Как по уравнению ax2 bx c на графике найти с

Как определить a, b и c по графику параболы

Предположим, вам попался график функции (y=ax^2+bx+c) и нужно по этому графику определить коэффициенты (a), (b) и (c). В этой статье я расскажу 3 простых способа сделать это.

Видео:ОГЭ номер 11 найти а по графику функции y=ax^2+bx+c парабола РешуОГЭ 193099, дистанционный урокСкачать

ОГЭ номер 11 найти а по графику функции y=ax^2+bx+c парабола РешуОГЭ 193099, дистанционный урок

1 способ – ищем коэффициенты на графике

Данный способ хорош, когда координаты вершины и точка пересечения параболы с осью (y) – целые числа. Если это не так, советую использовать способ 2.

Коэффициент (a) можно найти с помощью следующих фактов:

— Если (a>0), то ветви параболы направленных вверх, если (a 1), то график вытянут вверх в (a) раз по сравнению с «базовым» графиком (у которого (a=1)). Вершина при этом остается на месте. Это наглядно видно по выделенным точкам.

Как по уравнению ax2 bx c на графике найти с

Ищем 3 точки с целыми координатами, принадлежащие параболе.
Пример:

Как по уравнению ax2 bx c на графике найти с

Выписываем координаты этих точек и подставляем в формулу квадратичной функции: (y=ax^2+bx+c). Получится система с тремя уравнениями.

Решаем систему.
Пример:

Вычтем из второго уравнения первое:

Подставим (9a) вместо (b):

Первое и второе уравнения совпали (это нормально для точек, симметричных относительно прямой проходящей через вершину – как точки (A) и (B) в нашем случае), но нас это не остановит – мы вычтем из второго уравнение третье:

Подставим в первое уравнение (a):

Получается квадратичная функция: (y=-x^2-9x-15).

Как по уравнению ax2 bx c на графике найти с

Сразу заметим, что по графику можно сразу определить, что (c=4). Это сильно облегчит нашу систему – нам хватит 2 точек. Выберем их на параболе: (C(-1;8)), (D(1;2)) (на самом деле, если присмотреться, то можно заметить, что эти точки выделены жирно на изначальной картинке – это вам подсказка от авторов задачи).

Как по уравнению ax2 bx c на графике найти с

Таким образом имеем систему:

Сложим 2 уравнения:

Подставим во второе уравнение:

Теперь найдем точки пересечения двух функций:

Теперь можно найти ординату второй точки пересечения:

Видео:ОГЭ. Задание 11. ГрафикиСкачать

ОГЭ. Задание 11. Графики

3 способ – используем преобразование графиков функций

Этот способ быстрее первого и более универсальный, в частности он может пригодится и в задачах на другие функции.

Главный недостаток этого способа — вершина должна иметь целые координаты.

Сам способ базируется на следующих идеях:

График (y=-x^2) симметричен относительно оси (x) графику (y=x^2).

Как по уравнению ax2 bx c на графике найти с

– Если (a>1) график (y=ax^2) получается растяжением графика (y=x^2) вдоль оси (y) в (a) раз.
– Если (a∈(0;1)) график (y=ax^2) получается сжатием графика (y=x^2) вдоль оси (y) в (a) раз.

Как по уравнению ax2 bx c на графике найти с

– График (y=a(x+d)^2) получается сдвигом графика (y=ax^2) влево на (d) единиц.
— График (y=a(x-d)^2) получается сдвигом графика (y=ax^2) вправо на (d) единиц.

Как по уравнению ax2 bx c на графике найти с

График (y=a(x+d)^2+e) получается переносом графика (y=a(x+d)^2) на (e) единиц вверх.
График (y=a(x+d)^2-e) получается переносом графика (y=a(x+d)^2) на (e) единиц вниз.

Как по уравнению ax2 bx c на графике найти с

У вас наверно остался вопрос — как этим пользоваться? Предположим, мы видим такую параболу:

Как по уравнению ax2 bx c на графике найти с

Сначала смотрим на её форму и направленность её ветвей. Видим, что форма стандартная, базовая и ветви направлены вверх, поэтому (a=1). То есть она получена перемещениями графика базовой параболы (y=x^2).

Как по уравнению ax2 bx c на графике найти с

А как надо было перемещать зеленый график чтоб получить оранжевый? Надо сдвинуться вправо на пять единиц и вниз на (4).

Как по уравнению ax2 bx c на графике найти с

То есть наша функция выглядит так: (y=(x-5)^2-4).
После раскрытия скобок и приведения подобных получаем искомую формулу:

Как по уравнению ax2 bx c на графике найти с

Чтобы найти (f(6)), надо сначала узнать формулу функции (f(x)). Найдем её:

Парабола растянута на (2) и ветви направлены вниз, поэтому (a=-2). Иными словами, первоначальной, перемещаемой функцией является функция (y=-2x^2).

Как по уравнению ax2 bx c на графике найти с

Парабола смещена на 2 клеточки вправо, поэтому (y=-2(x-2)^2).

Парабола поднята на 4 клеточки вверх, поэтому (y=-2(x-2)^2+4).

Видео:ЭЛЕМЕНТАРНО, ВАТСОН! Квадратичная Функция и ее график ПараболаСкачать

ЭЛЕМЕНТАРНО, ВАТСОН! Квадратичная Функция и ее график Парабола

Квадратичная функция. Построение параболы

Как по уравнению ax2 bx c на графике найти с

О чем эта статья:

8 класс, 9 класс, ЕГЭ/ОГЭ

Видео:Как найти все коэффициенты параболы по графику? Большой ответ на этот вопрос.Скачать

Как найти все коэффициенты параболы по графику? Большой ответ на этот вопрос.

Основные понятия

Функция — это зависимость «y» от «x», при которой «x» является переменной или аргументом функции, а «y» — зависимой переменной или значением функции.

Задать функцию означает определить правило, в соответствии с которым каждому значению аргумента соответствует единственное значение функции. Вот какими способами ее можно задать:

  • Табличный способ. Помогает быстро определить конкретные значения без дополнительных измерений или вычислений.
  • Графический способ: наглядно.
  • Аналитический способ, через формулы. Компактно и можно посчитать функцию при произвольном значении аргумента из области определения.
  • Словесный способ.

График функции — это объединение всех точек координатной плоскости, когда вместо «x» можно подставить в функцию произвольные значения и найти координаты этих точек.

Еще быстрее разобраться в теме и научиться строить график квадратичной функции можно на курсах по математике в онлайн-школе Skysmart.

Видео:КВАДРАТИЧНАЯ ФУНКЦИЯ y=ax2+bx+c свойства и график квадратичной функцииСкачать

КВАДРАТИЧНАЯ ФУНКЦИЯ y=ax2+bx+c свойства и график квадратичной функции

Построение квадратичной функции

Квадратичная функция задается формулой y = ax 2 + bx + c, где x и y — переменные, a, b, c — заданные числа, обязательное условие — a ≠ 0.

График квадратичной функции — парабола, которая имеет следующий вид для y = x 2 в частном случае при b = 0, c = 0:

Точки, обозначенные фиолетовыми кружками, называют базовыми точками. Чтобы найти их координаты для функции y = x 2 , нужно составить таблицу:

x

y

Если в уравнении квадратичной функции старший коэффициент равен единице, то график имеет ту же форму, как y = x 2 при любых значениях остальных коэффициентов. При увеличении старшего коэффициента график сужается, при уменьшении — расширяется.

График функции y = –x 2 выглядит, как перевернутая парабола:

Зафиксируем координаты базовых точек в таблице:

x

y

Посмотрев на оба графика можно заметить их симметричность относительно оси ОХ. Отметим важные выводы:

  • Если старший коэффициент больше нуля (a > 0), то ветви параболы напрaвлены вверх.
  • Если старший коэффициент меньше нуля (a 2 + bx + c. Чтобы найти точки пересечения с осью Ox, нужно решить квадратное уравнение ax 2 + bx + c = 0. В процессе найдем дискриминант D = b 2 — 4ac, который даст нам информацию о количестве корней квадратного уравнения.

Рассмотрим три случая:

  1. Если D 0,то график выглядит так:
  1. Если D = 0, то уравнение имеет одно решение, а парабола пересекает ось ОХ в одной точке. Если a > 0, то график имеет такой вид:
  2. Если D > 0, то уравнение имеет два решения, а парабола пересекает ось ОХ в двух точках, которые можно найти следующим образом:

Если a > 0, то график выглядит как-то так:

0″ height=»671″ src=»https://lh6.googleusercontent.com/8ryBuyxmK9S2EbnsNc4AE5PEl_NpIg0RAM_Y_V8wUP-zREEHNgi9QoQTl8FXxoujjWRAvf3s-MPRsXsoepaLLSTHDX-ReGtrsnLQp4dW3WaEyPF2ywjVpYFXlDIpAEHoIiwlxiB7″ width=»602″>

Теперь понятно, что, зная направление ветвей параболы и знак дискриминанта, мы можем схематично представить график конкретной функции.

Координаты вершины параболы также являются важным параметром графика квадратичной функции и находятся следующим способом:

Как по уравнению ax2 bx c на графике найти с

Ось симметрии параболы — прямая, которая проходит через вершину параболы параллельно оси OY.

Чтобы построить график, нам нужна точка пересечения параболы с осью OY. Так как абсцисса каждой точки оси OY равна нулю, чтобы найти точку пересечения параболы y = ax 2 + bx + c с осью OY, нужно в уравнение вместо х подставить ноль: y(0) = c. То есть координаты этой точки будут соответствовать: (0; c).

На изображении отмечены основные параметры графика квадратичной функции:

Видео:Квадратичная функция и ее график. 8 класс.Скачать

Квадратичная функция и ее график. 8 класс.

Алгоритм построения параболы

Рассмотрим несколько способов построения квадратичной параболы. Наиболее удобный способ можно выбрать в соответствии с тем, как задана квадратичная функция.

Видео:8 класс, 20 урок, Функция y=ax^2+bx+c, ее свойства и графикСкачать

8 класс, 20 урок, Функция y=ax^2+bx+c, ее свойства и график

Уравнение квадратичной функции имеет вид y = ax 2 + bx + c.

Разберем общий алгоритм на примере y = 2x 2 + 3x — 5.

Как строим:

  1. Определим направление ветвей параболы. Так как а = 2 > 0, ветви параболы направлены вверх.
  2. Найдем дискриминант квадратного трехчлена 2x 2 + 3x — 5.

D = b 2 — 4ac = 9 — 4 * 2 * (-5) = 49 > 0

В данном случае дискриминант больше нуля, поэтому парабола имеет две точки пересечения с осью ОХ. Чтобы найти их координаты, решим уравнение:

Точка пересечения с осью OY находится: (0; -5) относительно оси симметрии.

Нанесем эти точки на координатную плоскость и построим график параболы:

Как по уравнению ax2 bx c на графике найти с

Видео:Всё о квадратичной функции. Парабола | Математика TutorOnlineСкачать

Всё о квадратичной функции. Парабола | Математика TutorOnline

Уравнение квадратичной функции имеет вид y = a * (x — x₀) 2 + y₀

Зная координаты вершины параболы и старший коэффициент, можно записать уравнение квадратичной функции в виде у = a(x − x0) + y0, где x0, y0 — координаты вершины параболы.

Координаты его вершины: (x₀; y₀). В уравнении квадратичной функции y = 2x 2 + 3x — 5 при а = 1, то второй коэффициент является четным числом.

Рассмотрим пример: y = 2 * (x — 1) 2 + 4.

Как строим:

  1. Воспользуемся линейным преобразованием графиков функций. Для этого понадобится:
  • построить график функции y = x 2 ,
  • умножить ординаты всех точек графика на 2,
  • сдвинуть его вдоль оси ОХ на 1 единицу вправо,
  • сдвинуть его вдоль оси OY на 4 единицы вверх.

    Построить график параболы для каждого случая.

    Как по уравнению ax2 bx c на графике найти с

    Видео:ОГЭ по математике. Задание 5. Уравнение параболы. Коэффициент c.Скачать

    ОГЭ по математике. Задание 5. Уравнение параболы. Коэффициент c.

    Уравнение квадратичной функции имеет вид y = (x + a) × (x + b)

    Рассмотрим следующий пример: y = (x − 2) × (x + 1).

    Как строим:

    Данный вид функции позволяет быстро найти нули функции:

    (x − 2) × (x + 1) = 0, отсюда х₁ = 2, х₂ = −1.

    Определим координаты вершины параболы:

    Как по уравнению ax2 bx c на графике найти с

    Найти точку пересечения с осью OY:

    с = ab = (−2) × (1) = −2 и ей симметричная относительно оси симметрии параболы.

    Отметим эти точки на координатной плоскости и соединим плавной прямой линией.

    Видео:Определение знаков коэффициентов квадратного уравнения (параболы) по рисунку/ЗНО 2010 #25Скачать

    Определение знаков коэффициентов квадратного уравнения (параболы) по рисунку/ЗНО 2010 #25

    График квадратного трёхчлена

    График функции y = ax²

    Начертим на одном чертеже два графика:

    График с «минусом» — это та же парабола, только направленная ветками вниз, с вершиной в начале координат.

    Обе параболы взаимно симметричны относительно оси OX.

    Как по уравнению ax2 bx c на графике найти с

    Начертим на одном чертеже три графика:

    $$ y = x^2, y = 2x^2, y = frac x^2 $$

    Как по уравнению ax2 bx c на графике найти с

    Свойства графика y = ax²

    1. При любом a графиком функции $y = ax^2$ является парабола, с осью симметрии OY.

    2. Если $a gt 0$, ветки параболы $y = ax^2$ направлены вверх, точка минимума находится в начале координат; при $x lt 0$ функция убывает, при $x gt 0$ функция возрастает.

    Если $a lt 0$, ветки параболы $y = ax^2$ направлены вниз, точка максимума находится в начале координат; при $x lt 0$ функция возрастает, при $x gt 0$ функция убывает.

    3. Если $a gt 1$, парабола $y = ax^2$ быстрее уходит на бесконечность, чем $y = x^2$, её ветки расположены ближе к оси Y. Чем больше параметр a, тем больше сужаются ветки.

    Если $0 lt a lt 1$, парабола $y = ax^2$ медленней уходит на бесконечность, чем $y=x^2$, её ветки расположены дальше от оси Y. Чем меньше параметр a, тем больше расходятся ветки от оси OY.

    4. Для отрицательных значений $a lt 0$ ветки сужаются или расходятся аналогично.

    График функции y = ax²+c

    Начертим на одном чертеже три графика:

    $$ y = x^2, y = x^2+2, y = x^2-2 $$

    Прибавление двойки поднимает каждую точку исходного графика $y = x^2$ на 2 единицы вверх.

    Вычитание двойки – опускает каждую точку на 2 единицы вниз.

    Координаты вершины параболы $y = ax^2+c$ в общем случае: (0;c)

    Как по уравнению ax2 bx c на графике найти с

    Свойства графика y = ax²+c

    График $y = ax^2+c$ наследует все свойства графика y=ax² с той разницей, что вершина параболы теперь находится не в начале координат, а в точке (0;c) на оси OY.

    График функции y = a(x+d)²

    Начертим на одном чертеже три графика: $y = x^2, y = (x+2)^2, y = (x-2)^2$

    Как по уравнению ax2 bx c на графике найти с

    Прибавление двойки перед возведением в квадрат сдвигает исходный график $y = x^2$ на две единицы влево. Вычитание двойки – на две единицы вправо.

    В общем случае у параболы $y = a(x+d)^2$ координаты вершины (–d;0).

    Свойства графика y = a(x+d)²

    График $y = a(x+d)^2$ наследует все свойства графика $y = ax^2$ с той разницей, что вершина параболы теперь находится не в начале координат, а в точке (-d;0) на оси OX.

    График квадратного трёхчлена y = ax²+bx+c

    Чтобы проследить перемещение вершины графика $y = ax^2+bx+c$ по сравнению с параболой $y = ax^2$, перепишем квадратный трёхчлен в таком виде:

    Учитывая, что $D = b^2-4ac$, получаем:

    Разберём полученный результат.

    Как мы уже знаем, параметр a отвечает за направление веток параболы ($a gt 0$ — ветки вверх, $a lt 0$ – ветки вниз). Также, параметр a отвечает за сужение или расширение параболы ($|a| gt 1$ — парабола сужается, $|a| lt 1$ — парабола расширяется).

    Слагаемое $ frac$ в скобке $left(frac right)^2$ сдвигает вершину параболы влево.

    Слагаемое $(-frac)$ опускает вершину параболы вниз.

    График квадратного трёхчлена $ y = ax^2+bx+c$ — это парабола с вершиной в точке:

    Если $a gt 0$ , то ветви параболы направлены вверх, и в вершине – минимум.

    Если $a lt 0$ , то ветви параболы направлены вниз, и в вершине – максимум.

    Ось симметрии параболы: $x = -frac$ – прямая, параллельная оси OY.

    🎬 Видео

    Квадратичная функция за 5 минутСкачать

    Квадратичная функция за 5 минут

    Как легко составить уравнение параболы из графикаСкачать

    Как легко составить уравнение параболы из графика

    На рис. изображен график функции f(x)=ax^2+bx+c, где числа a, b и с – целые. Найдите f(-10).Скачать

    На рис. изображен график функции f(x)=ax^2+bx+c, где числа a, b и с – целые. Найдите f(-10).

    Задание 5 ОГЭ по математикеСкачать

    Задание 5 ОГЭ по математике

    Алгебра 8 класс (Урок№28 - Решение квадратных уравнений вида ax2 + bx + c = 0.Формула корней кв.ур.)Скачать

    Алгебра 8 класс (Урок№28 - Решение квадратных уравнений вида ax2 + bx + c = 0.Формула корней кв.ур.)

    ОГЭ Задание 10 Найти коэффициент a по графику квдратичной функцииСкачать

    ОГЭ Задание 10 Найти коэффициент a по графику квдратичной функции

    КАК НАЙТИ ВЕРШИНУ ПАРАБОЛЫСкачать

    КАК НАЙТИ ВЕРШИНУ ПАРАБОЛЫ

    Парабола. Квадратичная функцияСкачать

    Парабола. Квадратичная функция

    Задание 10 Квадратичная функция Знаки коэффициентов а и сСкачать

    Задание 10 Квадратичная функция Знаки коэффициентов а и с

    ОГЭ Задание 11 Нахождение коэффициента а по графику Два способаСкачать

    ОГЭ Задание 11 Нахождение коэффициента а по графику Два способа
Поделиться или сохранить к себе: