Как построить эллипсоид по ее уравнению

Видео:§65 ЭллипсоидСкачать

§65 Эллипсоид

Как построить эллипсоид по ее уравнению

8.4. Построение поверхностей

Мы приступаем к изучению формы поверхностей второго порядка, определённых в предыдущем разделе своими каноническими уравнениями. Напомним, что это вторая из двух основных задач аналитической геометрии: зная уравнение поверхности, изучить её геометрические свойства.

Метод, который мы будем применять, называется методом сечений: пересекая поверхность плоскостями, параллельными координатным плоскостям, будем рассматривать линии пересечения и по их виду делать выводы о форме поверхности.

Каноническое уравнение эллипсоида:

Отметим симметрию поверхности: если точка (x, у, z) лежит на эллипсоиде, то и все точки (±x, ±у, ±z) тоже лежат на эллипсоиде. Значит, поверхность симметрична относительно любой из координатных плоскостей. Пересечём эллипсоид плоскостью z = h. Получим линию

Это эллипс, полуоси которого убывают с увеличением |h|. При h = c эллипс превращается в точку, при h > c плоскость z = h не пересекает эллипсоид. Эллипсы получаются и при сечении эллипсоида плоскостями x = h, у = h. Используя эти данные, изображаем поверхность. Числа a, b, c называются полуосями эллипсоида. Если две полуоси равны, то получается эллипсоид вращения. Например, эллипсоид, образованный при вращении эллипса (лежит в плоскости XOZ) вокруг оси OZ. Если a = b = c, то эллипсоид превращается в сферу.

Видео:Аналитическая геометрия, 8 урок, Поверхности второго порядкаСкачать

Аналитическая геометрия, 8 урок, Поверхности второго порядка

Кривые второго порядка — определение и построение с примерами решения

Содержание:

Геометрической фигурой или просто фигурой на плоскости называется множество точек. Задать фигуру — значит указать, из каких точек плоскости она состоит. Одним из важных способов задания фигуры на плоскости является ее задание при помощи уравнений с двумя неизвестными. Произвольное уравнение с двумя неизвестными х и у записывается в виде Как построить эллипсоид по ее уравнению

  1. Если точка М(а,Ь) принадлежит фигуре Ф, то координаты (а,Ь) являются решениями уравнения Как построить эллипсоид по ее уравнению
  2. если пара чисел (c,d) является решением уравнения F(x,y) = 0, то точка N(c,d) принадлежит фигуре Ф.

Это определение в более компактной записи выглядит следующим образом. Уравнение Как построить эллипсоид по ее уравнениюназывается уравнением фигуры, если Как построить эллипсоид по ее уравнению, то есть (а, b) — решение уравнения F(x,y) = 0.

Из определения уравнения фигуры следует, что фигура Ф состоит только из тех точек плоскости, координаты которых являются решениями уравнения Как построить эллипсоид по ее уравнению, т.е. уравнение фигуры задает эту фигуру.

Возможны два вида задач:

  1. дано уравнение Как построить эллипсоид по ее уравнениюи надо построить фигуру Ф, уравнением которой является Как построить эллипсоид по ее уравнению;
  2. дана фигура Ф и надо найти уравнение этой фигуры.

Первая задача сводится к построению графика уравнения Как построить эллипсоид по ее уравнениюи решается, чаще всего, методами математического анализа.

Для решения второй задачи, как следует из определения уравнения фигуры, достаточно:

  1. Задать фигуру геометрически, т.е. сформулировать условие, которому удовлетворяют только точки фигуры (довольно часто определение фигуры содержит такое условие);
  2. Записать в координатах условие, сформулированное в первом пункте.

Видео:Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

Математика без Ху!ни. Кривые второго порядка. Эллипс.

Эллипс

Эллипсом называется линия, состоящая из всех точек плоскости, для каждой из которых сумма расстояний до двух данных точек Как построить эллипсоид по ее уравнению, есть величина постоянная (большая, чем расстояние между Как построить эллипсоид по ее уравнению).

Точки Как построить эллипсоид по ее уравнениюназываются фокусами эллипса. Обозначив расстояние между фокусами через 2с, а сумму расстояний от точек эллипса до фокусов через 2а, имеем с b. В этом случае а называется большой полуосью, a b — малой.

Если а =Ь, то уравнение (7.3) можно переписать в виде:

Как построить эллипсоид по ее уравнению(7.5)

Это уравнение окружности с центром в начале координат. Эллипс (3) можно получить из окружности (4) сжатием плоскости к оси Ох. Пусть на плоскости выбрана прямоугольная система координат Оху. Тогда преобразование, переводящее произвольную точку М(х,у) в точку Как построить эллипсоид по ее уравнениюкоординаты которой задаются формулами Как построить эллипсоид по ее уравнениюбудет окружность (4) переводить в эллипс, заданный соотношением Как построить эллипсоид по ее уравнению

Число Как построить эллипсоид по ее уравнениюназывается эксцентриситетом эллипса. Эксцентриситет Как построить эллипсоид по ее уравнениюхарактеризует форму эллипса: чем ближе к нулю, тем больше эллипс похож на окружность; при увеличении Как построить эллипсоид по ее уравнениюстановится более вытянутым

Как построить эллипсоид по ее уравнению

Фокальными радиусами точки М эллипса называются отрезки прямых, соединяющие эту точку с фокусами Как построить эллипсоид по ее уравнению. Их длины Как построить эллипсоид по ее уравнениюи Как построить эллипсоид по ее уравнениюзадаются формулами Как построить эллипсоид по ее уравнениюПрямые Как построить эллипсоид по ее уравнениюназываются директрисами эллипса. Директриса Как построить эллипсоид по ее уравнениюназывается левой, а Как построить эллипсоид по ее уравнению— правой. Так как для эллипса Как построить эллипсоид по ее уравнениюи, следовательно, левая директриса располагается левее левой вершины эллипса, а правая — правее правой вершины.

Директрисы обладают следующим свойством: отношение расстояния г любой точки эллипса от фокуса к ее расстоянию d до соответствующей директрисы есть величина постоянная, равная эксцентриситету, т.е. Как построить эллипсоид по ее уравнению

Видео:ЭллипсСкачать

Эллипс

Гипербола

Гиперболой называется линия, состоящая из всех точек плоскости, модуль разности расстояний от которых до двух данных точек Как построить эллипсоид по ее уравнениюесть величина постоянная (не равная нулю и меньшая, чем расстояние между Как построить эллипсоид по ее уравнению).

Точки Как построить эллипсоид по ее уравнениюназываются фокусами гиперболы. Пусть по-прежнему расстояние между фокусами равно 2с. Модуль расстояний от точек гиперболы до фокусов Как построить эллипсоид по ее уравнениюобозначим через а. По условию, а 0) (рис. 9.7). Ось абсцисс проведём через фокус F перпендикулярно директрисе. Начало координат расположим посередине между фокусом и директрисой. Пусть А — произвольная точка плоскости с координатами (х, у) и пусть Как построить эллипсоид по ее уравнению. Тогда точка А будет лежать на параболе, если r=d, где d- расстояние от точки А до директрисы. Фокус F имеет координаты Как построить эллипсоид по ее уравнению.

Как построить эллипсоид по ее уравнению

Тогда Как построить эллипсоид по ее уравнениюА расстояние Как построить эллипсоид по ее уравнениюПодставив в формулу r=d, будем иметьКак построить эллипсоид по ее уравнению. Возведя обе части равенства в квадрат, получимКак построить эллипсоид по ее уравнению

Как построить эллипсоид по ее уравнениюили

Как построить эллипсоид по ее уравнению(9.4.1)

Уравнение (9.4.1)- каноническое уравнение параболы. Уравнения Как построить эллипсоид по ее уравнениютакже определяют параболы.

Легко показать, что уравнение Как построить эллипсоид по ее уравнению, определяет параболу, ось симметрии которой перпендикулярна оси абсцисс; эта парабола будет восходящей, если а > 0 и нисходящей, если а Как построить эллипсоид по ее уравнениюО. Для этого выделим полный квадрат:

Как построить эллипсоид по ее уравнению

и сделаем параллельный перенос по формуламКак построить эллипсоид по ее уравнениюКак построить эллипсоид по ее уравнению

В новых координатах преобразуемое уравнение примет вид: Как построить эллипсоид по ее уравнениюгде р — положительное число, определяется равенством Как построить эллипсоид по ее уравнению.

Пример:

Пусть заданы точка F и прямая у =-1 (рис. 9.8). Множество точек Р(х, y) для которых расстояние |PF| равно расстояниюКак построить эллипсоид по ее уравнению, называется параболой. Прямая у = -1 называется директрисой параболы, а точка F — фокусом параболы. Чтобы выяснить, как располагаются точки Р, удовлетворяющие условиюКак построить эллипсоид по ее уравнению, запишем это равенство с помощью координат: Как построить эллипсоид по ее уравнению Как построить эллипсоид по ее уравнению, или после упрощения Как построить эллипсоид по ее уравнению. Это уравнение геометрического места точек, образующих параболу (рис. 9.8).

Как построить эллипсоид по ее уравнению

Видео:Кривые второго порядка. Эллипс. Приведение к каноническому виду и чертежСкачать

Кривые второго порядка. Эллипс. Приведение к каноническому виду и чертеж

Кривые второго порядка на плоскости

Кривой второго порядка называется фигура на плоскости, задаваемая в прямоугольной системе координат уравнением второй степени относительно переменных х и у:

Как построить эллипсоид по ее уравнению

где коэффициенты А, В и С не равны одновременно нулю Как построить эллипсоид по ее уравнению

Любая кривая второго порядка на плоскости принадлежит к одному из типов: эллипс, гипербола, парабола, две пересекающиеся прямые, 2 параллельные прямые, прямая, точка, пустое множество.

Кривая второго порядка принадлежит эллиптическому типу, если коэффициент В равен нулю: В=0, а коэффициенты А и С имеют одинаковые знаки: АС>0.

Кривая второго порядка принадлежит гиперболическому типу, если коэффициент В равен нулю: В=0, а коэффициенты А и С имеют противоположные знаки: АС 2с. Точка М(х,у) принадлежит эллипсу тогда и только тогда, когда ее координаты удовлетворяют уравнению

Как построить эллипсоид по ее уравнениюкоторое называют каноническим уравнением эллипса.

Число а называют большей полуосью эллипса, число Как построить эллипсоид по ее уравнению— мень-

шей полуосью эллипса, 2а и 2b — соответственно большей и меньшей осями эллипса. Точки Как построить эллипсоид по ее уравнениюназывают вершинами эллипса, а Как построить эллипсоид по ее уравнению— его фокусами (рис. 12).

Как построить эллипсоид по ее уравнению

Координатные оси являются осями симметрии эллипса, а начало координат — его центром симметрии. Центр симметрии эллипса называется центром эллипса.

Замечание. Каноническое уравнение эллипса можно рассматривать и в случае b>а. Оно определяет эллипс с большей полуосью b, фокусы которого лежат на оси Оу.

В случае а=b каноническое уравнение эллипса принимает вид Как построить эллипсоид по ее уравнениюи определяет окружность радиуса а с центром в начале координат.

Эксцентриситетом эллипса называется отношение фокусного расстояния к длине большей оси.

Так, в случае а>b эксцентриситет эллипса выражается формулой:

Как построить эллипсоид по ее уравнению

Эксцентриситет изменяется от нуля до единицы Как построить эллипсоид по ее уравнениюи характеризует форму эллипса. Для окружности Как построить эллипсоид по ее уравнениюЧем больше эксцентриситет, тем более вытянут эллипс.

Пример:

Показать, что уравнение

Как построить эллипсоид по ее уравнению

является уравнением эллипса. Найти его центр, полуоси, вершины, фокусы и эксцентриситет. Построить кривую.

Решение:

Дополняя члены, содержащие х и у соответственно, до полных квадратов, приведем данное уравнение к каноническому виду:

Как построить эллипсоид по ее уравнению

Как построить эллипсоид по ее уравнению— каноническое уравнение эллипса с центром в точке Как построить эллипсоид по ее уравнениюбольшей полуосью а=3 и меньшей полуосью Как построить эллипсоид по ее уравнению

Найдем эксцентриситет эллипса:

Как построить эллипсоид по ее уравнению

Для вычисления вершин и фокусов удобно пользовать новой прямоугольной системой координат, начало которой находится в точке Как построить эллипсоид по ее уравнениюа оси Как построить эллипсоид по ее уравнениюпараллельны соответственно осям Ох, Оу и имеют те же направления (осуществили преобразование параллельного переноса). Тогда новые координаты точки будут равны ее старым координатам минус старые координаты нового начала, т.е. Как построить эллипсоид по ее уравнению

В новой системе координат координаты Как построить эллипсоид по ее уравнениювершин и фокусов гиперболы будут следующими:

Как построить эллипсоид по ее уравнению

Переходя к старым координатам, получим:

Как построить эллипсоид по ее уравнению

Построим график эллипса.

Как построить эллипсоид по ее уравнениюЗадача решена.

Гиперболой называется множество всех точек плоскости, для которых модуль разности расстояний до двух данных точек, называемых фокусами, есть величина постоянная, меньшая расстояния между фокусами.

Так же, как и для эллипса, геометрическое свойство точек гиперболы выразим аналитически. Расстояние между фокусами назовем фокусным расстоянием и обозначим через 2с. Постоянную величину обозначим через 2а: 2а

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:Поверхности второго порядкаСкачать

Поверхности второго порядка

Как построить эллипс по уравнению

Эллипс – геометрическое место точек M(x;y), сумма расстояний которых до двух данных точек F1F2 имеет одно и то же значение 2a:

точки F1 и F2 – называются фокусами эллипса;

расстояние F1F2 – фокусное расстояние и равно F1F2=2с;

a — большая полуось;

b — малая полуось;

c — фокальный радиус, то есть полу расстояние между фокусами;

p — фокальный параметр;

Rmin – минимальное расстояние от фокуса до точки на эллипсе;

Rmax — максимальное расстояние от фокуса до точки на эллипсе;

Как построить эллипсоид по ее уравнению

где
Как построить эллипсоид по ее уравнению

Как построить эллипсоид по ее уравнению

Длина малой оси эллипса 134 м. Длина большой оси равна 140 м. Найти коэффициент сжатия k и сжатие α этого эллипса

Как построить эллипсоид по ее уравнению

Постройте кривую 4x 2 +9y 2 =36. Найдите фокусы, фокальный параметр и эксцентриситет.

Делим обе части на 36 и получаем каноническое уравнение эллипса

Как построить эллипсоид по ее уравнению

a=3, b=2

Как построить эллипсоид по ее уравнению

c 2 =a 2 -b 2 =3 2 -2 2 =9-4=5

Как построить эллипсоид по ее уравнению

Отсюда находим Фокусы F1(-2,2;0) F2(2,2;0)

Фокальный параметр находим следующим образом
Как построить эллипсоид по ее уравнению
Эксцентриситет эллипса
Как построить эллипсоид по ее уравнению

Пример 3
Постройте кривую Как построить эллипсоид по ее уравнению. Найдите фокусы и эксцентриситет.

Решение
Уравнение запишем в виде
Как построить эллипсоид по ее уравнению
a=1, b=5
Это уравнение не является каноническим уравнением эллипса, так как b>a, а должно быть b c 2 =a 2 − b 2 =5 2 −1 2 =25 − 1=24

Следовательно, фокусы в системе координат (x’;y’) имеют координаты (-4,9;0) и (4,9;0), а в системе (x;y) координаты Как построить эллипсоид по ее уравнению

Эксцентриситет эллипса равен
Как построить эллипсоид по ее уравнению

Видео:567. Сечения эллипсоида.Скачать

567. Сечения эллипсоида.

Понятие о кривых второго порядка

Кривыми второго порядка на плоскости называются линии, определяемые уравнениями, в которых переменные координаты x и y содержатся во второй степени. К ним относятся эллипс, гипербола и парабола.

Общий вид уравнения кривой второго порядка следующий:

Как построить эллипсоид по ее уравнению,

где A, B, C, D, E, F — числа и хотя бы один из коэффициентов A, B, C не равен нулю.

При решении задач с кривыми второго порядка чаще всего рассматриваются канонические уравнения эллипса, гиперболы и параболы. К ним легко перейти от общих уравнений, этому будет посвящён пример 1 задач с эллипсами.

Видео:Эллипс, парабола и гипербола. Конические сечения | Ботай со мной #055 | Борис Трушин |Скачать

Эллипс, парабола и гипербола. Конические сечения | Ботай со мной #055 | Борис Трушин |

Эллипс, заданный каноническим уравнением

Определение эллипса. Эллипсом называется множество всех точек плоскости, таких, для которых сумма расстояний до точек, называемых фокусами, есть величина постоянная и бОльшая, чем расстояние между фокусами.

Фокусы обозначены как Как построить эллипсоид по ее уравнениюи Как построить эллипсоид по ее уравнениюна рисунке ниже.

Каноническое уравнение эллипса имеет вид:

Как построить эллипсоид по ее уравнению,

где a и b (a > b) — длины полуосей, т. е. половины длин отрезков, отсекаемых эллипсом на осях координат.

Как построить эллипсоид по ее уравнению

Прямая, проходящая через фокусы эллипса, является его осью симметрии. Другой осью симметрии эллипса является прямая, проходящая через середину отрезка Как построить эллипсоид по ее уравнениюКак построить эллипсоид по ее уравнениюперпендикулярно этому отрезку. Точка О пересечения этих прямых служит центром симметрии эллипса или просто центром эллипса.

Ось абсцисс эллипс пересекает в точках (a, О) и (- a, О), а ось ординат — в точках (b, О) и (- b, О). Эти четыре точки называются вершинами эллипса. Отрезок между вершинами эллипса на оси абсцисс называется его большой осью, а на оси ординат — малой осью. Их отрезки от вершины до центра эллипса называются полуосями.

Если a = b , то уравнение эллипса принимает вид Как построить эллипсоид по ее уравнению. Это уравнение окружности радиуса a , а окружность — частный случай эллипса. Эллипс можно получить из окружности радиуса a , если сжать её в a/b раз вдоль оси Oy .

Пример 1. Проверить, является ли линия, заданная общим уравнением Как построить эллипсоид по ее уравнению, эллипсом.

Решение. Производим преобразования общего уравнения. Применяем перенос свободного члена в правую часть, почленное деление уравнения на одно и то же число и сокращение дробей:

Как построить эллипсоид по ее уравнению

Ответ. Полученное в результате преобразований уравнение является каноническим уравнением эллипса. Следовательно, данная линия — эллипс.

Пример 2. Составить каноническое уравнение эллипса, если его полуоси соответственно равны 5 и 4.

Решение. Смотрим на формулу канонического уравения эллипса и подставляем: бОльшая полуось — это a = 5 , меньшая полуось — это b = 4 . Получаем каноническое уравнение эллипса:

Как построить эллипсоид по ее уравнению.

Точки Как построить эллипсоид по ее уравнениюи Как построить эллипсоид по ее уравнению, обозначенные зелёным на большей оси, где

Как построить эллипсоид по ее уравнению,

называются фокусами.

Как построить эллипсоид по ее уравнению

называется эксцентриситетом эллипса.

Отношение b/a характеризует «сплюснутость» эллипса. Чем меньше это отношение, тем сильнее эллипс вытянут вдоль большой оси. Однако степень вытянутости эллипса чаще принято выражать через эксцентриситет, формула которого приведена выше. Для разных эллипсов эксцентриситет меняется в пределах от 0 до 1, оставаясь всегда меньше единицы.

Пример 3. Составить каноническое уравнение эллипса, если расстояние между фокусами равно 8 и бОльшая ось равна 10.

Решение. Делаем несложные умозаключения:

— если бОльшая ось равна 10, то её половина, т. е. полуось a = 5 ,

— если расстояние между фокусами равно 8, то число c из координат фокусов равно 4.

Подставляем и вычисляем:

Как построить эллипсоид по ее уравнению

Результат — каноническое уравнение эллипса:

Как построить эллипсоид по ее уравнению.

Пример 4. Составить каноническое уравнение эллипса, если его бОльшая ось равна 26 и эксцентриситет Как построить эллипсоид по ее уравнению.

Решение. Как следует и из размера большей оси, и из уравнения эксцентриситета, бОльшая полуось эллипса a = 13 . Из уравнения эсцентриситета выражаем число c, нужное для вычисления длины меньшей полуоси:

Как построить эллипсоид по ее уравнению.

Вычисляем квадрат длины меньшей полуоси:

Как построить эллипсоид по ее уравнению

Составляем каноническое уравнение эллипса:

Как построить эллипсоид по ее уравнению

Пример 5. Определить фокусы эллипса, заданного каноническим уравнением Как построить эллипсоид по ее уравнению.

Решение. Следует найти число c, определяющее первые координаты фокусов эллипса:

Как построить эллипсоид по ее уравнению.

Получаем фокусы эллипса:

Как построить эллипсоид по ее уравнению

Видео:Видеоурок "Гипербола"Скачать

Видеоурок "Гипербола"

Решить задачи на эллипс самостоятельно, а затем посмотреть решение

Пример 6. Фокусы эллипса расположены на оси Ox симметрично относительно начала координат. Составить каноническое уравнение эллипса, если:

1) расстояние между фокусами 30, а большая ось 34

2) малая ось 24, а один из фокусов находится в точке (-5; 0)

3) эксцентриситет Как построить эллипсоид по ее уравнению, а один из фокусов находится в точке (6; 0)

Видео:Определить тип кривой (эллипс)Скачать

Определить тип кривой (эллипс)

Продолжаем решать задачи на эллипс вместе

Если Как построить эллипсоид по ее уравнению— произвольная точка эллипса (на чертеже обозначена зелёным в верхней правой части эллипса) и Как построить эллипсоид по ее уравнению— расстояния до этой точки от фокусов Как построить эллипсоид по ее уравнению, то формулы для расстояний — следующие:

Как построить эллипсоид по ее уравнению.

Для каждой точки, принадлежащей эллипсу, сумма расстояний от фокусов есть величина постоянная, равная 2a.

Прямые, определяемые уравнениями

Как построить эллипсоид по ее уравнению,

называются директрисами эллипса (на чертеже — красные линии по краям).

Из двух вышеприведённых уравнений следует, что для любой точки эллипса

Как построить эллипсоид по ее уравнению,

где Как построить эллипсоид по ее уравнениюи Как построить эллипсоид по ее уравнению— расстояния этой точки до директрис Как построить эллипсоид по ее уравнениюи Как построить эллипсоид по ее уравнению.

Пример 7. Дан эллипс Как построить эллипсоид по ее уравнению. Составить уравнение его директрис.

Решение. Смотрим в уравнение директрис и обнаруживаем, что требуется найти эксцентриситет эллипса, т. е. Как построить эллипсоид по ее уравнению. Все данные для этого есть. Вычисляем:

Как построить эллипсоид по ее уравнению.

Получаем уравнение директрис эллипса:

Как построить эллипсоид по ее уравнению

Пример 8. Составить каноническое уравнение эллипса, если его фокусами являются точки Как построить эллипсоид по ее уравнению, а директрисами являются прямые Как построить эллипсоид по ее уравнению.

Решение. Смотрим в уравнение директрис, видим, что в нём можем заменить символ эксцентриситета формулой эксцентриситета как отношение первой координаты фокуса к длине большей полуоси. Так сможем вычислить квадрат длины большей полуоси. Получаем:

Как построить эллипсоид по ее уравнению.

Теперь можем получить и квадрат длины меньшей полуоси:

Как построить эллипсоид по ее уравнению

Уравнение эллипса готово:

Как построить эллипсоид по ее уравнению

Пример 9. Проверить, находится ли точка Как построить эллипсоид по ее уравнениюна эллипсе Как построить эллипсоид по ее уравнению. Если находится, найти расстояние от этой точки до фокусов эллипса.

Решение. Подставляем координаты точки x и y в уравнение эллипса, на выходе должно либо получиться равенство левой части уравнения единице (точка находится на эллипсе), либо не получиться это равенство (точка не находится на эллипсе). Получаем:

Как построить эллипсоид по ее уравнению.

Получили единицу, следовательно, точка находится на эллипсе.

Приступаем к нахождению расстояния. Для этого нужно вычислить: число c, определяющее первые координаты фокусов, число e — эксцентриситет и числа «эр» с подстрочными индексами 1 и 2 — искомые расстояния. Получаем:

Как построить эллипсоид по ее уравнению

Проведём проверку: сумма расстояний от любой точки на эллипсе до фокусов должна быть равна 2a.

Как построить эллипсоид по ее уравнению,

так как из исходного уравнения эллипса Как построить эллипсоид по ее уравнению.

Одним из самых замечательных свойств эллипса является его оптическое свойство, состоящее в том, что прямые, соединяющие точку эллипса с его фокусами, пересекают касательную к эллипсу под разными углами. Это значит, что луч, пущенный из одного фокуса, после отраэения попадёт в другой. Это свойство лежит в основе аккустического эффекта, наблюдаемого в некоторых пещерах и искусственных сооружениях, своды которых имеют эллиптическую форму: если находиться в одном из фокусов, то речь человека, стоящего в другом фокусе, слышна так хорошо, как будто он находится рядом, хотя на самом деле расстояние велико.

Определение 7.1. Множество всех точек на плоскости, для которых сумма расстояний до двух фиксированных точек F1 и F2 есть заданная постоянная величина, называют эллипсом.

Определение эллипса дает следующий способ его геометрического построения. Фиксируем на плоскости две точки F1 и F2, а неотрицательную постоянную величину обозначим через 2а. Пусть расстояние между точками F1 и F2 равно 2c. Представим себе, что нерастяжимая нить длиной 2а закреплена в точках F1 и F2, например, при помощи двух иголок. Ясно, что это возможно лишь при а ≥ с. Натянув нить карандашом, начертим линию, которая и будет эллипсом (рис. 7.1).

Как построить эллипсоид по ее уравнению

Итак, описываемое множество не пусто, если а ≥ с. При а = с эллипс представляет собой отрезок с концами F1 и F2, а при с = 0, т.е. если указанные в определении эллипса фиксированные точки совпадают, он является окружностью радиуса а. Отбрасывая эти вырожденные случаи, будем далее предполать, как правило, что а > с > 0.

Фиксированные точки F1 и F2 в определении 7.1 эллипса (см. рис. 7.1) называют фокусами эллипса, расстояние между ними, обозначенное через 2c, — фокальным расстоянием, а отрезки F1M и F2M, соединяющие произвольную точку M на эллипсе с его фокусами, — фокальными радиусами.

Вид эллипса полностью определяется фокальным расстоянием |F1F2| = 2с и параметром a, а его положение на плоскости — парой точек F1 и F2.

Из определения эллипса следует, что он симметричен относительно прямой, проходящей через фокусы F1 и F2, а также относительно прямой, которая делит отрезок F1F2 пополам и перпендикулярна ему (рис. 7.2, а). Эти прямые называют осями эллипса. Точка O их пересечения является центром симметрии эллипса, и ее называют центром эллипса, а точки пересечения эллипса с осями симметрии (точки A, B, C и D на рис. 7.2, а) — вершинами эллипса.

Как построить эллипсоид по ее уравнению

Число a называют большой полуосью эллипса, а b = √(a 2 — c 2 ) — его малой полуосью. Нетрудно заметить, что при c > 0 большая полуось a равна расстоянию от центра эллипса до тех его вершин, которые находятся на одной оси с фокусами эллипса (вершины A и B на рис. 7.2, а), а малая полуось b равна расстоянию от центра эллипса до двух других его вершин (вершины C и D на рис. 7.2, а).

Уравнение эллипса. Рассмотрим на плоскости некоторый эллипс с фокусами в точках F1 и F2, большой осью 2a. Пусть 2c — фокальное расстояние, 2c = |F1F2| 2 + y 2 ) + √((x + c) 2 + y 2 ) = 2a. (7.2)

Это уравнение неудобно, так как в нем присутствуют два квадратных радикала. Поэтому преобразуем его. Перенесем в уравнении (7.2) второй радикал в правую часть и возведем в квадрат:

(x — c) 2 + y 2 = 4a 2 — 4a√((x + c) 2 + y 2 ) + (x + c) 2 + y 2 .

После раскрытия скобок и приведения подобных слагаемых получаем

√((x + c) 2 + y 2 ) = a + εx

где ε = c/a. Повторяем операцию возведения в квадрат, чтобы убрать и второй радикал: (x + c) 2 + y 2 = a 2 + 2εax + ε 2 x 2 , или, учитывая значение введенного параметра ε, (a 2 — c 2 ) x 2 /a 2 + y 2 = a 2 — c 2 . Так как a 2 — c 2 = b 2 > 0, то

x 2 /a 2 + y 2 /b 2 = 1, a > b > 0. (7.4)

Уравнению (7.4) удовлетворяют координаты всех точек, лежащих на эллипсе. Но при выводе этого уравнения использовались неэквивалентные преобразования исходного уравнения (7.2) — два возведения в квадрат, убирающие квадратные радикалы. Возведение уравнения в квадрат является эквивалентным преобразованием, если в обеих его частях стоят величины с одинаковым знаком, но мы этого в своих преобразованиях не проверяли.

Мы можем не проверять эквивалентность преобразований, если учтем следующее. Пара точек F1 и F2, |F1F2| = 2c, на плоскости определяет семейство эллипсов с фокусами в этих точках. Каждая точка плоскости, кроме точек отрезка F1F2, принадлежит какому-нибудь эллипсу указанного семейства. При этом никакие два эллипса не пересекаются, так как сумма фокальных радиусов однозначно определяет конкретный эллипс. Итак, описанное семейство эллипсов без пересечений покрывает всю плоскость, кроме точек отрезка F1F2. Рассмотрим множество точек, координаты которых удовлетворяют уравнению (7.4) с данным значением параметра a. Может ли это множество распределяться между несколькими эллипсами? Часть точек множества принадлежит эллипсу с большой полуосью a. Пусть в этом множестве есть точка, лежащая на эллипсе с большой полуосью а. Тогда координаты этой точки подчиняются уравнению

Как построить эллипсоид по ее уравнению

т.е. уравнения (7.4) и (7.5) имеют общие решения. Однако легко убедиться, что система

Как построить эллипсоид по ее уравнению

при ã ≠ a решений не имеет. Для этого достаточно исключить, например, x из первого уравнения:

Как построить эллипсоид по ее уравнению

что после преобразований приводит к уравнению

Как построить эллипсоид по ее уравнению

не имеющему решений при ã ≠ a, поскольку Как построить эллипсоид по ее уравнению. Итак, (7.4) есть уравнение эллипса с большой полуосью a > 0 и малой полуосью b =√(a 2 — c 2 ) > 0. Его называют каноническим уравнением эллипса.

Вид эллипса. Рассмотренный выше геометрический способ построения эллипса дает достаточное представление о внешнем виде эллипса. Но вид эллипса можно исследовать и с помощью его канонического уравнения (7.4). Например, можно, считая у ≥ 0, выразить у через x: y = b√( 1 — x 2 /a 2 ), и, исследовав эту функцию, построить ее график. Есть еще один способ построения эллипса. Окружность радиуса a с центром в начале канонической системы координат эллипса (7.4) описывается уравнением x 2 + y 2 = а 2 . Если ее сжать с коэффициентом a/b > 1 вдоль оси ординат, то получится кривая, которая описывается уравнением x 2 + (ya/b) 2 = a 2 , т. е. эллипс.

Замечание 7.1. Если ту же окружность сжать с коэффициентом a/b 2 — a 2 ), ε = 2c/2b = c/b.

При с =0, когда эллипс превращается в окружность, и ε = 0. В остальных случаях 0 2 — с 2 ), а с = εa = 4, то b = √(5 2 — 4 2 ) = 3. Значит каноническое уравнение имеет вид x 2 /5 2 + y 2 /3 2 = 1. Для построения эллипса удобно изобразить прямоугольник с центром в начале канонической системы координат, стороны которого параллельны осям симметрии эллипса и равны его соответствующим осям (рис. 7.4). Этот прямоугольник пересекается с

Как построить эллипсоид по ее уравнению

осями эллипса в его вершинах A(—5; 0), B(5; 0), C(0; -3), D(0; 3), причем сам эллипс вписан в него. На рис. 7.4 указаны также фокусы F1,2(±4; 0) эллипса.

Геометрические свойства эллипса. Перепишем первое уравнение в (7.6) в виде |F1M| = (а/ε — x)ε. Отметим, что величина а/ε — x при а > с положительна, так как фокус F1 не принадлежит эллипсу. Эта величина представляет собой расстояние до вертикальной прямой d: x = а/ε от точки M(x; у), лежащей левее этой прямой. Уравнение эллипса можно записать в виде

Оно означает, что этот эллипс состоит из тех точек M(x; у) плоскости, для которых отношение длины фокального радиуса F1M к расстоянию до прямой d есть величина постоянная, равная ε (рис. 7.5).

Как построить эллипсоид по ее уравнению

У прямой d есть » двойник » — вертикальная прямая d’, симметричная d относительно центра эллипса, которая задается уравнением x = —а/ε. Относительно d’ эллипс описывается так же, как и относительно d. Обе прямые d и d’ называют директрисами эллипса. Директрисы эллипса перпендикулярны той оси симметрии эллипса, на которой расположены его фокусы, и отстоят от центра эллипса на расстояние а/ε = а 2 /с (см. рис. 7.5).

Расстояние p от директрисы до ближайшего к ней фокуса называют фокальным параметром эллипса. Этот параметр равен

p = a/ε — c = (a 2 — c 2 )/c = b 2 /c

Эллипс обладает еще одним важным геометрическим свойством: фокальные радиусы F1M и F2M составляют с касательной к эллипсу в точке M равные углы (рис. 7.6).

Как построить эллипсоид по ее уравнению

Это свойство имеет наглядный физический смысл. Если в фокусе F1 расположить источник света, то луч, выходящий из этого фокуса, после отражения от эллипса пойдет по второму фокальному радиусу, так как после отражения он будет находиться под тем же углом к кривой, что и до отражения. Таким образом, все лучи, выходящие из фокуса F1, сконцентрируются во втором фокусе F2, и наоборот. Исходя из данной интерпретации указанное свойство называют оптическим свойством эллипса.

📽️ Видео

§20 Построение эллипсаСкачать

§20 Построение эллипса

§31.1 Приведение уравнения кривой к каноническому видуСкачать

§31.1 Приведение уравнения кривой к каноническому виду

Аналитическая геометрия: Эллипс, Парабола, Гипербола. Высшая математикаСкачать

Аналитическая геометрия: Эллипс, Парабола, Гипербола. Высшая математика

Поверхности 2 порядкаСкачать

Поверхности 2 порядка

Поверхности 2-го порядка | Лекция 14 | ЛинАл | СтримСкачать

Поверхности 2-го порядка | Лекция 14 | ЛинАл | Стрим

Расследование: «УМНЫЙ 3D ФИТНЕС» или «ТРЕНАЖЕРНЫЙ ЗАЛ» ? Как тренироваться, чтобы СОХРАНИТЬ ЗДОРОВЬЕСкачать

Расследование: «УМНЫЙ 3D ФИТНЕС» или «ТРЕНАЖЕРНЫЙ ЗАЛ» ? Как тренироваться, чтобы СОХРАНИТЬ ЗДОРОВЬЕ

§18 Каноническое уравнение эллипсаСкачать

§18 Каноническое уравнение эллипса

Поворот и параллельный перенос координатных осей. ЭллипсСкачать

Поворот и параллельный перенос координатных осей.  Эллипс

Эллипс. Определение. Уравнение. График. Фокусы. Главные оси. Эксцентриситет - Новиков АлександрСкачать

Эллипс. Определение. Уравнение. График. Фокусы. Главные оси. Эксцентриситет - Новиков Александр

Приведение кривой второго порядка к каноническому виду. ПримерСкачать

Приведение кривой второго порядка к каноническому виду. Пример
Поделиться или сохранить к себе: