Как построить график функции модуля квадратного уравнения

«Графическое решение квадратных уравнений, содержащих модуль». Урок алгебры в 9-м классе

Разделы: Математика

Тема: Графическое решение квадратных уравнений, содержащих модуль.

Цель:

  1. закрепить навыки построения графика квадратичной функции;
  2. научить выполнять преобразования графиков функций;
  3. используя графики функций, решать уравнения.

Ход урока

1. Построим график квадратичной функции y = x² – 8x + 12
Преобразуем функцию, выделив полный квадрат, получим y = (x — 4)² — 4
График этой функции получается из графика функции y = x² путем параллельного переноса на вектор Как построить график функции модуля квадратного уравнения

Как построить график функции модуля квадратного уравнения

2. Выполним преобразования и построим график функции y = x² – 8|x| +12

Так как противоположным значениям аргумента соответствуют одинаковые значения функции ,то график данной функции будет симметричным относительно оси ординат, поэтому построим график функции y = x² – 8|x| = 12 для x ≥ 0 (т.е. y = x² — 8х + 12) и
отобразим его симметрично относительно оси ординат.

Таким образом, получим:

Как построить график функции модуля квадратного уравнения

3. Построим график функции y = | x² – 8|x| + 12 |

График данной функции получим из графика функции y = x² – 8|x| + 12 путем
симметрии относительно оси абсцисс того участка, где у 12;
б) при k = 12;
в) при k = 0;
г) при k = 4;
д) при k Как построить график функции модуля квадратного уравнения(0; 4);
е) при k 15.06.2010

Видео:Задание 23 из ОГЭ Построение графиков функций с модулем | МатематикаСкачать

Задание 23 из ОГЭ Построение графиков функций с модулем | Математика

График квадратичной функции с модулем

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Как построить график функции модуля квадратного уравнения

Описание презентации по отдельным слайдам:

Как построить график функции модуля квадратного уравнения

График квадратичной функции, содержащей переменную под знаком абсолютной величины. Знание только тогда знание, когда оно приобретено усилиями своей мысли, а не памятью. Л. Н. Толстой. Выполнила: Асламурзаева Белла, ученица 9 «А» класса, СОШ №46 им. И .Дзусова Руководитель: Дряева М.Г. Преподаватель математики СОШ №46 им. И .Дзусова

Как построить график функции модуля квадратного уравнения

Содержание: 1.Введение 2.Основные определения и свойства. 3.Построение графика квадратичной функции, содержащей переменную под знаком модуля. 4.Выводы. 5. Используемая литература.

Как построить график функции модуля квадратного уравнения

Цель работы – рассмотреть построение графика квадратичной функции, содержащей переменную под знаком модуля. Объект исследования: график квадратичной функции. Предмет исследования: изменения графика квадратичной функции в зависимости от расположения знака абсолютной величины. Задачи: 1) Изучить литературу о свойствах абсолютной величины и квадратичной функции. 2) Исследовать изменения графика квадратичной функции в зависимости от расположения знака абсолютной величины. Практическая значимость моей работы заключается: 1) в использовании приобретенных знаний по данной теме, а также углубление их и применение к другим функциям и уравнениям; 2) в использовании навыков исследовательской работы в дальнейшей учебной деятельности.

Как построить график функции модуля квадратного уравнения

Основные определения и свойства Функция, определяемая формулой у=ах²+вх+с, где х и у переменные, а параметры а, в и с – любые действительные числа, причём а≠0, называется квадратичной. Абсолютной величиной неотрицательного числа называется само это число, абсолютной величиной отрицательного числа называется противоположное ему положительное число. Свойства: 1.|a| ≥0, 2. |a|²= a², 3.|a∙b|=|a|∙|b|, 4. |a/b|=|a|/|b|, b≠0

Как построить график функции модуля квадратного уравнения

Построение графика линейной функции, содержащей переменную под знаком модуля. 1)f(x)= |x-1|. x = 1- корень подмодульного выражения. Возьмем x=0, (0 1). Вычисляя функции в точках 1,0 и 2,получаем график, состоящий из двух отрезков.

Как построить график функции модуля квадратного уравнения

2) f(x)= |x-1|+|x-2|. Вычисляя значение функции в точках 1, 2, 0 и 3, получаем график, состоящий из трех отрезков прямых.

