Как построить гиперболу по уравнению со смещением

Гипербола

Что такое гипербола? Как построить гиперболу? (Для школьников (7-11 классов)).

Функция заданная формулой (y=frac), где к неравно 0. Число k называется коэффициентом обратной пропорциональности.
Определение гиперболы.
График функции (y=frac) называют гиперболой. Где х является независимой переменной, а у — зависимой.

Что нужно знать, чтобы построить гиперболу?
Теперь обсудим свойства гиперболы:

Как построить гиперболу по уравнению со смещением гипербола, где k y≠0 это вторая асимптота.
И так, асимптоты x≠0 и y≠0 в данном примере совпадают с осями координат OX и OY.
k=1, значит гипербола будет находится в первой и третьей четверти. k всегда находится в числители.
Построим примерный график гиперболы.
Как построить гиперболу по уравнению со смещением

Пример №2:
$$y=frac-1$$
Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому х+2 неравен 0.
х+2≠0
х≠-2 это первая асимптота

Находим вторую асимптоту.

Дробь (color <frac>) отбрасываем
Остается y≠ -1 это вторая асимптота.

Строим примерный график, отмечаем асимптоты (красным проведены прямые х≠-2 и y≠-1):
Как построить гиперболу по уравнению со смещением

Как построить гиперболу по уравнению со смещением

Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому 1+х неравен 0.
1+х≠0
х≠-1 это первая асимптота.

Находим вторую асимптоту.

Остается y≠1 это вторая асимптота.

Строим примерный график, отмечаем асимптоты (красным проведены прямые х≠-1 и y≠1):
Как построить гиперболу по уравнению со смещением

Как построить гиперболу по уравнению со смещением

3. У гиперболы есть центр симметрии относительно начала координат. Рассмотрим на примере:

Возьмем точку А(1;1) с координатами, которая находится на графике у=1/х. На этом же графике лежит точка B(-1;-1). Видно, что точка А симметрична точке В относительна начала координат.
Как построить гиперболу по уравнению со смещением

4. Оси симметрии гиперболы. У гиперболы две оси симметрии. Рассмотрим пример:

Первой осью симметрии является прямая y=x. Посмотрим точки (0,5;2) и (2;0,5) и еще точки (-0,5;-2) и (-2;-0,5). Эти точки расположены по разные стороны данной прямой, но на равных расстояниях от нее, они симметричны относительно этой прямой.

Вторая ось симметрии это прямая y=-x.

Как построить гиперболу по уравнению со смещением

5. Гипербола нечетная функция.

6. Область определения гиперболы и область значения гиперболы. Область определения смотрим по оси х. Область значения смотрим по оси у. Рассмотрим на примере:

а) Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому x-1 неравен 0.
x-1≠0
х≠1 это первая асимптота.

Находим вторую асимптоту.

Остается y≠ -1 это вторая асимптота.

б) k=-1, значит ветви гиперболы будут находится во второй и четвертой четверти.

в) Возьмем несколько дополнительных точек и отметим их на графике.
х=0 y=0
x=-1 y=-0,5
x=2 y=-2
x=3 y=-1,5

г) Область определения смотрим по оси х. Графика гиперболы не существует по асимптоте х≠1, поэтому область определения будет находится
х ∈ (-∞;1)U(1;+∞).

д) Область значения смотрим по оси y. График гиперболы не существует по асимптоте y≠ -1, поэтому область значения будет находится
y ∈ (-∞;-1)U(-1;+∞).

е) функция возрастает на промежутке x ∈ (-∞;1)U(1;+∞).
Как построить гиперболу по уравнению со смещением

Как построить гиперболу по уравнению со смещением

7. Убывание и возрастание функции гиперболы. Если k>0, функция убывающая. Если k Category: 8 класс, База знаний, Уроки Tag: Гипербола Leave a comment

Видео:Гипербола. Функция k/x и её графикСкачать

Гипербола. Функция k/x и её график

Гипербола: определение, функция, формула, примеры построения

В данной публикации мы рассмотрим, что такое гипербола, приведем формулу, с помощью которой задается ее функция, а также на практических примерах разберем алгоритм построения данного вида графика.

Видео:Гипербола со смещениемСкачать

Гипербола со смещением

Определение и функция гиперболы

Гипербола – это график функции обратной пропорциональности, которая в общем виде задается следующей формулой:

Как построить гиперболу по уравнению со смещением

  • x – независимая переменная;
  • k ≠ 0;
  • при k > 0 гипербола расположена в I и III четвертях координатной плоскости;
  • при k 0)
  • y = -x (при k Алгоритм построения гиперболы

Пример 1

Дана функция y = 4 /x. Построим ее график.

Решение

Так как k > 0, следовательно, гипербола будет находиться в I и III координатных четвертях.

Чтобы построить график, сначала нужно составить таблицу соответствия значений x и y. То есть мы берем конкретное значение x, подставляем его в формулу функции и получаем y.

<table data-id="195" data-view-id="195_92196" data-title="Пример значений гиперболы" data-currency-format="$1,000.00" data-percent-format="10.00%" data-date-format="DD.MM.YYYY" data-time-format="HH:mm" data-features="["after_table_loaded_script"]" data-search-value="" data-lightbox-img="" data-head-rows-count="1" data-pagination-length="50,100,All" data-auto-index="off" data-searching-settings="» data-lang=»default» data-override=»» data-merged=»[]» data-responsive-mode=»2″ data-from-history=»0″>

<td data-cell-id="A1" data-x="0" data-y="1" data-db-index="1" data-cell-type="text" data-original-value="x» data-order=»x» style=»min-width:26.9912%; width:26.9912%;»> x

<td data-cell-id="B1" data-x="1" data-y="1" data-db-index="1" data-cell-type="text" data-original-value="y» data-order=»y» style=»min-width:24.3363%; width:24.3363%;»> y

<td data-cell-id="C1" data-x="2" data-y="1" data-db-index="1" data-cell-type="text" data-original-value="Расчет y» data-order=»Расчет y» style=»min-width:48.6726%; width:48.6726%;»> Расчет y0,58

<td data-cell-id="C2" data-x="2" data-y="2" data-db-index="2" data-cell-type="text" data-original-value=" / 0,5 = 8″ data-order=» 4 / 0,5 = 8″> 4 / 0,5 = 814

<td data-cell-id="C3" data-x="2" data-y="3" data-db-index="3" data-cell-type="text" data-original-value=" / 1 = 4″ data-order=» 4 / 1 = 4″> 4 / 1 = 422

<td data-cell-id="C4" data-x="2" data-y="4" data-db-index="4" data-cell-type="text" data-original-value=" / 2 = 2″ data-order=» 4 / 2 = 2″> 4 / 2 = 241

<td data-cell-id="C5" data-x="2" data-y="5" data-db-index="5" data-cell-type="text" data-original-value=" / 4 = 1″ data-order=» 4 / 4 = 1″> 4 / 4 = 180,5

<td data-cell-id="C6" data-x="2" data-y="6" data-db-index="6" data-cell-type="text" data-original-value=" / 8 = 0,5″ data-order=» 4 / 8 = 0,5″> 4 / 8 = 0,5

Теперь отмечаем найденные точки на координатной плоскости и соединяем их плавной линией, которая будет стремиться к осям координат. В итоге получится ветвь гиперболы, расположенная в первой четверти.

Как построить гиперболу по уравнению со смещением

Чтобы построить ветвь в третьей четверти, вместо x в формулу подставляем -x. Так мы вычислим значения y.

<table data-id="196" data-view-id="196_23937" data-title="Пример значений гиперболы_2" data-currency-format="$1,000.00" data-percent-format="10.00%" data-date-format="DD.MM.YYYY" data-time-format="HH:mm" data-features="["after_table_loaded_script"]" data-search-value="" data-lightbox-img="" data-head-rows-count="1" data-pagination-length="50,100,All" data-auto-index="off" data-searching-settings="» data-lang=»default» data-override=»» data-merged=»[]» data-responsive-mode=»2″ data-from-history=»0″>

<td data-cell-id="A1" data-x="0" data-y="1" data-db-index="1" data-cell-type="text" data-original-value="x» data-order=»x» style=»min-width:26.9912%; width:26.9912%;»> x

<td data-cell-id="B1" data-x="1" data-y="1" data-db-index="1" data-cell-type="text" data-original-value="y» data-order=»y» style=»min-width:24.3363%; width:24.3363%;»> y

<td data-cell-id="C1" data-x="2" data-y="1" data-db-index="1" data-cell-type="text" data-original-value="Расчет y» data-order=»Расчет y» style=»min-width:48.6726%; width:48.6726%;»> Расчет y-0,5-8

<td data-cell-id="C2" data-x="2" data-y="2" data-db-index="2" data-cell-type="text" data-original-value=" / -0,5 = -8″ data-order=» 4 / -0,5 = -8″> 4 / -0,5 = -8-1-4

<td data-cell-id="C3" data-x="2" data-y="3" data-db-index="3" data-cell-type="text" data-original-value=" / -1 = -4″ data-order=» 4 / -1 = -4″> 4 / -1 = -4-2-2

<td data-cell-id="C4" data-x="2" data-y="4" data-db-index="4" data-cell-type="text" data-original-value=" / -2 = -4″ data-order=» 4 / -2 = -4″> 4 / -2 = -4-4-1

<td data-cell-id="C5" data-x="2" data-y="5" data-db-index="5" data-cell-type="text" data-original-value=" / -4 = -1″ data-order=» 4 / -4 = -1″> 4 / -4 = -1-8-0,5

<td data-cell-id="C6" data-x="2" data-y="6" data-db-index="6" data-cell-type="text" data-original-value=" / -8 = -0,5″ data-order=» 4 / -8 = -0,5″> 4 / -8 = -0,5

Соединив полученные точки получаем следующий результат. На этом построение гиперболы завершено.

Как построить гиперболу по уравнению со смещением

Пример 2

Рассмотренный выше пример был одним из самых простых (без смещения асимптот). Давайте усложним задачу и построим гиперболу, заданную функцией ниже:

Видео:задание 22 ОГЭ математика.График - гипербола с выколотой точкой.Скачать

задание 22 ОГЭ математика.График - гипербола с выколотой точкой.

Основные сведения о гиперболе в математике

Видео:Графики функций. Гиперболы.Скачать

Графики функций. Гиперболы.

Понятие гиперболы

Гипербола — это множество точек на плоскости, для которых модуль разности расстояний от двух точек (фокусов) — величина постоянная и меньшая, чем расстояние между фокусами.

Каноническое уравнение гиперболы:

где a, b — положительные действительные числа.

Более простое определение:

Гипербола — это график функции обратной пропорциональности, которая задается следующей формулой:

  • x — независимая переменная;
  • y — функция;
  • k — коэффициент пропорциональности. При этом k≠0. При k>0 график расположен в 1 и 3 четвертях координатной плоскости (функция убывает), при k

Видео:Графики функций №3 ГиперболаСкачать

Графики функций №3 Гипербола

Форма гиперболы

График гиперболы выглядит следующим образом:

  1. Зеленые кривые называются ветвями гиперболы. Расположение ветвей гиперболы зависит от знака k.
  2. Оси абсцисс (OX) и ординат (OY) являются асимптотами графика. Асимптота — прямая, к которой стремится график, но не пересекает ее.
  3. Ось симметрии (синяя прямая) выражается уравнением: y=x (при k>0) или y=-x (при k y = k / x

Но также для построения необходимо знать, как расположены асимптоты.

В стандартном случае это оси абсцисс и ординат. Но асимптоты могут быть и смещены. Тогда функция будет задаваться уравнением вида:

y = k / ( x — a ) + b , где:

  • x=a — вертикальная асимптота графика (при a≠0) вместо оси ординат. Если перед a стоит «минус», то смещение вправо. Если перед a стоит «плюс», то смещение влево;
  • y=b — горизонтальная асимптота графика (при b≠0) вместо оси абсцисс. Если перед b стоит «минус», то смещение вниз. Если перед b стоит «плюс», то смещение вверх.

Видео:§23 Построение гиперболыСкачать

§23 Построение гиперболы

Построение гиперболы

Алгоритм построения гиперболы по точкам:

  1. Строим систему координат.
  2. Решить, в каких четвертях будет располагаться график (в зависимости от знака коэффициента k).
  3. Определяемся со смещением асимптот.
  4. Составляем таблицу значений. Берем (как минимум) три положительных и три отрицательных значения x, подставляем в уравнение, вычисляем y.
  5. Наносим точки на координатную плоскость.
  6. Соединяем точки, получаем график.

Видео:ЭЛЕМЕНТАРНО, ВАТСОН! Квадратичная Функция и ее график ПараболаСкачать

ЭЛЕМЕНТАРНО, ВАТСОН! Квадратичная Функция и ее график Парабола

Примеры решения задач

Построить гиперболу по заданному уравнению:

y = — 2 / ( x — 3 ) + 4

График будет располагаться во 2 и 4 координатных четвертях, так как k

🔍 Видео

ГРАФИК ФУНКЦИЙ — Сдвиги Графика Функции, Как строить Графики Функции // Алгебра 8 классСкачать

ГРАФИК ФУНКЦИЙ — Сдвиги Графика Функции, Как строить Графики Функции // Алгебра 8 класс

Построение гиперболыСкачать

Построение гиперболы

§76 Преобразование графика функции y=k/xСкачать

§76 Преобразование графика функции y=k/x

Всё о квадратичной функции. Парабола | Математика TutorOnlineСкачать

Всё о квадратичной функции. Парабола | Математика TutorOnline

Видеоурок "Гипербола"Скачать

Видеоурок "Гипербола"

Новая задача №9 на гиперболу из ЕГЭ 2022 по математикеСкачать

Новая задача №9 на гиперболу из ЕГЭ 2022 по математике

Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

Математика без Ху!ни. Кривые второго порядка. Эллипс.

Математика без Ху!ни. Нахождение асимптот, построение графика функции.Скачать

Математика без Ху!ни. Нахождение асимптот, построение графика функции.

График – гипербола. Находим коэффициенты в формулеСкачать

График – гипербола. Находим коэффициенты в формуле

Дробно-линейная функция. 10 класс.Скачать

Дробно-линейная функция. 10 класс.

функция y=k/x и ее график (гипербола) - 8 класс алгебраСкачать

функция y=k/x и ее график (гипербола) - 8 класс алгебра

9 Задание Гипербола со смещениемСкачать

9 Задание Гипербола со смещением

Задание 23 из ОГЭ Построение графиков функций с модулем | МатематикаСкачать

Задание 23 из ОГЭ Построение графиков функций с модулем | Математика
Поделиться или сохранить к себе: