- Страницы работы
- Содержание работы
- 2. Математическое описание систем автоматического управления ч. 2.9 — 2.13
- 2.9. Использование обратных преобразований Лапласа для решения уравнений динамики САР (звена)
- Пример
- 2.10. Весовая и переходная функции звена (системы).
- 2.11. Определение переходного процесса в системе (САР) (звене) через весовую и переходную функции. Формула Дюамеля-Карсона
- 2.12. Mетод переменных состояния.
- Пример решения задачи в форме коши.
- 2.13. Переход от описания переменных «вход-выход» к переменным состояния и обратно
- 2.13.1. Правая часть содержит только b0*u(t)
- 2.13.2. Правая часть общего вида
- Пример:
- Как перевести передаточную функцию в дифференциальное уравнение
- 📽️ Видео
Страницы работы
Содержание работы
ПЕРЕХОД ОТ ПЕРЕДАТОЧНОЙ ФУНКЦИИ
К ДИФФЕРЕНЦИАЛЬНОМУ УРАВНЕНИЮ
Решение обратной задачи: от системы уравнений перейти к одному уравнению, в котором присутствуют выходная величина и входная величина.
При этом заменить на р.
РЕШЕНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ НА АВМ
1. Составление математической модели объекта (его математическое описание в виде системы дифференциальных уравнений).
2. Приведение уравнений к виду удобному для моделирования.
3. Масштабирование переменных, расчет коэффициентов передачи решающих усилителей и получение уравнений в машинном виде.
4. Составление структурной схемы модели.
5. Набор и настройка модели на АВМ.
6. Пробное решение контрольной задачи.
7. Выполнение программы исследования.
8. Анализ результатов и выводы.
ПРИВЕДЕНИЕ УРАВНЕНИЙ К ВИДУ УДОБНОМУ ДЛЯ МОДЕЛИРОВАНИЯ.
МЕТОД ПОНИЖЕНИЯ ПОРЯДКА ПРОИЗВОДНОЙ
Приведение уравнений к виду удобному для моделирования – это разрешение уравнений системы относительно старшей производной системы уравнений.
1) В правой части уравнения отсутствуют производные по х.
Вид удобный для моделирования:
Метод понижения порядка производной, который заключается в том, что с помощью сумматора реализуется старшая производная выходной величины, а затем путем последовательного интегрирования получают производные более низких порядков и саму выходную величину.
2) В правой части уравнения имеются производные по входным величинам.
где x(t), z(t) – входные величины.
Приводим к виду удобному для моделирования:
Схема аналоговой модели:
МАСШТАБИРОВАНИЕ ЗАВИСИМЫХ И НЕЗАВИСИМЫХ ПЕРЕМЕННЫХ.
РАСЧЕТ КОЭФФИЦИЕНТОВ ПЕРЕДАЧИ РЕШАЮЩИХ УСИЛИТЕЛЕЙ.
СОСТАВЛЕНИЕ МАШИННЫХ УРАВНЕНИЙ
;
LS = 20 мГн = 0,02 Гн;
Необходимо разработать аналоговую модель объекта:
1. Составляем математическое описание цепи, используя метод узловых потенциалов:
Приводим к виду удобному для моделирования, т.е. решаем относительно старшей производной:
Операция масштабирования переменных.
1. Приведение всех зависимых переменных к виду напряжений.
2. Величины напряжений не должны превышать максимально допустимой величины для данной АВМ (100 В).
3. Масштабирование независимой переменно (времени) решает задачу удобства наблюдения результатов моделирования при минимальных затратах времени на моделирование.
Для определения масштабов определяют максимальные значения переменных. При определении максимальных значений исходят из наиболее жестких режимов для данной цепи. Уточнение – решение контрольной задачи.
1. Umax = Е = 220 В
с -1
2. imax – режим короткого замыкания в нагрузке:
А
Принимаем imax = 20 А.
4. Переходим к машинным переменным.
В системе уравнений, описывающих объект, заменим реальные переменные на машинные, умноженные на масштаб.
Избавимся от масштабов в левой части:
Определим коэффициенты передачи решающих усилителей:
Видео:Видеометодичка. Практикум по нахождению передаточных функций по дифференциальным уравнениямСкачать
2. Математическое описание систем автоматического управления ч. 2.9 — 2.13
Лекции по курсу «Управление Техническими Системами», читает Козлов Олег Степанович на кафедре «Ядерные реакторы и энергетические установки», факультета «Энергомашиностроения» МГТУ им. Н.Э. Баумана. За что ему огромная благодарность.
Данные лекции только готовятся к публикации в виде книги, а поскольку здесь есть специалисты по ТАУ, студенты и просто интересующиеся предметом, то любая критика приветствуется.
В предыдущих сериях:
В это части будут рассмотрены:
2.9. Использование обратных преобразований Лапласа для решения уравнений динамики САР (звена).
2.10. Весовая и переходная функции звена (системы).
2.11. Определение переходного процесса в системе (САР) (звене) через весовую и переходную функции.
2.12. Mетод переменных состояния.
2.13. Переход от описания переменных «вход-выход» к переменным состояния.
Попробуем применить, полученные знания на практике, создавая и сравнивая расчетные модели в разных видах. Будет интересно познавательно и жестко.
2.9. Использование обратных преобразований Лапласа для решения уравнений динамики САР (звена)
Рассмотрим динамическое звено САР изображенное на рисунке 2.9.1
Предположим, что уравнение динамики имеет вид:
где: — постоянные времени;
— коэффициент усиления.
Пусть известны отображения:
Найдем изображения для производных:
Подставим полученные выражения в уравнение динамики и получим уравнение динамики в изображениях:
B(s) — слагаемое, которое определяется начальными условиями, при нулевых начальных условиях B(s)=0.
W(s) — передаточная функция.
Передаточной функцией САР (звена) называется отношение изображений выходного сигнала к входному воздействию при нулевых н.у.
После того, как в явном виде найдено изображение для неизвестной выходной величины, нахождение оригинала не представляет сложностей. Либо по формуле Хэвисайда, либо разложением на элементарные дроби, либо по таблице из справочника.
Пример
Построить выходной сигнал звена САР при единичном входном воздействии и нулевых начальных условиях, если уравнение динамики звена имеет следующий вид:
входное воздействие: — единичное ступенчатое воздействие.
Выполним преобразование Лапласа:
Подставим в уравнение динамики и получим уравнение динамики в изображениях:
Для получения выходного сигнала из уравнения в изображениях выполним обратное преобразования Лапласа:
2.10. Весовая и переходная функции звена (системы).
Определение: Весовой функцией звена (системы) называется реакция системы при нулевых н.у. на единичное импульсное воздействие.
Определение: Переходной функцией звена (системы) при н.у. называется реакция на единичное ступенчатое воздействие.
На этом месте можно вспомнить, что преобразование Лапласа это интеграл от 0 до бесконечности по времени (см. предыдущий текст), а импульсное воздействие при таком интегрировании превращается в 1 тогда в изображениях получаем что:
Передаточная функция играет роль изображения реакции звена или системы на единичное импульсное воздействие.
Для единичного ступенчатого воздействия преобразование Лапласа тоже известно (см. предыдущий текст):
тогда в изображениях получаем, что реакция системы на ступенчатое воздействие, рассчитывается так:
Реакция системы на единичное ступенчатое воздействие рассчитывается обратным преобразованием Лапласа:
2.11. Определение переходного процесса в системе (САР) (звене) через весовую и переходную функции. Формула Дюамеля-Карсона
Предположим, что на вход системы поступает произвольное воздействие x(t), заранее известное. Найти реакцию системы y(t), если известны входное воздействие x(t) и весовая функция w(t).
Представим, что входное воздействие представляет собой последовательность прямоугольных импульсов до времени t и ступеньки высотой x(t) в момент времени t. см.рис. 2.11 Для каждого импульса мы можем записать реакцию системы через весовую функциию:
где:
— значение отклика по завершению предыущего импульса;
— время завершения текущего импульса;
— значение весовой функции в начале текущего импульса.
Тогда для определения занчения отклика в произвольный момент времени необходимо сложить все импульсы и ступенчатое воздействие в момент времени t:
Переходя к пределам
если перейти от t к бесконечности мы получим формулу интеграла Дюамеля-Карсона, или по другому «интеграла свертки» который обеспечивает вычисление оригинала функции по произвдению изображения двух функций:
где — вспомогательное время
Для вывода аналогичной зависмости от переходной функции вспомним что изображение весовой и переходной функции связаны соотношением: запишем выражение изображения для отклика в операторной форме:
Используя интеграл свертки получаем, что при известной переходной функции (h(t)) и известному входному воздействию х(t) выходное воздействие рассчитывается как:
2.12. Mетод переменных состояния.
До этого мы рассматривали системы с одной передаточной функцией, но жизнь всегда сложнее и как правило в системах есть несколько передаточных функций несколько входных воздейстий и несколько реакций системы. (см. рис. 2.12.1)
В этом случае наиболее удобной формой пердставления систем для их анализа и расчета оказался метод переменных состояния. Для этого метода, вместо передаточных функций связывающих вход с выходом используются дополнительные переменные состояния, которые описывают систему. В этом случае можно говорить, что состояние системы — это та минимальная информация о прошлом, которая необходима для полного описания будущего поведения (т.е. выходов) системы, если поведение ее входов известно. см. рис. 2.12.2
В методе состояний, производные всех переменных состояния, в общем случае зависит от всех переменных и всех входных воздействия, и могут быть записаны в представленной ниже системы обыкновенных дифференциальных уравнений (ОДУ) первой степени. Эта система уравнений называю системой ОДУ в форме Коши:
Выход из системы зависит от переменных состояния и, в общем случае от входных воздействий и описывается следующей системой уравнений:
где:
n — количество перемнных состояния,
m — количество входных воздействий,
p — количество выходных переменных;
Данная система уравнений может быть записана в матричной форме:
где:
— вектор входа (или вектор управления);
— вектор столбец производных переменных состояния;
— вектор столбец переменных состояния;
— вектор выхода;
— собственная матрица системы [n x n],
— постоянные коэффициенты;
— матрица входа [n x m],
— постоянные коэффициенты;
— матрица выхода а [p x n],
— постоянные коэффициенты;
— матрица обхода [p x m],
— постоянные коэффициенты;
В нашем случае почти всегда все элементы матрицы D будут нулевыми: D = 0.
Такое описание системы позволяет с одной стороны стандартным образом описывать различные технические системы. Явная формула для расчета производных позволяет достаточно просто осуществлять численное интегрирование по времени. И это используется в различных программах моделирования
Другое использование данного представления для простых систем, описанных в переменных «вход-выход», зачастую позволяет устранить технические трудности, связанные с решением ОДУ высокой степени.
Еще одним преимуществом данного описания, является то, что уравнения в форме Коши можно получить из законов физики
Пример решения задачи в форме коши.
Рассмотрим задачу моделирования гидравлического привода, при следующих условиях:
Дано:
Цилиндрический плунжер диаметром 10 мм, с приведенной массой 100 кг, работает на пружину жесткостью 200 Н/мм и демпфер с коэффициентом вязкого трения — 1000 Н/(м/с). Полость начальным объемом 20 см 3 соединяется с источником давлния дросселем диаметром диаметр которого 0,2 мм. Коэффициент расхода дросселя 0.62. Плотность рабочей жидкости ρ = 850 кг/м 3 .
Определить:
Перемещение дросселя, если в источнике давление происходит скачек 200 бар. см. рис. 2.12.13
Уравенение движение плунжера:
Где: – площадь плунжера, – жесткость пружины, – коэффициент вязкого трения, p – давление в камере.
Поскольку дифференциальное движения это уравнение второго порядка, превратим его в систему из двух уравнений первого порядка, добавив новую переменную — скорость , тогда
Уравнение давления в камере, для упрощения принимаем что изменениям объема камеры из-за перемещения плунжера можно пренебречь:
Где: Q – расход в камеру, V — объем камеры.
Расход через дроссель:
Где: f– площадь дросселя, – давление в источнике, p – давление в камере.
Уравнение дросселя не линейное, по условию задачи, давление входное изменяется скачком, от 0 до 200 бар, проведем линеаризацию в окрестности точки давления 100 бар тогда:
Подставляем линеаризованную формул расхода в формулу давления:
Таким образом общая система уравнений в форме Коши, для рис 2.12.3 привода принимает вид:
Матрицы A, B, С, В для матричной формы системы уравнений принимают вид:
Проверим моделированием в SimInTech составленную модель. На рисунке 2.12.13 представлена расчетная схема содержащая три модели:
1 — «Честная» модель со всеми уравнениями без упрощений.
2 — Модель в блоке «Переменные состояние» (в матричной форме).
3 — Модель в динамическом блоке с линеаризованным дросселем.
Все условия задачи задаются как глобальные константы проекта, в главном скрипте проекта, там же расчитываются на этапе инициализации расчета, площади плунжера и проходного сечения дросселя см. рис. 2.12.5:
Рисунок 2.12.5 Глобальный скрипт проекта.
Модель на внутреннем языке программирования представлена на рис. 2.12.6. В данной модели используется описание модели в форме Коши. Так же выполняется учет изменения объема дросселя на каждом шаге расчета, за счет перемещения плунжера (Vk = V0+Ap*x.)
Рисунок 2.12.6 Скрипт расчета модели в форме Коши.
Модель в матричном форме задается с использованием глобальных констант в виде формул. (Матрица в SimInTech задается в виде последовательности из ее столбцов) см. рис. 2.12.7
Результаты расчета показывают, что модель в матричной форме и модель на скриптовом языке в форме Коши, практически полностью совпадают, это означает, что учет изменения объема полости практически не влияют на результаты. Кривые 2 и З совпадают.
Процедура линеаризация расхода через дроссель вызывает заметное отличие в результатах. 1-й график c «честной» моделью дросселя, отличается от графиков 2 и 3. (см. рис. 2.12.8)
Сравним полученные модели, с моделью созданной из библиотечных блоков SimInTech, в которых учитываются так же изменение свойств реальной рабочей жидкости — масла АМГ-10. Сама модель представлена на рис. 2.12.9, набор графиков на рисунке 2.12.10
На графиках видно, что уточненная модель отличается от предыдущих, однако погрешность модели составлят наших упрощенных моделей составляют примерно 10%, в лишь в некоторые моменты времени.
2.13. Переход от описания переменных «вход-выход» к переменным состояния и обратно
Рассмотрим несколько вариантов перехода от описания «вход-выход», к переменным состояния:
Вариант прехода зависит от правой части уравнения с переменными «вход-выход»:
2.13.1. Правая часть содержит только b0*u(t)
В этом варианте, в уравнениях в правой части отсутствуют члены с производными входной величины u(t). Пример с плунжером выше так же относится к этому варианту.
Что бы продемонстрировать технологию перехода рассмотрим следующее уровнение:
Для перехода к форме Коши ведем новые переменные:
И перепишем уравнение относительно y»'(t):
Используя эти переменные можно перейти от дифференциального уравнения 3-го прядка, к системе из 3-х уравнений первого порядка в форме Коши:
Соотвественно матрицы для матричного вида уравнений в переменных сосотяния:
2.13.2. Правая часть общего вида
Более сложный случай, когда в уравнениях есть производные от входных воздействий и уравнение в общем случае выглядит так:
Сделаем преобразования: перейдем к уравнениям динамики в изображениях:
Тогда можно представить уравнение в изображениях в виде:
Разделим уравнение в изображениях на произведение полиномов , получим:
Где: — некоторая комплексная величина (отношение двух комплексных величин). Можно считать, что отображение величины . Тогда входная величина может быть в изображениях представлена как:
Вренемся к оригиналу от изображений получим: ,
где: — дифференциальный оператор.
А это дифференциальное уравнение n-го порядка мы можем преобразовать к системе из n дифференциальных уравнений первого порядка, как это мы делали выше:
Таким образом, мы получили систему уравнение в форе Коши, относительно переменных состояния :
А регулируемую величину (выход системы) мы так же можем выразить через эти переменные, в изображениях:
Перейдем от изображения к оригиналам:
Если обозначить вектор , то мы получим уравнения переменных состояниях в матричной форме, где D = 0:
Пример:
Рисунок 2.13.1 Передаточная функция.
Имеется передаточная функция (рис. 2.13.1) в изображениях :
Необходимо преобразовать передаточную функцию к системе уравнений в форме Коши
В изображения реакция системы связана с входным воздействие соотношением:
Разделим в последнем правую и левую часть на произведения , и введем новую перменную :
Полиномы N(s) и L(s) равны:
Перейдем в последнем выражении от изображения к оригиналам и ведем новые переменные (состояния):
Переходим от уравнения третьего порядка к системе трех уравнений первого порядка:
Или в матричной форме:
Для получения второго матричного уравнения воспользуемся соотношением для новых переменных в отображениях:
Перейдем от изображений к оригиналу:
Таким образом второе уравнение матричной системы выглядит так:
Проверим в SimInTech сравнив передаточную функцию и блок переменных состояния, и убедимся, что графики совпадают см. рис. 2.13.2
Рисунок 2.13.2 Сравнение переходного процеса у блока передаточной функции и блока переменных состояния.
Видео:7) ТАУ для чайников.Части 3.4 и 3.5 : Передаточная функция. Преобразование Лапласа...Скачать
Как перевести передаточную функцию в дифференциальное уравнение
Глава 4. Динамические свойства САР
4.1. Дифференциальные уравнения и передаточные функции САР
Динамические свойства системы можно описать аналитическими или экспериментальными характеристиками. К первым относятся дифференциальные уравнения и передаточные функции. Дифференциальные уравнения
где а и b – постоянные коэффициенты;
m≤n – целые числа.
Постоянные коэффициенты характеризуют параметры системы.
П е р е д а т о ч н а я функция W(p) – это отношение преобразования Лапласа для выходной величины к преобразованию Лапласа для входной величины при нулевых начальных условиях. Формально W(p) представляет собой более удобный вид записи дифференциального уравнения с заменой операции дифференцирования умножением на оператор р =(d/ dt ).
Преобразования Лапласа позволяет заменить функцию вещественного переменного, например, времени f(t), функцией комплексного переменного F(p) при помощи интеграла
В преобразовании Лапласа функция вещественного переменного f(t) называется оригиналом, функция комплексного переменного F(p) называется изображением. Переход от оригинала f(t) к изображению F(p) записывается в виде прямого преобразования Лапласа
переход от изображения к оригиналу записывается в виде обратного преобразования Лапласа
Каждой операции над оригиналом соответствует определенная операция над изображением. В частности, операциям дифференцирования и интегрирования оригиналов соответствуют более простые операции умножения и деления изображений на оператор р в степени, соответствующей порядку производной или кратности интеграла.
Обозначив преобразование Лапласа для х(t) через x(p) и для y(t) через y(p) т.е. x(p)=L[x(t)] , y(p)=L[y(t)]. Применив преобразование Лапласа к дифференциальному уравнению системы при нулевых начальных условиях, получим уравнение САР в операторной форме
C уравнением в операторной форме можно выполнять любые действия как с обыкновенным алгебраическим уравнением, и, в частности, вычислить
Таким образом, передаточная функция вычисляется из дифференциального уравнения как частное от деления оператора К( р) его правой части на оператор H(p) левой части. При р =0, в установившемся режиме, W(0) =b0/a0 =K – передаточная функция становится равной статическому коэффициенту передачи. Для линейных систем передаточная функция (как и диф . уравнение) исчерпывающе характеризует реакцию системы на любые возмущения, так как W(p) не зависит от формы возмущения. Зная W(p), можно определить y(p) и y(t):
( т.е. чтобы определить реакцию системы y(t), необходимо найти изображение возмущения x(p), умножить его на передаточную функцию, а затем перейти от изображения к оригиналу. Пользуясь этим правилом, можно установить, как проходит через линейную систему сигнал любой формы.
4.2.Экспериментальные динамические характеристики САР
В ряде случаев динамические свойства достаточно полно могут быть описаны экспериментальными характеристиками. Экспериментальные динамические характеристики показывают, как реагирует система на типовые стандартные возмущения -с тупенчатое, импульсное, гармоническое. Рассмотрим динамические характеристики, имеющие наибольшее практическое значение.
Переходная характеристика h(t) — (рис.16) описывает реакцию системы на типовое ступенчатое однократное
Рис.16 – Переходная характеристика САР
скачкообразное возмущение, т.е. переходной процесс, вызванный этим возмущением. Для t const . Обычно рассматривается единичное ступенчатое возмущение u(t)=x(t)=1 при t ≥0. Это возмущени является наиболее распространенным на практике (мгновенный сброс или приложение нагрузки, скачок температуры, давления, напряжении т.п.). По виду h(t) можно определить общие динамические свойства системы. Аналитическое уравнение переходной функции h(t) можно получить, решая диф . уравнение системы при x(t)=1(t) и нулевых начальных условиях. Связь между h(t) и W(p) устанавливается следующим образом. Изображение по Лапласу единичной функции L[u(t)]=1/p соответствует изображение выходной величины
Переходя от изображения к оригиналу получим
т.е. для нахождения переходной функции необходимо умножить передаточную функцию на 1/p, а затем найти оригинал этого изображения.
Частотные характеристики ( ЧХ) описывают реакцию системы в установившемся состоянии на входное возмущение, представляющее собой периодическую функцию времени, т.е. линейную комбинацию sin ωt , cos ωt , где ω=2πf -круговая частота.
Рис.17 – Типы возмущений
На практике необходимо знать реакцию системы на наиболее часто встречающиеся возмущения типа прямоугольная (рис.17,а), треугольная (рис.17,б), трапецеидальная (рис.17,в) волна и др. Получить аналитическое описание таких возмущений довольно сложная задача. Поэтому такие возмущения разлагаются в ряды Фурье и реакция САР исследуется на гармонические составляющие этого разложения.
Рассмотрим основные виды частотных характеристик и их физический смысл. Если на вход линейной САР подать гармонические возмущения вида x(t)= X·sin ( ωt ), или в показательной форме записи комплексного числа
то после завершения переходного процесса на выходе установятся гармонические колебания (рис.18),
или в показательной форме записи комплексного числа
Рис.18 – Переходной процесс в САР
Частота колебаний на входе и выходе совпадают, но их амплитуды и фазы в общем случае отличаются. Если при постоянных амплитуде и фазе входных колебаний изменять их частоту и при этом измерять амплитуды и фазы выходных установившихся колебаний, то можно определить следующие общепринятые частотные характеристики:
1)амплитудно–частотная (амплитудная – АЧХ) представляет собой зависимость отношения амплитуды выходных и входных колебаний от частоты
2) фазо – частотная (фазовая – ФЧХ) представляет собой сдвиг по фазе выходных колебаний относительно входных в зависимости от частоты
3) амплитудно — фазовая частотная характеристика (АФЧХ) определяет зависимость от частоты комплексного коэффициента передачи
Рассмотрим теперь способы представления различных ЧХ и их связь между собой и другими динамическими характеристиками. АФЧХ W( jω ) является комплексной величиной. Если принять комплексную форму записи в соответствии с (19) и (20), то получим
W( jω )= [Y· e j( ωt+φ ) ]/ ( X·e jωt )=(Y/X)· e jφ .
Если рассматривать изменение ω в определенном диапазоне (обычно 0 ≤ ω ≤∞), то модуль функции W( jω ) представляет АЧХ, а ее аргумент —Ф ЧХ, т.е.
При использовании алгебраической формы записи комплексного числа W( jω ) можно представить в виде суммы вещественной R(ω) и мнимой I(ω) составляющих
АЧХ и ФЧХ удобно представлять в прямоугольных координатах (рис.19,а ,б ), АФЧХ -в прямоугольных или полярных. В первом случае по оси абсцисс откладывается вещественная часть, а по оси ординат — мнимая часть АФЧХ (рис.19,в).
В полярной системе координат для каждого фиксированного значения ω длина радиус -в ектора равна значению А(ω), а угол между этим вектором и положительной полуосью абсцисс —φ(ω) (рис.19,в).
Рис.19 – Графическое представление частотных характеристик
Изображением АФЧХ служит геометрическое место точек концов радиус-вектора (годограф вектора) в положительной плоскости при изменении ω от 0 до +∞. Для частоты— ∞
Связь между W( jω ) и передаточной функцией W(p) устанавливается с помощью интегрального преобразования Фурье F( jω ) для периодической функции времени f(t), записываемого в комплексной форме
Преобразования Фурье и Лапласа имеют одну и ту же математическую форму и все операции, относящиеся к прямым и обратным преобразованиям Лапласа, распространяются и на преобразование Фурье. Для нахождения преобразования Фурье для функции f(t) достаточно найти ее преобразование Лапласа и в него вместо оператора р подставить jω :
Значение для АФЧХ можно получить из W(p) путем подстановки в него вместо р комплексной переменной jω : W( jω )=W(p)p= jω .
4.3.Логарифмические частотные характеристики
Построение и применение ЧХ ( амплитудной и фазовой) значительно упрощается при использовании логарифмического масштаба. Амплитудная ЧХ, построенная в логарифмическом масштабе, называется логарифмической амплитудной частотной характеристикой —Л АЧХ. При построении ЛАЧХ единицей измерения для оси абсцисс принимается декада, т.е. десятикратное изменение частоты (например, интервал ω от 0,1 до 1) и октаву — двухкратное изменение частоты. Модуль IW( jω )I отсчитывается в логарифмических единицах децибеллах (рис.20). Обозначив ЛАЧХ через L(ω), можно получить ее значение из ординат амплитудно-частотной характеристики А (ω).
Рис.20 –Логарифмический масштаб для ЛАЧХ
Децибел является единицей логарифмической относительной величиной. Изменению отношения двух величин в 10 раз соответствует изменение усиления на 20 децибелл . Так как АЧХ А( ω) представляет собой отношение двух амплитуд: амплитуды колебаний на выходе к амплитуде колебаний на входе, то изменению усиления на 20 децибелл соответствует изменению отношения двух амплитуд в 10 раз.
А(ω) 0,0001 0,001 0,01 0,1 1 10 100 1000 10000
L(ω) ,дб -80 -60 -40 -20 0 20 40 60 80
Если отношение двух величин рано единице, то усиление равно нулю, т.к. lg 1=0. Это означает, что амплитуды выходных и входных колебаний равны между собой. В случае, когда отношение двух величин меньше единицы, усиление в логарифмическом масштабе будет отрицательным. Отрицательное усиление означает ослабление сигнала или уменьшение амплитуды выходных колебаний по сравнению с амплитудой колебаний на входе. Логарифмическая фазовая частотная характеристика ЛФЧХ строится в полулогарифмическом масштабе — по оси абсцисс откладывается ω в логарифмическом масштабе в декадах, по оси ординат —φ, в угловых градусах или радианах -л инейный масштаб. Логарифмические частотные характеристики получили широкое применение в автоматике. Они дают наиболее простой и наглядный способ построения ЧХ, т.к. позволяют аппроксимировать экспериментальные ЧХ, имеющие вид плавной кривой, ломаной кривой, отрезки которой являются асимптотическими прямыми, к которым стремиться ЧХ в данном интервале частот.
1.Что описывают дифференциальные уравнения САР?
2.Что такое передаточная функция системы регулирования?
3.В чем заключается преобразование Лапласа?
4.Что описывает переходная характеристика ?
5. Какие Вы знаете частотные характеристики и что они описывают?
6.В чем смысл преобразования Фурье?
7.Что такое ЛАЧХ?
📽️ Видео
[ТАУ]Записать передаточную функцию устройства [Составить диф. ур-е для условия передачи напряжения]Скачать
Откуда появляются дифференциальные уравнения и как их решатьСкачать
13. Как решить дифференциальное уравнение первого порядка?Скачать
18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать
Дифференциальные уравнения, 1 урок, Дифференциальные уравнения. Основные понятияСкачать
proТАУ: 1. Передаточная функцияСкачать
2. Дифференциальные уравнения с разделяющимися переменными. Часть 1.Скачать
Передаточные функцииСкачать
Задача Коши ➜ Частное решение линейного однородного дифференциального уравненияСкачать
9. Метод вариации произвольной постоянной ( метод Лагранжа ). Линейные дифференциальные уравнения.Скачать
Дифференциальные уравнения. 11 класс.Скачать
Дифференциал функцииСкачать
Дифференциальные уравнения, 2 урок, Дифференциальные уравнения с разделяющимися переменнымиСкачать
Решение дифференциальных уравнений. Практическая часть. 11 класс.Скачать
Решение физических задач с помощью дифференциальных уравненийСкачать
Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентамиСкачать
ТАУ│Передаточная функция устройстваСкачать