорошенько, а еще лучше попробуй нарисовать сам.
При положительных значениях «y» от модуля нет смысла − уравнения y = x² + x − 2, а при «−y» ничего не меняется, будет так же y = x² + x − 2!
Рисуем параболу в верхней части системы координат (где у > 0), а затем отражаем вниз.
А теперь сразу комбо:
Cиний: похож на y = x² + |x| − 2, только поднят вверх. Строим график в правой части, а затем отражаем через ось Y влево.
Оранжевый: строим в правой части и отражаем относительно оси Х. Доходим до оси Y и отражаем все что было справа налево. Двойка в знаменателе показывает, что график будет «шире», расходится в бока он быстрее остальных.
Зеленый: Так же начинаем с правой части и отражаем относительно оси оси Y. Получается график y = |x² + x − 2|, но еще есть −2, поэтому опустим график на 2 вниз. Теперь параболы как бы отражается относительно Y = − 2.
Легкий и средний уровень позади, и настала пора выжать концентрацию на максимум , потому что дальше тебя ждут гиперболы, которые частенько встречаются во второй части ЕГЭ и ОГЭ.
y = 1/x — простая гипербола, которую проще всего построить по точкам, 6-8 точек должно быть достаточно:
А что будет, если мы добавим в знаменателе «+1»? График сдвинется влево на единицу:
А что будет, если мы добавим в знаменателе « − 1»? График сдвинется вправо на единицу.
А если добавить отдельно «+1» y = (1/x) + 1? Конечно, график поднимется вверх на единицу!
Глупый вопрос: а если добавить отдельно «−1» y = (1/x) − 1? Вниз на единицу!
Теперь начнем «накручивать» модули: y = |1/x + 1| — отражаем все из нижней части в верхнюю.
Возьмем другой модуль, мой амбициозный друг, раз ты дошел до этогог места: y = |1/(x + 1)|. Как и выше, когда модуль надет на всю функцию, мы отражаем снизу вверх.
Можно придумывать массу вариантов, но общий принцип остается для любого графика. Принципы повторим в выводах в конце статьи.
Фиолетовый: Вычитаем из дроби −1 и сдвигаем график вниз на единицу. Ставим модуль − отражаем все, что снизу вверх.
Оранжевый: Ставим +1 в знаменателе и график смещается влево на единицу. Вычитаем из дроби −1 и сдвигаем график вниз на единицу. А после этого ставим модуль − отражаем все, что снизу вверх.
Зеленый: Сначала получим фиолетовый график. После этого ставим «−» и отражаем график по горизонтали. Сгибаем лист по оси Х и переводим его вниз. Остается добавить +1, это значит, что его нужно поднять вверх на единицу.
Модули не так уж страшны, если еще вспомнить, что их можно раскрыть по определению:
И построить график, разбив его на кусочно-заданные функции.
Например для прямой:
Для параболы с одним модулем будет два кусочно-заданных графика:
C двумя модулями кусочно-заданных графиков будет четыре:
Таким способом, медленно и кропотливо можно построить любой график!
- Модуль — это не просто две палочки, а жизнерадостное, всегда положительное значение!
- Модулю без разницы находится он в прямой, параболе или еще где-то. Отражения происходят одни и те же.
- Любой нестандартный модуль можно разбить на кусочно-заданные функции, условия только вводятся на каждый модуль .
- Существует большое количество модулей, но парочку вариантов стоит запомнить, чтобы не строить по точкам:
- Если модуль «надет» на все выражение (например, y = |x² + x − 2|), то нижняя часть отражается наверх.
- Если модуль «надет» только на х (например, y = x² + |x| − 2), то правая часть графика отражается на левую часть. А «старая» левая часть стирается.
- Если модуль «надет» и на х, и на все выражение (например, y = |x² + |x| − 2|), то сначала отражаем график снизу вверх, после этого стираем полностью левую часть и отражаем справа налево.
- Если модуль «надет» на y (например, |y| = x² + x − 2), то мы оставляем верхнюю часть графика, нижнюю стираем. А после отражаем сверху вниз.
💥 Видео
ЭЛЕМЕНТАРНО, ВАТСОН! Квадратичная Функция и ее график ПараболаСкачать
ГРАФИК ФУНКЦИИ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать
Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать
8 класс, 23 урок, Графики функций, содержащих модулиСкачать
Как построить график функции с модулем? | Математика ЕГЭ 2024 #егэ #егэпрофиль #профильнаяматематикаСкачать
График функции с модулемСкачать
График функции с модулем | Математика ЕГЭ 2024 #умскул #егэпрофиль #математика #егэСкачать
ГРАФИК ФУНКЦИЙ — Сдвиги Графика Функции, Как строить Графики Функции // Алгебра 8 классСкачать
График функции с модулем ★ Быстрый способСкачать
ФУНКЦИЯ y = √¯x ( корень из х ) МАТЕМАТИКАСкачать
Построение графика квадратичной функцииСкачать
Как построить график функции игрек равно модуль икс двумя способами. Алгебра 8 класс.Скачать
Уравнения с модулемСкачать
Всё о квадратичной функции. Парабола | Математика TutorOnlineСкачать
Уравнения с модулем. Разбор 22 задания из ОГЭ | Математика 9 класс | TutorOnlineСкачать
Функция модуль Х / Как ее построить ? / y = |x|Скачать
График функции с модулем. #ShortsСкачать
ОГЭ Задание 23 График ломанаяСкачать