Как построить график функции модуля квадратного уравнения

Построение графика квадратичной функции, содержащей переменную под знаком модуля На примере функции у = x ²-6х +5 рассмотрим всевозможные случаи расположения модуля. у = |x 2 – 6х +5| у = | х | 2 – 6х +5 у = х² – 6|х| +5 у = |х|² — 6|х|+5 у = |х² – 6х| +5 у = |х² – 6|х| +5| у = x 2 -|6х + 5| |y|= x 2 – 6х +5

Как построить график функции модуля квадратного уравнения

Построим график функции у = |x 2 – 6х +5| Пользуясь определением модуля, рассмотрим два случая: Пользуясь определением модуля, рассмотрим два случая: Пользуясь определением модуля, рассмотрим два случая: Пользуясь определением модуля, рассмотрим два случая: . Выделим все точки параболы с неотрицательной ординатой. . Выделим все точки параболы с неотрицательной ординатой. . Выделим все точки параболы с неотрицательной ординатой. . Выделим все точки параболы с неотрицательной ординатой. . Выделим все точки параболы с неотрицательной ординатой. . Выделим все точки параболы с неотрицательной ординатой. Выделим все точки параболы с неотрицательной ординатой. x ²– 6х +5≥ 0, тогда у= x² – 6х +5.Выделим все точки параболы с неотрицательной ординатой. 2) x² – 6х +5 0, y= -x² + 6х -5.

Как построить график функции модуля квадратного уравнения

Рассмотрим график функции у = |х|²– 6х +5 Т.к. |x|²= x² , то функция у = |х|² – 6х +5 совпадает с функцией у = x ²-6х +5 ,а , значит, имеют один и тот же график.

Как построить график функции модуля квадратного уравнения

Рассмотрим график функции у = х² – 6|х| +5 Пользуясь определением модуля, рассмотрим два случая: 1)Пусть x≥0, тогда y= х² — 6х +5. Построим параболу у = х² — 6х +5 и обведём ту её часть, которая соответствует неотрицательным значениям х, т.е. часть, расположенную правее оси Оу. 2)Пусть x 0 имеем 2. » onclick=»aa_changeSlideByIndex(14, 0, true)» >

Равенство |y|= x 2 – 6х +5 не задает функции т. к. при x 2 – 6х +5 >0 имеем 2 значения y, соответствующих данному значению x, а при x 2 – 6х +5 0, y= x² – 6х +5 2)при x² – 6х +5

Краткое описание документа:

1)Для построения графика функции y = | f ( x )| , надо сохранить ту часть графика функции y = f ( x ), точки которой находятся на оси Ох или выше оси Ох, и симметрично отразить относительно оси Ох ту часть графика функции y = f ( x ), которая расположена ниже оси Ох.

2) Для построения графика y = f (| x |) надо сохранить ту часть графика функции y = f (| x |), точки которой на оси Оу или справа от неё и симметрично отразить эту часть графика относительно оси Оу .

3) Чтобы построить график уравнения | y |= f(x) нужно:

Отбросить ту часть графика , которая лежит ниже оси

Ох, а оставшуюся часть симметрично отобразить

Видео:График квадратичной функции с модулемСкачать

График квадратичной функции с модулем

Графики прямой, параболы, гиперболы, с модулем

Как построить график функции модуля квадратного уравнения

Пошаговое построение графиков.

«Навешивание» модулей на прямые, параболы, гиперболы.

Графики — самая наглядная тема по алгебре. Рисуя графики, можно творить, а если еще и сможешь задать уравнения своего творчества, то и учитель достойно это оценит.

Для понимания друг друга введу немного «обзываний» системы координат:

Как построить график функции модуля квадратного уравнения

Как построить график функции модуля квадратного уравнения

Как построить график функции модуля квадратного уравнения

Для начала построим график прямой y = 2x − 1.

Не сомневаюсь, что ты помнишь. Я напомню себе, что через 2 точки можно провести одну прямую.

Возьмем значение X = 0 и Х = 1 и подставим в выражение y = 2x − 1, тогда соответственно Y = − 1 и Y = 1

Через данные две точки А = (0; −1) и B = (1; 1) проводим единственную прямую:

Как построить график функции модуля квадратного уравнения

А если теперь добавить модуль y = |2x − 1|.

Модуль — это всегда положительное значение , получается, что «y» должен быть всегда положительным.

Значит, если модуль «надет» на весь график, то, что было в нижней части «−y», отразится в верхнюю (как будто сворачиваете лист по оси х и то, что было снизу, отпечатываете сверху).

Как построить график функции модуля квадратного уравненияПолучается такая зеленая «галочка».

Красота! А как же будет выглядеть график, если надеть модуль только на «х»: y = 2|x| − 1?

Одна строчка рассуждений и рисуем:

Модуль на «x», тогда в этом случае x = −x, то есть все, что было в правой части, отражаем в левую. А то, что было в плоскости «−x», убираем.

Как построить график функции модуля квадратного уравнения

Здесь отражаем относительно оси «y» . Такая же галочка, только теперь через другую ось.

Смертельный номер: y = |2|x| − 1|.

Черную прямую y = 2x − 1 отражаем относительно оси Х, получим y = |2x − 1|. Но мы выяснили, что модуль на х влияет только на левую часть.

В правой части: y = |2x − 1| и y = |2|x| − 1| идентичны!

Как построить график функции модуля квадратного уравнения
А после этого отражаем относительно оси «y» то, что мы получили справа налево:

Как построить график функции модуля квадратного уравнения

Если ты человек амбициозный, то прямых тебе будет мало! Но то, что описано выше, работает на всех остальных графиках, значит делаем по аналогии.

Разберем по винтикам параболу y = x² + x − 2. Точки пересечения с осью «x» получим с помощью дискриминанта: x ₁ = 1 и x ₂ = -2.

Можно найти вершину у параболы и взять пару точек для точного построения.

Как построить график функции модуля квадратного уравнения

А как будет выглядеть график: y = |x²| + x − 2? Слышу: «Такого мы еще не проходили», а если подумаем? Модуль на x², он же и так всегда положителен, от модуля тут толку, как от стоп-сигнала зайцу − никакого.

При y = x² + |x| − 2 все так же стираем всю левую часть, и отражаем справа налево:

Как построить график функции модуля квадратного уравнения

А дальше что мелочиться: рассмотри сразу остальные графики с модулем!

Как построить график функции модуля квадратного уравнения

Следующий смертельный номер: |y| = x² + x − 2, подумай хорошенько, а еще лучше попробуй нарисовать сам.

При положительных значениях «y» от модуля нет смысла − уравнения y = x² + x − 2, а при «−y» ничего не меняется, будет так же y = x² + x − 2!

Рисуем параболу в верхней части системы координат (где у > 0), а затем отражаем вниз.

Как построить график функции модуля квадратного уравнения

А теперь сразу комбо:

Cиний: похож на y = x² + |x| − 2, только поднят вверх. Строим график в правой части, а затем отражаем через ось Y влево.

Оранжевый: строим в правой части и отражаем относительно оси Х. Доходим до оси Y и отражаем все что было справа налево. Двойка в знаменателе показывает, что график будет «шире», расходится в бока он быстрее остальных.

Зеленый: Так же начинаем с правой части и отражаем относительно оси оси Y. Получается график y = |x² + x − 2|, но еще есть −2, поэтому опустим график на 2 вниз. Теперь параболы как бы отражается относительно Y = − 2.
Как построить график функции модуля квадратного уравнения

Легкий и средний уровень позади, и настала пора выжать концентрацию на максимум , потому что дальше тебя ждут гиперболы, которые частенько встречаются во второй части ЕГЭ и ОГЭ.

y = 1/x — простая гипербола, которую проще всего построить по точкам, 6-8 точек должно быть достаточно:

Как построить график функции модуля квадратного уравнения

А что будет, если мы добавим в знаменателе «+1»? График сдвинется влево на единицу:

Как построить график функции модуля квадратного уравнения

А что будет, если мы добавим в знаменателе « − 1»? График сдвинется вправо на единицу.

А если добавить отдельно «+1» y = (1/x) + 1? Конечно, график поднимется вверх на единицу!

Как построить график функции модуля квадратного уравненияГлупый вопрос: а если добавить отдельно «−1» y = (1/x) − 1? Вниз на единицу!

Теперь начнем «накручивать» модули: y = |1/x + 1| — отражаем все из нижней части в верхнюю.

Как построить график функции модуля квадратного уравнения

Возьмем другой модуль, мой амбициозный друг, раз ты дошел до этогог места: y = |1/(x + 1)|. Как и выше, когда модуль надет на всю функцию, мы отражаем снизу вверх.

Как построить график функции модуля квадратного уравнения

Можно придумывать массу вариантов, но общий принцип остается для любого графика. Принципы повторим в выводах в конце статьи.

Фиолетовый: Вычитаем из дроби −1 и сдвигаем график вниз на единицу. Ставим модуль − отражаем все, что снизу вверх.

Оранжевый: Ставим +1 в знаменателе и график смещается влево на единицу. Вычитаем из дроби −1 и сдвигаем график вниз на единицу. А после этого ставим модуль − отражаем все, что снизу вверх.

Зеленый: Сначала получим фиолетовый график. После этого ставим «−» и отражаем график по горизонтали. Сгибаем лист по оси Х и переводим его вниз. Остается добавить +1, это значит, что его нужно поднять вверх на единицу.

Как построить график функции модуля квадратного уравнения

Модули не так уж страшны, если еще вспомнить, что их можно раскрыть по определению:

Как построить график функции модуля квадратного уравнения

И построить график, разбив его на кусочно-заданные функции.

Например для прямой:

Как построить график функции модуля квадратного уравнения
Для параболы с одним модулем будет два кусочно-заданных графика:
Как построить график функции модуля квадратного уравнения

C двумя модулями кусочно-заданных графиков будет четыре:

Как построить график функции модуля квадратного уравненияТаким способом, медленно и кропотливо можно построить любой график!

  1. Модуль — это не просто две палочки, а жизнерадостное, всегда положительное значение!
  2. Модулю без разницы находится он в прямой, параболе или еще где-то. Отражения происходят одни и те же.
  3. Любой нестандартный модуль можно разбить на кусочно-заданные функции, условия только вводятся на каждый модуль .
  4. Существует большое количество модулей, но парочку вариантов стоит запомнить, чтобы не строить по точкам:
  • Если модуль «надет» на все выражение (например, y = |x² + x − 2|), то нижняя часть отражается наверх.
  • Если модуль «надет» только на х (например, y = x² + |x| − 2), то правая часть графика отражается на левую часть. А «старая» левая часть стирается.
  • Если модуль «надет» и на х, и на все выражение (например, y = |x² + |x| − 2|), то сначала отражаем график снизу вверх, после этого стираем полностью левую часть и отражаем справа налево.
  • Если модуль «надет» на y (например, |y| = x² + x − 2), то мы оставляем верхнюю часть графика, нижнюю стираем. А после отражаем сверху вниз.

💥 Видео

ЭЛЕМЕНТАРНО, ВАТСОН! Квадратичная Функция и ее график ПараболаСкачать

ЭЛЕМЕНТАРНО, ВАТСОН! Квадратичная Функция и ее график Парабола

ГРАФИК ФУНКЦИИ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать

ГРАФИК ФУНКЦИИ 😉 #егэ #математика #профильныйегэ #shorts #огэ

Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать

Как решать уравнения с модулем или Математический торт с кремом (часть 1) | Математика

8 класс, 23 урок, Графики функций, содержащих модулиСкачать

8 класс, 23 урок, Графики функций, содержащих модули

Как построить график функции с модулем? | Математика ЕГЭ 2024 #егэ #егэпрофиль #профильнаяматематикаСкачать

Как построить график функции с модулем? | Математика ЕГЭ 2024 #егэ #егэпрофиль #профильнаяматематика

График функции с модулемСкачать

График функции с модулем

График функции с модулем | Математика ЕГЭ 2024 #умскул #егэпрофиль #математика #егэСкачать

График функции с модулем | Математика ЕГЭ 2024 #умскул #егэпрофиль #математика #егэ

ГРАФИК ФУНКЦИЙ — Сдвиги Графика Функции, Как строить Графики Функции // Алгебра 8 классСкачать

ГРАФИК ФУНКЦИЙ — Сдвиги Графика Функции, Как строить Графики Функции // Алгебра 8 класс

График функции с модулем ★ Быстрый способСкачать

График функции с модулем ★ Быстрый способ

ФУНКЦИЯ y = √¯x ( корень из х ) МАТЕМАТИКАСкачать

ФУНКЦИЯ y = √¯x ( корень из х ) МАТЕМАТИКА

Построение графика квадратичной функцииСкачать

Построение графика квадратичной функции

Как построить график функции игрек равно модуль икс двумя способами. Алгебра 8 класс.Скачать

Как построить график функции игрек равно модуль икс двумя способами. Алгебра 8 класс.

Уравнения с модулемСкачать

Уравнения с модулем

Всё о квадратичной функции. Парабола | Математика TutorOnlineСкачать

Всё о квадратичной функции. Парабола | Математика TutorOnline

Уравнения с модулем. Разбор 22 задания из ОГЭ | Математика 9 класс | TutorOnlineСкачать

Уравнения с модулем. Разбор 22 задания из ОГЭ | Математика 9 класс | TutorOnline

Функция модуль Х / Как ее построить ? / y = |x|Скачать

Функция модуль Х / Как ее построить ? / y = |x|

График функции с модулем. #ShortsСкачать

График функции с модулем. #Shorts

ОГЭ Задание 23 График ломанаяСкачать

ОГЭ Задание 23 График   ломаная
Поделиться или сохранить к себе: