- п.1. Количество корней кубического уравнения
- п.2. Количество корней произвольного уравнения
- п.3. Решение неравенств с построением графиков
- Как определить a, b и c по графику параболы
- 1 способ – ищем коэффициенты на графике
- 3 способ – используем преобразование графиков функций
- Презентация на тему: Нахождение корней систем уравнений и уравнений с помощью графиков
- 📸 Видео
п.1. Количество корней кубического уравнения
Кубическое уравнение $$ ax^3+bx^2+cx+d=0 $$ на множестве действительных чисел может иметь один, два или три корня.
С помощью производной можно быстро ответить на вопрос, сколько корней имеет данное уравнение. begin f(x)=ax^3+bx^2+cx+d\ f'(x)=3ax^2+bx+c end Если в уравнении (f'(x)=0) дискриминант (D=4b^2-12ac=4(b^2-3ac)gt 0), кубическая парабола имеет две точки экстремума: (x_=frac<-2bpmsqrt>). Если при этом значения функции в точках экстремума (f(x_1)cdot f(x_2)lt 0), т.е. расположены по разные стороны от оси OX, парабола имеет три точки пересечения с этой осью. Исходное уравнение имеет три корня.
Если две точки экстремума найдены, но (f(x_1)cdot f(x_2)=0), уравнение имеет два корня.
Во всех остальных случаях – у исходного уравнения 1 корень.
Пример 1. Сколько корней имеют уравнения:
1) (x^3+3x^2-4=0) (b^2-3ac=9gt 0 (c=0) ) (f(x)=x^3+3x^2-4 ) (f'(x)=3x^2+6x=3x(x+2) ) (x_1=0, x_2=-2 ) (f(x_1)=-4, f(x_2)=0 ) (f(x_1)cdot f(x_2)=0Rightarrow) два корня | 2) (x^3+3x^2-1=0) (b^2-3ac=9gt 0 ) (f(x)=x^3+3x^2-1 ) (f'(x)=3x^2+6x=3x(x+2) ) (x_1=0, x_2=-2 ) (f(x_1)=-1, f(x_2)=3 ) (f(x_1)cdot f(x_2)lt 0Rightarrow) три корня |
3) (x^3+3x^2+1=0) (b^2-3ac=9gt 0) (f(x)=x^3+3x^2+1 ) (f'(x)=3x^2+6x=3x(x+2) ) (x_1=0, x_2=-2 ) (f(x_1)=1, f(x_2)=5 ) (f(x_1)cdot f(x_2)gt 0Rightarrow) один корень | 4) (x^3+x^2+x+3=0) (b^2-3ac=1-3lt 0 ) Один корень |
п.2. Количество корней произвольного уравнения
Задачи на подсчет количества корней решаются с помощью построения графиков при полном или частичном исследовании функций.
Пример 2. а) Найдите число корней уравнения (frac 1x+frac+frac)
б) Найдите число корней уравнения (frac 1x+frac+frac=k)
Построим график функции слева, а затем найдем для него количество точек пересечения с горизонталью (y=1). Это и будет ответом на вопрос задачи (а).
Исследуем функцию: $$ f(x)=frac1x+frac+frac $$ Алгоритм исследования и построения графика – см. §49 данного справочника.
1) ОДЗ: (xneleft)
Все три точки – точки разрыва 2-го рода. begin lim_left(frac1x+frac+fracright)=-infty-1-frac13=-infty\ lim_left(frac1x+frac+fracright)=+infty-1-frac13=+infty\ lim_left(frac1x+frac+fracright)=1-infty-frac12=-infty\ lim_left(frac1x+frac+fracright)=1+infty-frac12=+infty\ lim_left(frac1x+frac+fracright)=frac13+frac12-infty=-infty\ lim_left(frac1x+frac+fracright)=frac13+frac12+infty=+infty end 2) Функция ни четная, ни нечетная.
Функция непериодическая.
3) Асимптоты
1. Вертикальные (x=0, x=1, x=3) – точки разрыва 2-го рода
2. Горизонтальные: begin lim_left(frac1x+frac+fracright)=-0-0-0=-0\ lim_left(frac1x+frac+fracright)=+0+0+0=+0\ end Горизонтальная асимптота (y=0)
На минус бесконечности функция стремится к 0 снизу, на плюс бесконечности – сверху.
3. Наклонные: (k=0), нет.
4) Первая производная $$ f'(x)=-frac-frac-fraclt 0 $$ Производная отрицательная на всей ОДЗ.
Функция убывает.
5) Вторую производную не исследуем, т.к. перегибы не влияют на количество точек пересечения с горизонталью.
6) Точки пересечения с OY – нет, т.к. (x=0) – асимптота
Точки пересечения с OX – две, (0lt x_1lt 1,1lt x_2lt 3)
7) График
Получаем ответ для задачи (а) 3 корня.
Решаем более общую задачу (б). Передвигаем горизонталь (y=k) снизу вверх и считаем количество точек пересечения с графиком функции. Последовательно, получаем:
При (klt 0) — три корня
При (k=0) — два корня
При (kgt 0) — три корня
Ответ: а) 3 корня; б) при (k=0) два корня, при (kne 0) три корня.
Пример 3. Найдите все значения параметра a, при каждом из которых уравнение $$ sqrt+sqrt=a $$ имеет по крайней мере одно решение.
Исследуем функцию (f(x)=sqrt+sqrt)
ОДЗ: ( begin x-1geq 0\ 10-2xgeq 0 end Rightarrow begin xgeq 1\ xleq 5 end Rightarrow 1leq xleq 5 )
Функция определена на конечном интервале.
Поэтому используем сокращенный алгоритм для построения графика.
Значения функции на концах интервала: (f(1)=0+sqrt=2sqrt, f(5)=sqrt+0=2)
Первая производная: begin f'(x)=frac<2sqrt>+frac<2sqrt>=frac<2sqrt>-frac<sqrt>\ f'(x)=0 text 2sqrt=sqrtRightarrow 4(x-1)=10-2xRightarrow 6x=14Rightarrow x=frac73\ fleft(frac73right)=sqrt+sqrt=sqrt+sqrt<frac>=frac<sqrt>=2sqrt end Промежутки монотонности:
(x) | 1 | (1; 7/3) | 7/3 | (7/3; 5) | 5 |
(f'(x)) | ∅ | + | 0 | — | ∅ |
(f(x)) | (2sqrt) | (nearrow ) | max (2sqrt) | (searrow ) | 2 |
Можем строить график:
(y=a) — горизонтальная прямая.
Количество точек пересечения (f(x)) и (y) равно количеству решений.
Получаем:
$$ alt 2 $$ | нет решений |
$$ 2leq alt 2sqrt $$ | 1 решение |
$$ 2sqrtleq alt 2sqrt $$ | 2 решения |
$$ a=2sqrt $$ | 1 решение |
$$ agt 2sqrt $$ | нет решений |
По крайней мере одно решение будет в интервале (2leq aleq 2sqrt).
п.3. Решение неравенств с построением графиков
Пример 4. Решите неравенство (fracgt frac)
Разобьем неравенство на совокупность двух систем.
Если (xgt 1), то (x-1gt 0), на него можно умножить слева и справа и не менять знак.
Если (xlt 1), то (x-1lt 0), умножить также можно, только знак нужно поменять.
Сразу учтем требование ОДЗ для логарифма: (xgt 0)
Получаем совокупность: begin left[ begin begin xgt 1\ 2+log_3 xgtfrac end \ begin 0lt xlt 1\ 2+log_3 xltfrac end end right. \ 2+log_3 xgt fracRightarrow log_3 xgt fracRightarrow log_3 xgt frac\ left[ begin begin xgt 1\ log_3 xgtfrac end \ begin 0lt xlt 1\ log_3 xltfrac end end right. end Исследуем функцию (f(x)=frac=frac=1-frac)
Точка разрыва: (x=frac12) – вертикальная асимптота
Односторонние пределы: begin lim_left(1-fracright)=1-frac=+infty\ lim_left(1-fracright)=1-frac=-infty end Второе слагаемое стремится к 0 на бесконечности, и это дает горизонтальную асимптоту: (y=1) begin lim_left(1-fracright)=1-frac=1+0\ lim_left(1-fracright)=1-frac=1-0 end На минус бесконечности кривая стремится к (y=1) сверху, а на плюс бесконечности – снизу.
Первая производная: $$ f'(x)=left(1-fracright)’=fracgt 0 $$ Производная положительная на всей ОДЗ, функция возрастает.
Вторая производная: $$ f»(x)=-frac $$ Одна критическая точка 2-го порядка (x=frac12)
Видео:1071 Алгебра 8 класс дана функция сколько корней имеет уравнениеСкачать
Как определить a, b и c по графику параболы
Предположим, вам попался график функции (y=ax^2+bx+c) и нужно по этому графику определить коэффициенты (a), (b) и (c). В этой статье я расскажу 3 простых способа сделать это.
Видео:Как определить уравнение параболы по графику?Скачать
1 способ – ищем коэффициенты на графике
Данный способ хорош, когда координаты вершины и точка пересечения параболы с осью (y) – целые числа. Если это не так, советую использовать способ 2.
Коэффициент (a) можно найти с помощью следующих фактов:
— Если (a>0), то ветви параболы направленных вверх, если (a 1), то график вытянут вверх в (a) раз по сравнению с «базовым» графиком (у которого (a=1)). Вершина при этом остается на месте. Это наглядно видно по выделенным точкам.
Ищем 3 точки с целыми координатами, принадлежащие параболе.
Пример:
Выписываем координаты этих точек и подставляем в формулу квадратичной функции: (y=ax^2+bx+c). Получится система с тремя уравнениями.
Решаем систему.
Пример:
Вычтем из второго уравнения первое:
Подставим (9a) вместо (b):
Первое и второе уравнения совпали (это нормально для точек, симметричных относительно прямой проходящей через вершину – как точки (A) и (B) в нашем случае), но нас это не остановит – мы вычтем из второго уравнение третье:
Подставим в первое уравнение (a):
Получается квадратичная функция: (y=-x^2-9x-15).
Сразу заметим, что по графику можно сразу определить, что (c=4). Это сильно облегчит нашу систему – нам хватит 2 точек. Выберем их на параболе: (C(-1;8)), (D(1;2)) (на самом деле, если присмотреться, то можно заметить, что эти точки выделены жирно на изначальной картинке – это вам подсказка от авторов задачи).
Таким образом имеем систему:
Сложим 2 уравнения:
Подставим во второе уравнение:
Теперь найдем точки пересечения двух функций:
Теперь можно найти ординату второй точки пересечения:
Видео:Сколько корней имеет уравнение?Скачать
3 способ – используем преобразование графиков функций
Этот способ быстрее первого и более универсальный, в частности он может пригодится и в задачах на другие функции.
Главный недостаток этого способа — вершина должна иметь целые координаты.
Сам способ базируется на следующих идеях:
График (y=-x^2) симметричен относительно оси (x) графику (y=x^2).
– Если (a>1) график (y=ax^2) получается растяжением графика (y=x^2) вдоль оси (y) в (a) раз.
– Если (a∈(0;1)) график (y=ax^2) получается сжатием графика (y=x^2) вдоль оси (y) в (a) раз.
– График (y=a(x+d)^2) получается сдвигом графика (y=ax^2) влево на (d) единиц.
— График (y=a(x-d)^2) получается сдвигом графика (y=ax^2) вправо на (d) единиц.
График (y=a(x+d)^2+e) получается переносом графика (y=a(x+d)^2) на (e) единиц вверх.
График (y=a(x+d)^2-e) получается переносом графика (y=a(x+d)^2) на (e) единиц вниз.
У вас наверно остался вопрос — как этим пользоваться? Предположим, мы видим такую параболу:
Сначала смотрим на её форму и направленность её ветвей. Видим, что форма стандартная, базовая и ветви направлены вверх, поэтому (a=1). То есть она получена перемещениями графика базовой параболы (y=x^2).
А как надо было перемещать зеленый график чтоб получить оранжевый? Надо сдвинуться вправо на пять единиц и вниз на (4).
То есть наша функция выглядит так: (y=(x-5)^2-4).
После раскрытия скобок и приведения подобных получаем искомую формулу:
Чтобы найти (f(6)), надо сначала узнать формулу функции (f(x)). Найдем её:
Парабола растянута на (2) и ветви направлены вниз, поэтому (a=-2). Иными словами, первоначальной, перемещаемой функцией является функция (y=-2x^2).
Парабола смещена на 2 клеточки вправо, поэтому (y=-2(x-2)^2).
Парабола поднята на 4 клеточки вверх, поэтому (y=-2(x-2)^2+4).
Видео:Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnlineСкачать
Презентация на тему: Нахождение корней систем уравнений и уравнений с помощью графиков
Нахождение корней систем уравнений и уравнений с помощью графиковУчитель: Коптелова Вера Ивановна
Повторение, алгебра:Свойства и графики функций:Линейная функция: у = Kх+b
Свойства и графики функций:
Свойства и графики функций:
Свойства и графики функций:
Свойства и графики функций:
Свойства и графики функций:
Для какой функции построили график в электронной таблице?
Для какой функции построили график в электронной таблице?
Для какой функции построили график в электронной таблице?
Для какой функции построили график в электронной таблице?
В тетрадях схематически изобразите графики этих функций.
Зная, что прямая х=0 – ось симметрии данного графика, какая из двух кривых является продолжением этого графика
Зная, что точка (0;0) – точка симметрии данного графика, какая из двух кривых является продолжением этого графика
Какие формулы, написанные при построении графиков в электронной таблице, соответствуют функциям:
Расставьте по порядку алгоритм построения графика функции у = 2х3 – 3х2 +4х в электронной таблице:
Почему в электронной таблице в ходе построения графика в таблице значений у появилась запись Ошибка:502Какой из двух графиков соответствует данной функции? Для построения этого графика как надо выделить диапазон, чтобы график получился правильным?
Какая функция соответствует графику, построенных в электронной таблице?
Как вы думаете, сколько раз пересекаются эти графики?Что нужно сделать при построении этих графиков в электронной таблице, чтобы были видны все точки пересечения?А при построении в тетради?
Где проще будет построить график этой функции – в тетради или электронной таблице?Как на построенном графике увидеть нули функции?
Сколько общих точек имеют графики функций?Как можно с помощью графиков узнать сколько решений имеет система уравнений?
1) Как с помощью графиков (в электронной таблице) узнать имеет ли решение система уравнений?Графики пересекаются в двух точкахОтвет: данная система имеет 2 решения
2) Как узнать с помощью графиков сколько решений имеет система уравнений?
3) Как с помощью графиков можно определить количество корней уравнения?1.Строим график функции у = х3 + х — 4 2.На графике находим нули функции (точки пересечения графика с осью абсцисс)
4) Можно ли найти решения данного уравнения? Как это можно сделать?1способ: Построить график функции и на графике найти нули функции.2способ: Построить два графика функций, одна из которых другая: Можно ли второй способ использовать при решении уравнений без электронной таблицы? Алгоритм этого решения…
Закрепление материала:1. В электронной таблице найти количество корней системы уравнений:2. Сколько корней имеет уравнение:
3. Найти количество корней системы уравнений, не используя электронную таблицу ( т.е. схематически изобразив графики функций)4. Найти количество корней уравнения, не используя электронную таблицу
5) Где быстрее строятся графики: в тетради или электронной таблице?) Что нужно соблюдать при построении графиков функций, чтобы получить полную информацию о количестве решений системы уравнений или уравнения?7) Что нужно знать о построении графиков функций, если электронной таблицей нельзя пользоваться?
Задание на дом:1. Найти количество решений систем уравнений.3. Схематически изобразив графики функций, найдите количество решений а) системы уравнений, б)уравнения
📸 Видео
256 Алгебра 9 класс. Сколько корней имеет Уравнение. Корень n-й Степени.Скачать
Уравнение прямой по графику. ПримерыСкачать
7 класс, 35 урок, Графическое решение уравненийСкачать
Решение квадратных уравнений. Дискриминант. 8 класс.Скачать
11 класс. Алгебра. Исследование функции и построение графиков с помощью производной.Скачать
Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnlineСкачать
Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСССкачать
БЕСКОНЕЧНОЕ количество корнейСкачать
Определить имеет ли уравнение целые корни #1Скачать
103 Алгебра 9 класс. Сколько корней имеет Квадратный трехчленСкачать
Как по графику первообразной определить количество корней уравнения y=fxСкачать
АЛГЕБРА 7 класс : Уравнение и его корни | ВидеоурокСкачать
ФУНКЦИЯ y = √¯x ( корень из х ) МАТЕМАТИКАСкачать
Решение системы линейных уравнений графическим методом. 7 класс.Скачать
ВСЁ ПРО ГРАФИКИ ЕГЭ 2024 (Прямая, Парабола, Окружность, Модуль, Гипербола, Корень, Области, Сдвиги)Скачать
СЛОЖИТЕ ДВА КОРНЯСкачать