Формулы понижения степени являются одним из видов основных тригонометрических формул. Они выражают степени (2, 3, …) тригонометрических функций синус, косинус, тангенс, котангенс через синус и косинус первой степени, но кратного угла (`alpha, 3alpha, …` или `2alpha, 4alpha, …`).
- Список всех тригонометрических формул понижения степени
- Для квадрата
- Для куба
- Для 4-й степени
- Для функций половинного угла
- Для произведения синус на косинус
- Доказательство
- Общий вид формул понижения степени
- Примеры решения задач с применением формул понижения степени
- Формулы понижения степени в тригонометрии
- Формулы понижения степени, их доказательство
- Примеры применения формул понижения степени
- Формулы понижения степени
- 🎦 Видео
Видео:Решение тригонометрических уравнений. Метод понижения порядка. 10 класс.Скачать
Список всех тригонометрических формул понижения степени
Запишем данные тождества для тригонометрических функций от 2-й по 4-ю степень угла `alpha`, а также для угла `frac alpha 2` и для произведения синус на косинус. Для удобства разделим их на группы.
Для квадрата
Формулы этой группы, особенно две первые, наиболее нужны. Они применяются при решении тригонометрических уравнений, интегралов и т. д.
Для куба
Тождества этой группы и следующих встречаются гораздо реже, но это не повод их не знать.
Для 4-й степени
Для функций половинного угла
Это формулы половинного угла. Но когда они записаны именно в таком виде, то их можно отнести и к тодествам понижения степени.
Для произведения синус на косинус
`sin^2 alpha cdot cos^2 alpha=frac8`
`sin^3 alpha cdot cos^3 alpha=frac32`
Видео:10 класс, 27 урок, Формулы двойного аргумента. Формулы понижения степениСкачать
Доказательство
Теперь перейдем непосредственно к выводу формул понижения степени тригонометрических функций.
Чтобы доказать их для квадрата, нам понадобятся фождества двойного угла `cos 2alpha=1-2 sin^2 alpha` и `cos 2alpha=2 cos^2 alpha-1`.
Формулу понижения степени синуса в квадрате получим, разрешив первое равенство относительно ` sin^2 alpha`: `sin^2 alpha=frac2`.
Аналогично и с косинусом в квадрате, получим тождество, разрешив второе равенство относительно ` cos^2 alpha`: `cos^2 alpha=frac2`.
Для лучшего усвоения теоретического материала рекомендуем посмотреть видео, где подробно описывается процесс доказательстве первых двух формул:
Если формулы тройного угла `sin 3alpha=3 sin alpha-4sin^3 alpha` и
`cos 3alpha=4cos^3 alpha-3 cos alpha` разрешить относительно `sin 3alpha` и `cos 3alpha`, то получим формулы понижения степени для синуса и косинуса в кубе: `sin^3 alpha=frac4` и `cos^3 alpha=frac4`.
Доказать данной равности для синуса и косинуса можно, воспользовавшись два раза формулами понижения квадратов:
Общий вид формул понижения степени
Для четных показателей степени (n=1, 2, 3,…):
Для нечетных показателей степени (n=3, 5, 7,…):
`sin^n alpha=frac1<2^> cdot sum_^<frac 2> (-1)^ <frac 2 -k> cdot C_k^n cdot sin((n-2k) alpha)` и `cos^n alpha=frac1<2^> cdot sum_^<frac 2> C_k^n cdot cos((n-2k) alpha)`.
Видео:Как понизить степень тригонометрического выражения.Скачать
Примеры решения задач с применением формул понижения степени
Пример 1. Воспользуйтесь формулой понижения степени для `cos^2 4alpha`.
Решение. Применив формулу `cos^2 alpha=frac2`, получим `cos^2 4alpha=frac2=frac2`.
Пример 2. Используя выше указанные тождества, вычислить `sin^2 frac pi 8`.
Решение. Согласно формуле `sin^2 alpha=frac2`, понизим степень синуса. Получим `sin^2 frac pi 8=frac2=frac2`. Поскольку `cos frac pi 4=frac 2`, то `sin^2 frac pi 8=frac2=frac<1-frac 2>2=frac<frac 2>2=frac 4`.
Ответ. `sin^2 frac pi 8=frac 4`.
Отметим, что формулы понижения степени в тригонометрии чаще всего используются при решении уравнений и преобразовании выражений.
Видео:Как решать тригонометрические уравнения с помощью формул понижения степени. Тригонометрия #46Скачать
Формулы понижения степени в тригонометрии
Тригонометрические формулы обладают рядом свойств, одно из которых это применение формул понижения степени. Они способствуют упрощению выражений при помощи уменьшения степени.
Формулы понижения работают по принципу выражения степени синуса и косинуса через синус и косинус первой степени, но кратного угла. При упрощении формула становится удобной для вычислений, причем повышается кратность угла от α до n α .
Видео:0711 Тригонометрические уравнения, решаемые с помощью формул понижения степениСкачать
Формулы понижения степени, их доказательство
Ниже приводится таблица формул понижения степени со 2 по 4 для sin и cos угла. После ознакомления с ними зададим общую формулу для всех степеней.
sin 2 α = 1 — cos 2 α 2 cos 2 α = 1 + cos 2 α 2 sin 3 = 3 · sin α — sin 3 α 4 sin 4 = 3 — 4 · cos 2 α + cos 4 α 8 cos 4 α = 3 + 4 · cos 2 α + cos 4 α 8
Данные формулы предназначены для понижения степени.
Существует формулы двойного угла у косинуса и синуса, из которых и следуют формулы понижения степени cos 2 α = 1 — 2 · sin 2 α и cos 2 α = 2 · cos 2 α — 1 . Равенства разрешаются относительно квадрата синуса и косинуса, которые предоставляются как sin 2 α = 1 — cos 2 α 2 и cos 2 α = 1 + cos 2 α 2 .
Формулы понижения степеней тригонометрических функций перекликаются с формулами синуса и косинуса половинного угла.
Имеет место применение формулы тройного угла sin 3 α = 3 · sin α — 4 · sin 3 α и cos 3 α = — 3 · cos α + 4 · cos 3 α .
Если решать равенство относительно синуса и косинуса в кубе, получим формулы понижения степеней для синуса и косинуса:
sin 3 α = 3 — 4 · cos 2 α + cos 4 α 8 и cos 3 α = 3 · cos α + cos 3 α 4 .
Формулы четвертой степени тригонометрических функций выглядят так: sin 4 α = 3 — 4 · cos 2 α + cos 4 α 8 и cos 4 α = 3 + 4 · cos 2 α + cos 4 α 8 .
Чтобы понизить степени эти выражений, можно действовать в 2 этапа, то есть дважды понижать, тогда это выглядит таким образом:
sin 4 α = ( sin 2 α ) 2 = ( 1 — cos 2 α 2 ) 2 = 1 — 2 · cos 2 α + cos 2 2 α 4 = = 1 — 2 · cos 2 α + 1 + cos 4 α 2 4 = 3 — 4 · cos 2 α + cos 4 α 8 ; cos 4 α = ( cos 2 α ) 2 = ( 1 + cos 2 α 2 ) 2 = 1 + 2 · cos 2 α + cos 2 2 α 4 = = = 1 + 2 · cos 2 α + 1 + cos 4 α 2 4 = 3 + 4 · cos 2 α + cos 4 α 8
Методом подстановки мы упростили сложное выражение. Для того, чтобы записать общий вид формул понижения степени разделим их на с наличием четных и нечетных показателей. Четные показатели, где n = 2 , 4 , 6 … , выражение имеет вид sin n α = C n 2 n 2 n + 1 2 n — 1 · ∑ ( — 1 ) n 2 — k k = 0 n 2 — 1 · C k n · cos ( ( n — 2 · k ) α ) и cos n α = C n 2 n 2 n + 1 2 n — 1 ∑ ( — 1 ) n 2 — k k = 0 n 2 — 1 · C k n · cos ( ( n — 2 · k ) α ) .
Нечетные показатели, где n = 3 , 5 , 7 …, выражение имеет вид
sin n α = 1 2 n — 1 · ∑ ( — 1 ) n — 1 2 — k k = 0 n — 1 2 · C k n · cos ( ( n — 2 · k ) α ) и cos n α = 1 2 n — 1 ∑ ( — 1 ) n — 1 2 — k k = 0 n — 1 2 · C k n · cos ( ( n — 2 · k ) α ) .
C p q = p ! q ! · ( p — q ) ! — это число сочетаний из p элементов по q .
Формулы понижения степени общего вида используются на любого выражения с высокой степенью для его упрощения. Рассмотрим пример для понижения кубического синуса. Третья степень нечетная, значит воспользуемся формулой sin n α = 1 2 n — 1 · ∑ ( — 1 ) n — 2 2 — k k = 0 n — 1 2 — k · C k n · sin ( ( n — 2 · k ) α ) где значение n присвоим 3 . Подставляя n = 3 в выражение, получим
sin 3 α = 1 2 3 — 1 · ∑ ( — 1 ) 3 — 1 2 — k k = 0 3 — 1 2 — k · C k 3 · sin ( ( 3 — 2 · k ) α ) = = 1 4 · ∑ ( — 1 ) 1 — k k = 0 1 · C k 3 · sin ( ( 3 — 2 · k ) α ) = = 1 4 · ( ( — 1 ) 1 — 0 · C 0 3 · sin ( ( 3 — 2 · 0 ) α ) + ( 1 ) 1 — 1 · C 1 3 · sin ( ( 3 — 2 · 1 ) α ) ) = = 1 4 · ( ( — 1 ) 1 · 3 ! 0 ! · 3 ! · sin 3 α + ( — 1 ) 0 · 3 ! 1 ! · ( 3 — 1 ) ! · sin α ) = = 1 4 · ( — sin 3 α + 3 · sin α ) = 3 · sin α — sin 3 α 4
Видео:Решение тригонометрического уравнения методом понижения степениСкачать
Примеры применения формул понижения степени
Чтобы закрепить материал, необходимо детально разобрать его на примерах с использованием формулы понижения степени. Таким образом будет понятен принцип решения, подстановка и весь алгоритм.
Справедлива ли формула вида cos 4 α = 3 + 4 · cos 2 α + cos 4 α 8 при α = α 6 .
Для того, чтобы данная формула прошла проверку на возможность понижения степени с заданным значением угла α , необходимо посчитать левую и правую стороны. По условию имеем, что α = π 6 , тогда 2 α = π 3 , следовательно 4 α = 2 π 3 .
По таблице тригонометрических функций имеем, что cos α = cos π 6 = 3 2 , тогда cos 2 α = cos π 3 = 1 2 .
Для подробного уяснения необходимо проштудировать статью значения синуса, косинуса, тангенса и котангенса. Подставляя в формулу, получим cos 4 α = ( cos π 6 ) 4 = ( 3 2 ) 4 = 9 16 и 3 + 4 cos 2 α + cos 4 α 8 = 3 + 4 cos π 3 + cos 2 π 3 8 = 3 + 4 · 1 2 + ( — 1 2 ) 8 = 9 16
Отсюда видим, что левая и правая части равенства верны при α = π 6 , значит, выражение справедливо при значении заданного угла. Если угол отличен от α , формула понижения степени одинаково применима.
При помощи формулы понижения степени преобразовать выражение sin 3 2 β 5 .
Кубический синус для угла α имеет формулу вида sin 3 α = 3 · sin α — sin 3 α 4 . В данном случае необходимо выполнить замену α на 2 β 5 и подставить в формулу, тогда получаем выражение вида sin 3 2 β 5 = 3 · sin 2 β 5 — sin ( 3 · 2 β 5 ) 4 .
Это выражение равно равенству sin 3 2 β 5 = 3 · sin 2 β 5 — sin 6 β 5 4 .
Ответ: sin 3 2 β 5 = 3 · sin 2 β 5 — sin 6 β 5 4 .
Для решения сложных тригонометрических уравнений применяют формулы понижения степени. Они способны упростить выражение и сделать его намного удобным для вычислений или подстановки числовых значений.
Видео:Математика| Преобразование тригонометрических выражений. Формулы и задачиСкачать
Формулы понижения степени
Этот видеоурок доступен по абонементу
У вас уже есть абонемент? Войти
На уроке выводятся формулы понижения степени из формул двойного аргумента, также выводятся формулы понижения степени для тангенса и котангенса с использованием формул понижения степени для синуса и косинуса. Решается несколько задач с использованием данных формул.
Если у вас возникнет сложность в понимании темы, рекомендуем посмотреть уроки
🎦 Видео
решение тригонометрического уравнения методом понижения степени cosСкачать
10 класс, 23 урок, Методы решения тригонометрических уравненийСкачать
Тригонометрия. Формулы понижения степени. Универсальная тригонометрическая подстановкаСкачать
3D Решите уравнение (метод понижения степени)Скачать
Метод понижения степени. Пример 1. Тригонометрия.Скачать
№17 Тригонометрические уравнения. Формула понижения степени. sin^4(x)+cos^4(x)=7/8Скачать
Метод понижения степени. Пример 4. Тригонометрия.Скачать
✓ Тригонометрические формулы | Борис ТрушинСкачать
№18 Тригонометрические уравнения. Формула понижения степени. cos^4x+2sin^2(x)=0Скачать
решение тригонометрического уравнения методом понижения степени sinСкачать
Понижение степени тригонометрических функцийСкачать
Формулы понижения степени. Для чего нужны формулы понижения степени?Скачать