Как отличить дифференциальные уравнения первого порядка

Обыкновенные дифференциальные уравнения

Содержание:

Содержание
  1. Обыкновенные дифференциальные уравнения
  2. Основные понятия о дифференциальных уравнениях
  3. Дифференциальные уравнения первого порядка
  4. Дифференциальные уравнения с разделенными переменными
  5. Дифференциальные уравнения с разделяющимися переменными
  6. Однородные дифференциальные уравнения
  7. Линейные дифференциальные уравнения
  8. Дифференциальное уравнение Бернулли
  9. Обыновенное дефференциальное уравнение
  10. Основные понятия и определения
  11. Примеры с решением
  12. Системы обыкновенных дифференциальных уравнений
  13. Системы дифференциальных уравнений первого порядка
  14. Системы линейных дифференциальных уравнений с постоянными коэффициентами
  15. Виды дифференциальных уравнений
  16. Дифференциальные уравнения первого порядка
  17. Простейшие дифференциальные уравнения первого порядка вида y ‘ = f ( x )
  18. Дифференциальные уравнения с разделяющимися переменными вида f 1 ( y ) · g 1 ( x ) d y = f 2 ( y ) · g 2 ( x ) d x или f 1 ( y ) · g 1 ( x ) · y ‘ = f 2 ( y ) · g 2 ( x )
  19. Линейные неоднородные дифференциальные уравнения первого порядка y ‘ + P ( x ) · y = Q ( x )
  20. Дифференциальное уравнение Бернулли y ‘ + P ( x ) y = Q ( x ) y a
  21. Уравнения в полных дифференциалах P ( x , y ) d x + Q ( x , y ) d y = 0
  22. Дифференциальные уравнения второго порядка
  23. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами y ‘ ‘ + p y ‘ + q y = 0 , p , q ∈ R
  24. Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами y ‘ ‘ + p y ‘ + q y = f ( x ) , p , q ∈ R
  25. Линейные однородные дифференциальные уравнения (ЛОДУ) y ‘ ‘ + p ( x ) · y ‘ + q ( x ) · y = 0 и линейные неоднородные дифференциальные уравнения (ЛНДУ) второго порядка y ‘ ‘ + p ( x ) · y ‘ + q ( x ) · y = f ( x )
  26. Дифференциальные уравнения высших порядков
  27. Дифференциальные уравнения, допускающие понижение порядка
  28. Линейные однородные и неоднородные дифференциальные уравнения высших порядков с постоянными коэффициентами y ( n ) + f n — 1 · y ( n — 1 ) + . . . + f 1 · y ‘ + f 0 · y = 0 и y ( n ) + f n — 1 · y ( n — 1 ) + . . . + f 1 · y ‘ + f 0 · y = f ( x )
  29. Линейные однородные и неоднородные дифференциальные уравнения высших порядков y ( n ) + f n — 1 ( x ) · y ( n — 1 ) + . . . + f 1 ( x ) · y ‘ + f 0 ( x ) · y = 0 и y ( n ) + f n — 1 ( x ) · y ( n — 1 ) + . . . + f 1 ( x ) · y ‘ + f 0 ( x ) · y = f ( x )
  30. Системы дифференциальных уравнений вида d x d t = a 1 x + b 1 y + c 1 d y d t = a 2 x + b 2 y + c 2
  31. Типы дифференциальных уравнений
  32. Дифференциальные уравнения первого порядка
  33. Особенности дифференциальных уравнений первого порядка
  34. Дифференциальные уравнения первого порядка, разрешенные относительно производной
  35. Уравнения с разделяющимися переменными
  36. Однородные уравнения
  37. Линейные дифференциальные уравнения и приводящиеся к ним
  38. Уравнения Риккати
  39. Уравнения Якоби
  40. Уравнения в полных дифференциалах
  41. Интегрирующий множитель
  42. Уравнения, не разрешенные относительно производной y′
  43. Уравнения, допускающие решение относительно производной y′
  44. Уравнения, не разрешенные относительно производной y′
  45. Уравнения, разрешенные относительно зависимой переменной y
  46. Дифференциальные уравнения высших порядков
  47. Дифференциальные уравнения высших порядков, решаемые в квадратурах
  48. Уравнения, содержащие переменную и старшую производную
  49. Уравнения, содержащие только производные порядков n и n-1
  50. Уравнения, содержащие только производные порядков n и n-2
  51. Дифференциальные уравнения, допускающие понижение порядка
  52. Линейные дифференциальные уравнения с постоянными коэффициентами и приводящиеся к ним
  53. 🎬 Видео

Видео:7. Линейные дифференциальные уравнения первого порядка. Метод Бернулли.Скачать

7. Линейные дифференциальные уравнения первого порядка. Метод Бернулли.

Обыкновенные дифференциальные уравнения

При решении многих задач математики, техники, экономики и других отраслей науки бывает трудно установить закон, связывающий искомые и известные переменные величины. Но удается установить связь между производными или дифференциалами этих переменных, которая выражается уравнениями или системами уравнений. Такие уравнения называют дифференциальными уравнениями. Термин «дифференциальное уравнение» введен в 1676 году В. Лейбницом.

Мы рассмотрим только уравнения с функциями одной переменной и обычными производными, которые называют обычными дифференциальными уравнениями.

Основные понятия о дифференциальных уравнениях

Определение. Дифференциальным уравнением называется уравнение, которое связывает независимую переменную x, искомую функцию y = f (x) и еепроизводные или дифференциалы разных порядков, то есть уравнение
Как отличить дифференциальные уравнения первого порядка(7.1)

Важно понять, что искомая функция в дифференциальном уравнении входит под знак дифференциала или под знак производной.

Определение. Порядком дифференциального уравнения называется наивысший порядок производной от неизвестной функции, входящей в дифференциальное уравнение.

Так, уравнение y’ – 2 xy 2 + 5 = 0 является дифференциальным уравнением первого порядка, а уравнения y» + 2 y’ – y – sin x = 0 — дифференциальным уравнением второго порядка.

Определение. Решением дифференциального уравнения (7.1) называется такая функция y = φ (x), которая при подстановке в уравнение (7.1) превращает его в тождество.

Например, для дифференциального уравнения
y’- 2 x = 0 (7.2)
решением является функция y = x 2 . Найдем производную y’= 2x и подставим в уравнение, получим: 2x – 2x = 0, 0 ≡ 0.

Следует заметить, что y = x 2 не единственное решение уравнения. Это уравнение имеет бесконечное множество решений, которые можно записать так: y = x 2 + C.

Дифференциальные уравнения первого порядка

Определение. Дифференциальным уравнением первого порядка называется уравнение, которое связывает независимую переменную x, искомую функцию y = f (x) и ее первую производную:
F (x, y, y’) = 0.
(7.3)

Поскольку производную можно записать в виде отношения дифференциалов, то в уравнение производная может не входить, а будут входить дифференциалы неизвестной функции и независимой переменной.

Если уравнение (7.2) решить относительно у’, то оно будет иметь вид:
y’= f (x, y) или Как отличить дифференциальные уравнения первого порядка. (7.4)

Простые примеры показывают, что дифференциальное уравнение может иметь бесконечное множество решений. Это мы видим на примере уравнения (7.2). Легко убедиться также, что дифференциальное уравнение Как отличить дифференциальные уравнения первого порядкаимеет решениями функции y = Cx, а дифференциальное уравнение Как отличить дифференциальные уравнения первого порядка— функции Как отличить дифференциальные уравнения первого порядкагде C — произвольное число.

Как видим, в решение указанных дифференциальных уравнений входит произвольное число C. Предоставляя постоянной C различные значения, будем получать различные решения дифференциального уравнения.

Определение. Общим решением дифференциального уравнения (7.3) называется функция
у = φ (х, С), (7.5)
которая зависит от одной произвольной постоянной и удовлетворяет дифференциальное уравнение при произвольном значении C.

Если функция (7.5) выражается неявно, то есть в виде
Ф (х, у, С) = 0, (7.6)
то (7.6) называется общим интегралом дифференциального уравнения.

Определение. Частным решением дифференциального уравнения (7.3) называется такое решение, которое получается из общего решения (7.5) при некотором конкретном значении постоянной C.

Ф (х, у, С0) называется частным интегралом дифференциального уравнения.

На практике при решении конкретных задач часто приходится находить не все решения, а решение, которое удовлетворяет определенным начальным условиям. Одной из таких задач является задача Коши, которая для дифференциального уравнения первого порядка формулируется так: среди всех решений дифференциального уравнения (7.3) найти такое решение y, которое при заданном значении независимой переменной x = x0 равна заданному значению y0 , то есть y (x0) = y0 или Как отличить дифференциальные уравнения первого порядка(7.7)

Условие (7.7) называется начальным условием решения.

Покажем на примере, как найти частное решение дифференциального уравнения, когда известно общее решение и задано начальное условие.

Мы видим, что дифференциальное уравнение Как отличить дифференциальные уравнения первого порядкаимеет общее решение y = Cx. Зададим начальное условие Как отличить дифференциальные уравнения первого порядка. Подставим эти значения в общее решение, получим 6 = 2С, откуда С = 3. Следовательно, функция y = 3x удовлетворяет и дифференциальное уравнение, и начальное условие.

Ответ на вопрос о том, при каких условиях уравнение (7.4) имеет
решение, дает теорема Коши.

ТЕОРЕМА (о существовании и единственности решения). Если функция f (x, y) и ее частная производная Как отличить дифференциальные уравнения первого порядка определены и непрерывные в области G, которая содержит точку M0 (x0; y0) , то существует единственное решение y = φ (x) уравнения (7.4), которое удовлетворяет начальному условию: y (x0) = y0.

Теорема Коши дает достаточные условия существования единого решения дифференциального уравнения (7.4). Заметим, что в условии теоремы не требуется существования частной производной Как отличить дифференциальные уравнения первого порядка.

График произвольного частного решения дифференциального уравнения называется интегральной кривой. Общему решению отвечает семья кривых. Так мы проверили, что уравнение Как отличить дифференциальные уравнения первого порядкаимеет общее решение y = Cx, то ему соответствует семья прямых,
которые проходят через начало координат (рис. 1).

Уравнение Как отличить дифференциальные уравнения первого порядкаимеет общее решение, ему соответствует семья равносторонних гипербол (рис. 2).
Как отличить дифференциальные уравнения первого порядка

Если задано начальное условие Как отличить дифференциальные уравнения первого порядкато это означает, что задана точка M0 (x0;y0), через которую должна проходить интегральная кривая, отвечающая искомому частному решению. Таким образом, отыскание частного решения дифференциального уравнения по заданному начальному условию геометрически означает, что из семьи
интегральных кривых мы выбираем проходящую через точку M0 (x0; y0).

Надо заметить, что нахождение решения дифференциального уравнения часто называют интегрированием уравнения. При этом операцию интегрирования функций называют квадратурой.

Общего метода решения дифференциальных уравнений первого порядка не существует. Рассмотрим некоторые методы решения отдельных типов дифференциальных уравнений.

Дифференциальные уравнения с разделенными переменными

Определение. Уравнение вида
f1 (y) dy = f2 (x) dx,
(7.8)
где f1 (y) и f2 (x) — заданные функции, называется дифференциальным уравнением с разделенными переменными.

В этом уравнении каждая из переменных находится только в той части уравнения, где находится ее дифференциал. Уравнение dy = f (x) dx является частным случаем уравнения (7.8). Чтобы решить уравнение (7.8), надо проинтегрировать обе его части:
Как отличить дифференциальные уравнения первого порядка.

Понятно, что произвольную постоянную С можно записывать в любой части равенства.

Пример 1. Решить дифференциальное уравнение:
Как отличить дифференциальные уравнения первого порядка, удовлетворяющее начальному условию Как отличить дифференциальные уравнения первого порядка

Решение. Проинтегрируем левую и правую части уравнения, причем для удобства потенцирования, произвольную постоянную запишем в виде ln |C| получим:
Как отличить дифференциальные уравнения первого порядка
Как отличить дифференциальные уравнения первого порядка
Как отличить дифференциальные уравнения первого порядка— это общее решение дифференциального уравнения.
Подставляя в общее решение начальное условие, найдем С: 2 = С.
Итак,
Как отличить дифференциальные уравнения первого порядкаявляется частным решением данного уравнения.

Дифференциальные уравнения с разделяющимися переменными

Определение. Уравнение вида
f1 (x) f2 (y) + g1 (x) g2 (y) = 0
(7.9)
называется дифференциальным уравнением с разделяющимися переменными.

В этом уравнении переменные еще не разделены, но, поделив обе части уравнения на произведение f2 (y) g1 (x), получим уравнение с разделенными переменными:
Как отличить дифференциальные уравнения первого порядка

Интегрируя это уравнение, запишем
Как отличить дифференциальные уравнения первого порядка.

Получили общий интеграл данного уравнения.

Пример 2. Решить дифференциальное уравнение
x (y + 1) dx – (x 2 + 1) ydy = 0.

Решение. Поделим обе части этого уравнения на (y + 1) (x 2 + 1), после чего получим
Как отличить дифференциальные уравнения первого порядка.

Интегрируя, получим
Как отличить дифференциальные уравнения первого порядка Как отличить дифференциальные уравнения первого порядкаКак отличить дифференциальные уравнения первого порядка
Как отличить дифференциальные уравнения первого порядка— общий интеграл дифференциального уравнения.

Пример 3. Найти частное решение дифференциального уравнения (1 + x 2 ) dy + ydx = 0, удовлетворяющее начальному условию y (0) = 1.

Решение. Отделим переменные, поделив уравнение на y ⋅ (1 + x 2 ), и проинтегрируем данное уравнение:
Как отличить дифференциальные уравнения первого порядка

Получили общий интеграл дифференциального уравнения.

Используя начальное условие, найдем произвольную постоянную С:
ln 1 + arctg 0 = C, откуда C = 0.

Найденную постоянную подставим в общий интеграл и отыщем частное решение:
Как отличить дифференциальные уравнения первого порядкаоткуда Как отличить дифференциальные уравнения первого порядка

Однородные дифференциальные уравнения

Определение. Функция двух переменных f (x, y) называется однородной n- го измерения, если выполняется условие
Как отличить дифференциальные уравнения первого порядка

Например, f (x, y) = x 2 + y 2 , f (tx, ty) = t 2 f (x 2 + y 2 ) — однородная функция второго измерения.

Определение. Дифференциальное уравнение
y ‘= f (x, y) (7.10)
называется однородным, если функция f (x, y) однородная нулевого измерения.

Покажем, что это уравнение можно свести к уравнению с разделенными переменными.
Рассмотрим функцию f (tx, ty). Сделаем замену Как отличить дифференциальные уравнения первого порядкабудем иметь:
Как отличить дифференциальные уравнения первого порядка
Тогда уравнение (7.10) запишется в виде Как отличить дифференциальные уравнения первого порядка(7.11)
В общем случае переменные в однородном уравнение не разделяются сразу. Но, если ввести вспомогательную неизвестную функцию u = u (x) по формуле
Как отличить дифференциальные уравнения первого порядкаили y = xu, (7.12)
то мы сможем превратить однородное уравнение в уравнение с разделенными переменными.

Из формулы (7.12) найдем y’ = u + xu’ и уравнение Как отличить дифференциальные уравнения первого порядкапримет вид: u + xu’ = φ (u),
то есть Как отличить дифференциальные уравнения первого порядка, откуда Как отличить дифференциальные уравнения первого порядка.

После интегрирования получим Как отличить дифференциальные уравнения первого порядка
Отсюда находим выражение для функции u, возвращаемся к переменной y = xu и получим решение однородного уравнения.

Чаще всего не удается найти функцию u явно выраженной, тогда, после интегрирования, в левую часть следует подставить Как отличить дифференциальные уравнения первого порядкавместо u.
В результате получим решение уравнения в неявном виде.

Пример 1. Найти решение однородного уравнения

Как отличить дифференциальные уравнения первого порядка

Решение. Заменой y = xu сведем заданное уравнение к уравнению
Как отличить дифференциальные уравнения первого порядкаили Как отличить дифференциальные уравнения первого порядка.

Отделяя переменные, найдем
Как отличить дифференциальные уравнения первого порядкаоткуда Как отличить дифференциальные уравнения первого порядкаили Как отличить дифференциальные уравнения первого порядка, то есть
Как отличить дифференциальные уравнения первого порядка.
Возвращаясь к переменной y, получим общее решение: Как отличить дифференциальные уравнения первого порядка.

Линейные дифференциальные уравнения

Определение. Линейным дифференциальным уравнением первого порядка называется уравнение, которое содержит искомую функцию и ее производную в первой степени без их произведения:
y’ + P (x) y = Q (x). (7.13)

Здесь P (x), Q (x) — известные функции независимой переменной x. Например, y’ + 2 xy = x 2 .

Если Q (x) = 0, то уравнение (7.13) называется линейным однородным и является уравнением с разделяющимися переменными.

Если Q (x) ≠ 0, то уравнение (7.13) называется линейным неоднородным, которое можно решить несколькими способами.

Рассмотрим метод Бернулли, с помощью которого уравнение (7.13) можно свести к интегрированию двух дифференциальных уравнений первого порядка с разделяющимися переменными.

Решение дифференциального уравнения (7.13) ищем в виде y = u (x) v (x) или y = uv, (7.14)
где u (x), v (x) — неизвестные функции. Одну из этих функций можно взять произвольную, а другая определяется из уравнения (7.13).

Из равенства y = uv найдем производную y’:
y’= u’ ⋅ v + u⋅ v’.

Подставим y и y’ в уравнение (7.13):
u’v + uv’ + P (x) ⋅ u⋅ v = Q (x) или u’v + u (v’ + P (x) ⋅ v) = Q (x).

Выберем функцию v такой, чтобы v’ + P (x) v = 0. (7.15)
Тогда для отыскания функции u получим уравнение:
u’v = Q (x). (7.16)

Сначала найдем v из уравнения (7.15).
Отделяя переменные, имеем Как отличить дифференциальные уравнения первого порядка, откуда
Как отличить дифференциальные уравнения первого порядка

Под неопределенным интегралом здесь будем понимать какую-то одну первообразную от функции P (x), то есть v будет определенной функцией от x.

Зная v, находим u из уравнения (7.16):
Как отличить дифференциальные уравнения первого порядка
откуда Как отличить дифференциальные уравнения первого порядка

Здесь мы уже берем для u все первообразные.

Найденные функции u и v подставляем в (7.14) и получаем общее решение линейного дифференциального уравнения:
Как отличить дифференциальные уравнения первого порядка(7.17)

При решении конкретных примеров проще выполнять эти выкладки, чем применять громоздкую формулу (7.17).

Пример 1. Решить дифференциальное уравнение Как отличить дифференциальные уравнения первого порядка.
Решение. Решение ищем в виде y = uv, тогда y’= u’ ⋅ v + u⋅ v’.
Подставим y и y’ в уравнение: Как отличить дифференциальные уравнения первого порядкаили
Как отличить дифференциальные уравнения первого порядка. (7.18)

Выражение, стоящее в скобках, приравниваем к нулю, имеем
Как отличить дифференциальные уравнения первого порядкаили Как отличить дифференциальные уравнения первого порядка

Отделим переменные, домножив обе части уравнения на Как отличить дифференциальные уравнения первого порядка, тогда Как отличить дифференциальные уравнения первого порядка.
После интегрирования, получим ln |v| = ln |x| (здесь ограничимся одной первообразной), откуда v = x.
Подставим v = x в уравнение (7.18):
Как отличить дифференциальные уравнения первого порядка

Общее решение запишется:
y = x (x + C) = x 2 + Cx.

Пример 2. Найти частное решение дифференциального уравнения Как отличить дифференциальные уравнения первого порядкакоторый удовлетворяет начальному условию y (0) = 0.

Решение. Заданное уравнение — это линейное неоднородное уравнение первого порядка, решение которого ищем в виде y = u⋅v.
Тогда Как отличить дифференциальные уравнения первого порядка
Как отличить дифференциальные уравнения первого порядка

Подставим v в уравнение и найдем u:
Как отличить дифференциальные уравнения первого порядка

Общее решение дифференциального уравнения будет:
Как отличить дифференциальные уравнения первого порядка

Подставляем начальные условия в найденное решение и находим С:
Как отличить дифференциальные уравнения первого порядка

Из общего решения получаем частное решение
Как отличить дифференциальные уравнения первого порядка.

Дифференциальное уравнение Бернулли

Определение. Уравнения вида
Как отличить дифференциальные уравнения первого порядка(или Как отличить дифференциальные уравнения первого порядка)
называется дифференциальным уравнением Бернулли.

Данное уравнение отличается от уравнения (7.13) только множителем (или ) в правой части. Для того, чтобы права часть данного уравнения была такой, как в (7.13), разделим его левую и праву часть на :
Как отличить дифференциальные уравнения первого порядка

Сделаем замену: Как отличить дифференциальные уравнения первого порядкаКак отличить дифференциальные уравнения первого порядка
Домножим левую и правую части полученного уравнения на (n + 1) и, используя замену, получим:
Как отличить дифференциальные уравнения первого порядка
Как отличить дифференциальные уравнения первого порядка

Мы получили линейное дифференциальное уравнение относительно новой переменной Как отличить дифференциальные уравнения первого порядка

Пример 1. Найти общее решение дифференциального уравнения xy’ + y = y 2 ln x.

Решение. Как отличить дифференциальные уравнения первого порядка.
Сделаем замену Как отличить дифференциальные уравнения первого порядкаТогда Как отличить дифференциальные уравнения первого порядка

Как отличить дифференциальные уравнения первого порядка

Данное уравнение решим, сделав замену z = u (x) ⋅ v (x).
Как отличить дифференциальные уравнения первого порядка

Выбираем функцию v (x) так, чтобы выражение в скобках равнялось нулю, и эта функция была бы частным решением уравнения
Как отличить дифференциальные уравнения первого порядка

Тогда Как отличить дифференциальные уравнения первого порядка.

Проинтегрировав правую часть этого уравнения по частям, получим Как отличить дифференциальные уравнения первого порядка, а при y -1 = z = uv, имеем
Как отличить дифференциальные уравнения первого порядка

Видео:18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать

18+ Математика без Ху!ни. Дифференциальные уравнения.

Обыновенное дефференциальное уравнение

Обыкновенным дифференциальным уравнением называется любое соотношение, связывающее независимую переменную Как отличить дифференциальные уравнения первого порядкаискомую функцию Как отличить дифференциальные уравнения первого порядкаи производные искомой функции Как отличить дифференциальные уравнения первого порядкадо некоторого порядка включительно.

Обыкновенное дифференциальное уравнение может быть приведено к виду

Как отличить дифференциальные уравнения первого порядка

Здесь Как отличить дифференциальные уравнения первого порядка— известная функция, заданная в некоторой области Как отличить дифференциальные уравнения первого порядка

Число Как отличить дифференциальные уравнения первого порядкат. е. наивысший из порядков производных, входящих в (1), называется порядком уравнения.

Обыкновенные дифференциальные уравнения первого порядка, разрешенные относительно производной. уравнения, интегрируемые в квадратурах

По этой ссылке вы найдёте полный курс лекций по высшей математике:

Основные понятия и определения

Понятие об уравнении первого порядка, разрешенном относительно производной. В соответствии со сказанным во введении, уравнение первого порядка имеет вид

Как отличить дифференциальные уравнения первого порядка

В этой главе мы будем рассматривать уравнение, разрешенное относительно производной:

Как отличить дифференциальные уравнения первого порядка

Наряду с этим уравнением мы всегда будем рассматривать перевернутое уравнение

Как отличить дифференциальные уравнения первого порядка

используя последнее в окрестности тех точек, в которых Как отличить дифференциальные уравнения первого порядкаобращается в бесконечность.

Во многих случаях оказывается целесообразным «место уравнении (2) и (2′) рассматривать одно равносильное им дифференциальное уравнение

Как отличить дифференциальные уравнения первого порядка

Обе переменные Как отличить дифференциальные уравнения первого порядкаи Как отличить дифференциальные уравнения первого порядкавходят в это уравнение уже равноправно, и любую из них мы можем принять за независимую переменную.

Умножая обе части уравнения (3) на некоторую функцию Как отличить дифференциальные уравнения первого порядкаполучаем более симметричное уравнение:

Как отличить дифференциальные уравнения первого порядка

где Как отличить дифференциальные уравнения первого порядкаОбратно, всякое уравнение вида (4) можно переписать в виде уравнений (2) или (2′), разрешая его относительно Как отличить дифференциальные уравнения первого порядкаили Как отличить дифференциальные уравнения первого порядкатак что уравнение (4) равносильно следующим двум уравнениям:

Как отличить дифференциальные уравнения первого порядка

Иногда уравнение записывают *з так называемой симметрической форме:

Как отличить дифференциальные уравнения первого порядка

Возможно вам будут полезны данные страницы:

Решение уравнения. Предположим, что правая часть уравнения (2), Как отличить дифференциальные уравнения первого порядкаопределена на некотором подмножестве Как отличить дифференциальные уравнения первого порядкавещественной плоскости Как отличить дифференциальные уравнения первого порядкаФункцию Как отличить дифференциальные уравнения первого порядкаопределенную в интервале Как отличить дифференциальные уравнения первого порядкамы будем называть решением уравнения (2) в этом интервале*, если:

  1. Существует производная Как отличить дифференциальные уравнения первого порядкадля всех значений Как отличить дифференциальные уравнения первого порядкаиз интервала Как отличить дифференциальные уравнения первого порядка(Отсюда следует, что решение Как отличить дифференциальные уравнения первого порядкапредставляет собою функцию, непрерывную ею всей области определения).
  2. Функция Как отличить дифференциальные уравнения первого порядкаобращает уравнение (2) в тождество: Как отличить дифференциальные уравнения первого порядка

справедливое для всех значений Как отличить дифференциальные уравнения первого порядкаиз интервала Как отличить дифференциальные уравнения первого порядкаЭто означает, что при любом Как отличить дифференциальные уравнения первого порядкаиз интервала Как отличить дифференциальные уравнения первого порядкаточка Как отличить дифференциальные уравнения первого порядкапринадлежит множеству Как отличить дифференциальные уравнения первого порядкаи Как отличить дифференциальные уравнения первого порядка

Так как наряду с уравнением (2) рассматривается перевернутое уравнение (2′), то и решения Как отличить дифференциальные уравнения первого порядкаэтого перевернутого уравнения естественно присоединять к решениям уравнения (2).

В этом смысле в дальнейшем мы будем для краткости называть решения уравнения (2′) решениями уравнения (2).

Примеры с решением

Пример 1.

Как отличить дифференциальные уравнения первого порядка

является решением уравнения

Как отличить дифференциальные уравнения первого порядка

в интервале Как отличить дифференциальные уравнения первого порядкаибо она определена и дифференцируема в эгои интервале, и, подставляя се в уравнение (9), получаем тождество:

Как отличить дифференциальные уравнения первого порядка

справедливое при всех значениях Как отличить дифференциальные уравнения первого порядка

Пример 2.

Функция Как отличить дифференциальные уравнения первого порядкаесть решение равнения Как отличить дифференциальные уравнения первого порядкав интервале Как отличить дифференциальные уравнения первого порядка

Пример 3.

Как отличить дифференциальные уравнения первого порядка

является решением уравнения Как отличить дифференциальные уравнения первого порядка

в интервале Как отличить дифференциальные уравнения первого порядка

Иногда функцию Как отличить дифференциальные уравнения первого порядкаобращающую уравнение (2) в тождество (7), т. е. решение уравнения (2), называют интегралом этого уравнения. Мы будем употреблять термин интеграл только в смысле п. 16.

Видео:13. Как решить дифференциальное уравнение первого порядка?Скачать

13. Как решить дифференциальное уравнение первого порядка?

Системы обыкновенных дифференциальных уравнений

При решении многих задач нужно найти функции y1 = y1 (x), y2 = y2 (x), . yn = yn (x), которые удовлетворяют системе дифференциальных уравнений, содержащих независимую переменную x , искомые y1 , y2 , . yn и их производные.

Пример. Пусть материальная точка массы m имеет криволинейную траекторию движения в пространстве. Определить положение точки в любой момент времени t, когда на нее действует сила Как отличить дифференциальные уравнения первого порядка.

Положение точки в любой момент времени t определяется ее координатами x, y, z; следовательно, x, y, z являются функциями от t. Проекциями вектора скорости точки на оси координат будут производные x’ , y’ , z’.
Положим, что силаКак отличить дифференциальные уравнения первого порядка, а соответственно и ее проекции Fx, Fy, Fz зависят от времени t, от положения x, y, z точки и от скорости движения точки, то есть от Как отличить дифференциальные уравнения первого порядка. Искомыми неизвестными функциями в этой задаче будут три функции x = x (t), y = y (t), z = z (t). Эти
функции определяются из уравнений динамики:
Как отличить дифференциальные уравнения первого порядка

Мы получили систему трех дифференциальных уравнений второго порядка. В случае движения, когда траектория является плоской кривой, лежит, например, в плоскости Оxy, получим систему двух уравнений для определения неизвестных функций x (t) и y (t):
Как отличить дифференциальные уравнения первого порядка

Рассмотрим простейшие системы дифференциальных уравнений.

Системы дифференциальных уравнений первого порядка

Система n уравнений первого порядка с n неизвестными функциями имеет вид:
Как отличить дифференциальные уравнения первого порядка(7.38)

где x — независимая переменная, y1, y2, . yn — неизвестные функции.

Если в левой части уравнений системы стоят производные первого порядка, а правые части уравнений вовсе не содержат производных, то такая система уравнений называется нормальной.

Решением системы называется совокупность функций y1, y2, . yn, которые превращают каждое уравнение системы в тождество относительно x.

Задача Коши для системы (7.38) состоит в нахождении функций y1, y2, . yn , удовлетворяющих систему (7.38) и заданные начальные условия:
Как отличить дифференциальные уравнения первого порядка(7.39)

Интегрирование системы (7.38) делают следующим образом. Дифференцируем по x первое уравнение системы (7.38):
Как отличить дифференциальные уравнения первого порядка
Заменим производные
Как отличить дифференциальные уравнения первого порядкаих выражениями f1, f2, . fn из уравнений системы (7.38), получим уравнение
Как отличить дифференциальные уравнения первого порядка
Дифференцируем полученное уравнение и, подставив в это равенство значения производных из системы (7.38), найдем
Как отличить дифференциальные уравнения первого порядка
Продолжая дальше таким образом, получим
Как отличить дифференциальные уравнения первого порядка
В результате получаем следующую систему уравнений:
Как отличить дифференциальные уравнения первого порядка(7.40)

Из первых (n-1) уравнений определим y2, y3, . yn:
Как отличить дифференциальные уравнения первого порядка(7.41)

и подставим их значения в последнее уравнение системы (7.40) для определения y1: Как отличить дифференциальные уравнения первого порядка

Продифференцируем это выражение (n-1) раз, определим
Как отличить дифференциальные уравнения первого порядкакак функции от x, C1, C2, . Cn. Подставим эти функции в (7.41), найдем
Как отличить дифференциальные уравнения первого порядка(7.43)

Для того, чтобы полученное решение удовлетворяло заданным начальным условиям, остается только найти значение произвольных постоянных из уравнений (7.42) и (7.43) так, как мы это делали для одного дифференциального уравнения.

Пример 1. Проинтегрировать систему
Как отличить дифференциальные уравнения первого порядка
когда заданы начальные условия Как отличить дифференциальные уравнения первого порядка
Решение. Дифференцируем по x первое уравнение, имеем:
Как отличить дифференциальные уравнения первого порядка. Подставляем сюда значение Как отличить дифференциальные уравнения первого порядкаи Как отличить дифференциальные уравнения первого порядкаиз системы, получим Как отличить дифференциальные уравнения первого порядка
Как отличить дифференциальные уравнения первого порядка

Из первого уравнения системы найдем Как отличить дифференциальные уравнения первого порядкаи подставим в полученное нами уравнение:
Как отличить дифференциальные уравнения первого порядкаили Как отличить дифференциальные уравнения первого порядка

Общим решением этого уравнения является
Как отличить дифференциальные уравнения первого порядка (*)
и тогда Как отличить дифференциальные уравнения первого порядка (**)

Подберем постоянные С1 и С2 так, чтобы выполнялись начальные условия. На основании (*) и (**) имеем:
1 = С1 – 9; 0 = С2 – 2С1 + 14, откуда С1 = 10, С2 = 6.
Таким образом, решением системы, которое удовлетворяет заданным начальным условиям, будет:
Как отличить дифференциальные уравнения первого порядка

Системы линейных дифференциальных уравнений с постоянными коэффициентами

Система дифференциальных уравнений:
Как отличить дифференциальные уравнения первого порядка(7.44)
где коэффициенты aij — постоянные числа, t — независимая переменная, x1 (t), . xn (t)
неизвестные функции, называется системой линейных дифференциальных уравнений с постоянными коэффициентами.

Эту систему можно решать путем сведения к одному уравнению n-го порядка, как это было показано выше. Но эту систему можно решить и другим способом. Покажем, как это делается.

Будем искать решение системы (7.44) в виде:
Как отличить дифференциальные уравнения первого порядка(7.45)

Надо определить постоянные α1, α2, . αn и k так, чтобы функции (7.45) удовлетворяли систему (7.44). Подставим функции (7.45) в систему (7.44):
Как отличить дифференциальные уравнения первого порядка

Сократим на e kt и преобразуем систему, сведя ее к такой системе:
Как отличить дифференциальные уравнения первого порядка(7.46)

Это система линейных алгебраических уравнений относительно α1, α2, . αn. Составим определитель системы:
Как отличить дифференциальные уравнения первого порядка

Мы получим нетривиальные (ненулевые) решения (7.45) только при таких k, при которых определитель превратится в ноль. Получаем уравнение n-го порядка для определения k:
Как отличить дифференциальные уравнения первого порядка

Это уравнение называется характеристическим уравнением для системы (7.44).

Рассмотрим отдельные случаи на примерах:

1) Корни характеристического уравнения действительны и различны. Решение системы записывается в виде:
Как отличить дифференциальные уравнения первого порядка

Пример 2. Найти общее решение системы уравнений:
Как отличить дифференциальные уравнения первого порядка

Решение. Составим характеристическое уравнение:
Как отличить дифференциальные уравнения первого порядкаили k 2 – 5k + 4 = 0, корни которого k1 = 1, k2 = 4.

Решение системы ищем в виде
Как отличить дифференциальные уравнения первого порядка

Составим систему (7.46) для корня k1 и найдем Как отличить дифференциальные уравнения первого порядкаи Как отличить дифференциальные уравнения первого порядка:
Как отличить дифференциальные уравнения первого порядкаили Как отличить дифференциальные уравнения первого порядка

Откуда Как отличить дифференциальные уравнения первого порядкаПоложив Как отличить дифференциальные уравнения первого порядкаполучим Как отличить дифференциальные уравнения первого порядка
Итак, мы получили решение системы:
Как отличить дифференциальные уравнения первого порядка

Далее составляем систему (7.46) для k = 4:
Как отличить дифференциальные уравнения первого порядка

Откуда Как отличить дифференциальные уравнения первого порядка
Получим второй решение системы: Как отличить дифференциальные уравнения первого порядка
Общее решение системы будет:
Как отличить дифференциальные уравнения первого порядка

2) Корни характеристического уравнения различны, но среди них есть комплексные:

k1 = α + iβ, k2 = α – iβ. Этим корням будут отвечать решения:

Как отличить дифференциальные уравнения первого порядка(7.47)

Как отличить дифференциальные уравнения первого порядка(7.48)

Можно доказать также, что истинные и мнимые части комплексного решения также будут решениями. Таким образом, получим два частных решения:
Как отличить дифференциальные уравнения первого порядка(7.49)
где Как отличить дифференциальные уравнения первого порядка— действительные числа, которые определяются через Как отличить дифференциальные уравнения первого порядка.

Соответствующие комбинации функций (7.49) войдут в общий решение системы.

Пример 3. Найти общее решение системы
Как отличить дифференциальные уравнения первого порядка

Решение. Составляем характеристическое уравнение:
Как отличить дифференциальные уравнения первого порядкаили k 2 + 12k + 37 = 0, корни которого k1 = –6 + i, k2 = –6 – i .

Подставляем поочередно k1, k2 в систему (7.46), найдем
Как отличить дифференциальные уравнения первого порядка

Запишем уравнение (7.47) и (7.48) для наших данных
Как отличить дифференциальные уравнения первого порядка

Перепишем эти решения в таком виде:

Как отличить дифференциальные уравнения первого порядка

За частные решения можно взять отдельно действительные и отдельно мнимые части:
Как отличить дифференциальные уравнения первого порядка

Общим решением системы будет

Как отличить дифференциальные уравнения первого порядка

Как отличить дифференциальные уравнения первого порядка

Как отличить дифференциальные уравнения первого порядка

Присылайте задания в любое время дня и ночи в ➔ Как отличить дифференциальные уравнения первого порядкаКак отличить дифференциальные уравнения первого порядка

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Видео:Линейное дифференциальное уравнение первого порядка (1-x^2)*y'-xy=1Скачать

Линейное дифференциальное уравнение первого порядка (1-x^2)*y'-xy=1

Виды дифференциальных уравнений

Существует целый ряд задач, в которых установить прямую связь между величинами, применяемыми для описания процесса, не получается. Единственное, что можно сделать, это получить равенство, запись которого включает производные исследуемых функций, и решить его. Решение дифференциального уравнения позволяет установить непосредственную связь между величинами.

В этом разделе мы займемся разбором решений дифференциальных уравнений, неизвестная функция в которых является функцией одной переменной. Мы построили теоретическую часть таким образом, чтобы даже человек с нулевым представлением о дифференциальных уравнениях мог без труда получить необходимые знания и справиться с приведенными задачами.

Если какие-то термины окажутся для вас новыми, обратитесь к разделу «Определения и понятия теории дифференциальных уравнений». А тем временем перейдем к рассмотрению вопроса о видах дифференциальных уравнений.

Для каждого из видов дифференциальных уравнений применяется свой метод решения. В этом разделе мы рассмотрим все эти методы, приведем примеры с подробными разборами решения. После ознакомления с темой вам необходимо будет определять вид дифференциального уравнения и выбирать наиболее подходящий из методов решения поставленной задачи.

Возможно, прежде чем приступить к решению дифференциальных уравнений, вам придется освежить в памяти такие темы как «Методы интегрирования» и «Неопределенные интегралы».

Начнем ознакомление с темой мы с видов обыкновенных дифференциальных уравнений 1 -го порядка. Эти уравнения могут быть разрешены относительно производной. Затем перейдем в ОДУ 2 -го и высших порядков. Также мы уделим внимание системам дифференциальных уравнений.

Напомним, что y ‘ = d x d y , если y является функцией аргумента x .

Видео:Математика без Ху!ни. Линейное неоднородное уравнение 1 порядка. Метод вариации постоянной.Скачать

Математика без Ху!ни. Линейное неоднородное уравнение 1 порядка. Метод вариации постоянной.

Дифференциальные уравнения первого порядка

Простейшие дифференциальные уравнения первого порядка вида y ‘ = f ( x )

Начнем с примеров таких уравнений.

y ‘ = 0 , y ‘ = x + e x — 1 , y ‘ = 2 x x 2 — 7 3

Оптимальным для решения дифференциальных уравнений f ( x ) · y ‘ = g ( x ) является метод деления обеих частей на f ( x ) . Решение относительно производной позволяет нам прийти к уравнению вида y ‘ = g ( x ) f ( x ) . Оно является эквивалентом исходного уравнения при f ( x ) ≠ 0 .

Приведем примеры подобных дифференциальных уравнений:

e x · y ‘ = 2 x + 1 , ( x + 2 ) · y ‘ = 1

Мы можем получить ряд дополнительных решений в тех случаях, когда существуют значения аргумента х , при которых функции f ( x ) и g ( x ) одновременно обращаются в 0 . В качестве дополнительного решения в уравнениях f ( x ) · y ‘ = g ( x ) при заданных значениях аргумента может выступать любая функция, определенная для заданного значения х .

Наличие дополнительных решений возможно для дифференциальных уравнений x · y ‘ = sin x , ( x 2 — x ) · y ‘ = ln ( 2 x 2 — 1 )

Ознакомиться с теоретической частью и примерами решения задач таких уравнений вы можете в разделе «Простейшие дифференциальные уравнения 1 -го порядка».

Дифференциальные уравнения с разделяющимися переменными вида f 1 ( y ) · g 1 ( x ) d y = f 2 ( y ) · g 2 ( x ) d x или f 1 ( y ) · g 1 ( x ) · y ‘ = f 2 ( y ) · g 2 ( x )

Поговорим теперь об уравнениях с разделенными переменными, которые имеют вид f ( y ) d y = g ( x ) d x . Как следует из названия, к данному виду дифференциальных уравнений относятся выражения, которые содержат переменные х и у , разделенные знаком равенства. Переменные находятся в разных частях уравнения, по обе стороны от знака равенства.

Решить уравнения с разделенными переменными можно путем интегрирования обеих его частей: ∫ f ( y ) d y = ∫ f ( x ) d x

К числу дифференциальных уравнений с разделенными переменными можно отнести следующие из них:

y 2 3 d y = sin x d x , e y d y = ( x + sin 2 x ) d x

Для того, чтобы прийти от ДУ с разделяющимися переменными к ДУ с разделенными переменными, необходимо разделить обе части уравнения на произведение f 2 ( y ) ⋅ g 1 ( x ) . Так мы придем к уравнению f 1 ( y ) f 2 ( y ) d y = g 2 ( x ) g 1 ( x ) d x . Преобразование можно будет считать эквивалентным в том случае, если одновременно f 2 ( y ) ≠ 0 и g 1 ( x ) ≠ 0 . Если хоть одно из условий не будет соблюдаться, мы можем потерять часть решений.

В качестве примеров дифференциальных уравнений с разделяющимися переменными можно привести следующие из них: d y d x = y · ( x 2 + e x ) , ( y 2 + a r c cos y ) · sin x · y ‘ = cos x y .

К уравнениям с разделяющимися переменными мы можем прийти от ряда дифференциальных уравнений других видов путем замены переменных. Например, мы можем подставить в исходное уравнение z = a x + b y . Это позволит нам перейти к дифференциальному уравнению с разделяющимися переменными от дифференциального уравнения вида y ‘ = f ( a x + b y ) , a , b ∈ R .

Подставив z = 2 x + 3 y в уравнение y ‘ = 1 e 2 x + 3 y получаем d z d x = 3 + 2 e z e z .

Заменив z = x y или z = y x в выражениях y ‘ = f x y или y ‘ = f y x , мы переходим к уравнениям с разделяющимися переменными.

Если произвести замену z = y x в исходном уравнении y ‘ = y x · ln y x + 1 , получаем x · d z d x = z · ln z .

В ряде случаев прежде, чем производить замену, необходимо произвести преобразования исходного уравнения.

Предположим, что в условии задачи нам дано уравнение y ‘ = y 2 — x 2 2 x y . Нам необходимо привести его к виду y ‘ = f x y или y ‘ = f y x . Для этого нам нужно разделить числитель и знаменатель правой части исходного выражения на x 2 или y 2 .

Нам дано уравнение y ‘ = f a 1 x + b 1 y + c 1 a 2 x + b 2 y + c 2 , a 1 , b 1 , c 1 , a 2 , b 2 , c 2 ∈ R .

Для того, чтобы привести исходное уравнение к виду y ‘ = f x y или y ‘ = f y x , нам необходимо ввести новые переменные u = x — x 1 v = y — y 1 , где ( x 1 ; y 1 ) является решением системы уравнений a 1 x + b 1 y + c 1 = 0 a 2 x + b 2 y + c 2 = 0

Введение новых переменных u = x — 1 v = y — 2 в исходное уравнение y ‘ = 5 x — y — 3 3 x + 2 y — 7 позволяет нам получить уравнение вида d v d u = 5 u — v 3 u + 2 v .

Теперь выполним деление числителя и знаменателя правой части уравнения на u . Также примем, что z = u v . Получаем дифференциальное уравнение с разделяющимися переменными u · d z d u = 5 — 4 z — 2 z 2 3 + 2 z .

Подробный разбор теории и алгоритмов решения задач мы привели в разделе «Дифференциальные уравнения с разделяющимися переменными».

Линейные неоднородные дифференциальные уравнения первого порядка y ‘ + P ( x ) · y = Q ( x )

Приведем примеры таких уравнений.

К числу линейных неоднородных дифференциальных уравнений 1 -го порядка относятся:

y ‘ — 2 x y 1 + x 2 = 1 + x 2 ; y ‘ — x y = — ( 1 + x ) e — x

Для решения уравнений этого вида применяется метод вариации произвольной постоянной. Также мы можем представить искомую функцию у в виде произведения y ( x ) = u ( x ) v ( x ) . Алгоритмы применения обоих методов мы привели в разделе «Линейные неоднородные дифференциальные уравнения первого порядка».

Дифференциальное уравнение Бернулли y ‘ + P ( x ) y = Q ( x ) y a

Приведем примеры подобных уравнений.

К числу дифференциальных уравнений Бернулли можно отнести:

y ‘ + x y = ( 1 + x ) e — x y 2 3 ; y ‘ + y x 2 + 1 = a r c t g x x 2 + 1 · y 2

Для решения уравнений этого вида можно применить метод подстановки z = y 1 — a , которая выполняется для того, чтобы свести исходное уравнение к линейному дифференциальному уравнению 1 -го порядка. Также применим метод представления функции у в качестве y ( x ) = u ( x ) v ( x ) .

Алгоритм применения обоих методов приведен в разделе «Дифференциальное уравнение Бернулли». Там же можно найти подробный разбор решения примеров по теме.

Уравнения в полных дифференциалах P ( x , y ) d x + Q ( x , y ) d y = 0

Если для любых значений x и y выполняется ∂ P ( x , y ) ∂ y = ∂ Q ( x , y ) ∂ x , то этого условия необходимо и достаточно, чтобы выражение P ( x , y ) d x + Q ( x , y ) d y представляло собой полный дифференциал некоторой функции U ( x , y ) = 0 , то есть, d U ( x , y ) = P ( x , y ) d x + Q ( x , y ) d y . Таким образом, задача сводится к восстановлению функции U ( x , y ) = 0 по ее полному дифференциалу.

Выражение, расположенное в левой части записи уравнения ( x 2 — y 2 ) d x — 2 x y d y = 0 представляет собой полный дифференциал функции x 3 3 — x y 2 + C = 0

Для более подробного ознакомления с теорией и алгоритмами решения примеров можно обратиться к разделу «Уравнения в полных дифференциалах».

Видео:Поле направлений дифференциального уравнения первого порядкаСкачать

Поле направлений дифференциального уравнения первого порядка

Дифференциальные уравнения второго порядка

Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами y ‘ ‘ + p y ‘ + q y = 0 , p , q ∈ R

Линейное однородное дифференциальное уравнение с постоянными коэффициентами обычно решается достаточно просто. Нам необходимо найти корни характеристического уравнения k 2 + p k + q = 0 . Здесь возможны три варианта в зависимости от различных p и q :

  • действительные и различающиеся корни характеристического уравнения k 1 ≠ k 2 , k 1 , k 2 ∈ R ;
  • действительные и совпадающие k 1 = k 2 = k , k ∈ R ;
  • комплексно сопряженные k 1 = α + i · β , k 2 = α — i · β .

Значения корней характеристического уравнения определяет, как будет записано общее решение дифференциального уравнения. Возможные варианты:

  • y = C 1 e k 1 x + C 2 e k 2 x ;
  • y = C 1 e k x + C 2 x e k x ;
  • y = e a · x · ( C 1 cos β x + C 2 sin β x ) .

Пример 13

Предположим, что у нас есть линейное однородное дифференциальное уравнение 2 -го порядка с постоянными коэффициентами y ‘ ‘ + 3 y ‘ = 0 . Найдем корни характеристического уравнения k 2 + 3 k = 0 . Это действительные и различные k 1 = — 3 и k 2 = 0 . Это значит, что общее решение исходного уравнения будет иметь вид:

y = C 1 e k 1 x + C 2 e k 2 x ⇔ y = C 1 e — 3 x + C 2 e 0 x ⇔ y = C 1 e — 3 x + C 2

Восполнить пробелы в теоретической части и посмотреть подробный разбор примеров по теме можно в статье «Линейные однородные дифференциальные уравнения 2 -го порядка с постоянными коэффициентами».

Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами y ‘ ‘ + p y ‘ + q y = f ( x ) , p , q ∈ R

Основным способом решение уравнений данного вида является нахождение суммы общего решения y 0 , которое соответствует линейному однородному дифференциальному уравнению y ‘ ‘ + p y ‘ + q y = 0 , и частного решения y

исходного уравнения. Получаем: y = y 0 + y

Способ нахождения y 0 мы рассмотрели в предыдущем пункте. Найти частное решение y

мы можем методом неопределенных коэффициентов при определенном виде функции f ( x ) , которая расположена в правой части записи исходного выражения. Также применим метод вариации произвольных постоянных.

К числу линейных неоднородных дифференциальных уравнений 2 -го порядка с постоянными коэффициентами относятся:

y ‘ ‘ — 2 y ‘ = ( x 2 + 1 ) e x ; y ‘ ‘ + 36 y = 24 sin ( 6 x ) — 12 cos ( 6 x ) + 36 e 6 x

Теоретические выкладки и подробный разбор примеров по теме можно найти в разделе «ЛНДУ 2 -го порядка с постоянными коэффициентами».

Линейные однородные дифференциальные уравнения (ЛОДУ) y ‘ ‘ + p ( x ) · y ‘ + q ( x ) · y = 0 и линейные неоднородные дифференциальные уравнения (ЛНДУ) второго порядка y ‘ ‘ + p ( x ) · y ‘ + q ( x ) · y = f ( x )

Линейные однородные и неоднородные дифференциальные уравнения и постоянными коэффициентами являются частными случаями дифференциальных уравнений этого вида.

На некотором отрезке [ a ; b ] общее решение линейного однородного дифференциального уравнения y ‘ ‘ + p ( x ) · y ‘ + q ( x ) · y = 0 представлено линейной комбинацией двух линейно независимых частных решений y 1 и y 2 этого уравнения, то есть, y = C 1 y 1 + C 2 y 2 .

Частные решения мы можем выбрать из систем независимых функций:

1 ) 1 , x , x 2 , . . . , x n 2 ) e k 1 x , e k 2 x , . . . , e k n x 3 ) e k 1 x , x · e k 1 x , . . . , x n 1 · e k 1 x , e k 2 x , x · e k 2 x , . . . , x n 2 · e k 2 x , . . . e k p x , x · e k p x , . . . , x n p · e k p x 4 ) 1 , c h x , s h x

Однако существуют примеру уравнений, для которых частные решения не могут быть представлены в таком виде.

Возьмем для примера линейное однородное дифференциальное уравнение x y ‘ ‘ — x y ‘ + y = 0 .

Общее решение линейного неоднородного дифференциального уравнения y ‘ ‘ + p ( x ) · y ‘ + q ( x ) · y = f ( x ) мы можем найти в виде суммы y = y 0 + y

, где y 0 — общее решение соответствующего ЛОДУ, а y

частное решение исходного дифференциального уравнения. Найти y 0 можно описанным выше способом. Определить y

нам поможет метод вариации произвольных постоянных.

Возьмем для примера линейное неоднородное дифференциальное уравнение x y ‘ ‘ — x y ‘ + y = x 2 + 1 .

Более подробно этот раздел освещен на странице «Линейные дифференциальные уравнения второго порядка».

Видео:Дифференциальные уравнения, 4 урок, Линейные дифференциальные уравнения первого порядкаСкачать

Дифференциальные уравнения, 4 урок, Линейные дифференциальные уравнения первого порядка

Дифференциальные уравнения высших порядков

Дифференциальные уравнения, допускающие понижение порядка

Мы можем провести замену y ( k ) = p ( x ) для того, чтобы понизить порядок исходного дифференциального уравнения F ( x , y ( k ) , y ( k + 1 ) , . . . , y ( n ) ) = 0 , которое не содержит искомой функции и ее производных до k — 1 порядка.

В этом случае y ( k + 1 ) = p ‘ ( x ) , y ( k + 2 ) = p ‘ ‘ ( x ) , . . . , y ( n ) = p ( n — k ) ( x ) , и исходное дифференциальное уравнение сведется к F 1 ( x , p , p ‘ , . . . , p ( n — k ) ) = 0 . После нахождения его решения p ( x ) останется вернуться к замене y ( k ) = p ( x ) и определить неизвестную функцию y .

Дифференциальное уравнение y ‘ ‘ ‘ x ln ( x ) = y ‘ ‘ после замены y ‘ ‘ = p ( x ) станет уравнением с разделяющимися переменными y ‘ ‘ = p ( x ) , и его порядок с третьего понизится до первого.

В уравнении, которое не содержит аргумента х и имеет вид F ( y , y ‘ , y ‘ ‘ , . . . , y ( n ) ) = 0 , порядок может быть заменен на единицу следующим образом: необходимо провести замену d y d x = p ( y ) , где p ( y ( x ) ) будет сложной функцией. Применив правило дифференцирования, получаем:

d 2 y d x 2 = d p d y d y d x = d p d y p ( y ) d 3 y d x 3 = d d p d y p ( y ) d x = d 2 p d y 2 d y d x p ( y ) + d p d y d p d y d y d x = = d 2 p d y 2 p 2 ( y ) + d p d y 2 p ( y )
Полученный результаты подставляем в исходное выражение. При этом мы получим дифференциальное уравнение, порядок которого на единицу меньше, чем у исходного.

Рассмотрим решение уравнения 4 y 3 y ‘ ‘ = y 4 — 1 . Путем замены d y d x = p ( y ) приведем исходное выражение к уравнению с разделяющимися переменными 4 y 3 p d p d y = y 4 — 1 .

Более подробно решения задач по теме рассмотрены в разделе «Дифференциальные уравнения, допускающие понижение порядка».

Линейные однородные и неоднородные дифференциальные уравнения высших порядков с постоянными коэффициентами y ( n ) + f n — 1 · y ( n — 1 ) + . . . + f 1 · y ‘ + f 0 · y = 0 и y ( n ) + f n — 1 · y ( n — 1 ) + . . . + f 1 · y ‘ + f 0 · y = f ( x )

Решение уравнений данного вида предполагает выполнение следующих простых шагов:

  • находим корни характеристического уравнения k n + f n — 1 · k n — 1 + . . . + f 1 · k + f 0 = 0 ;
  • записываем общее решение ЛОДУ y 0 в стандартной форме, а общее решение ЛНДУ представляем суммой y = y 0 + y

— частное решение неоднородного дифференциального уравнения.

Нахождение корней характеристического уравнения подробно описано в разделе «Решение уравнений высших степеней». Для нахождения y

целесообразно использовать метод вариации произвольных постоянных.

Линейному неоднородному ДУ с постоянными коэффициентами y ( 4 ) + y ( 3 ) — 5 y ‘ ‘ + y ‘ — 6 y = x cos x + sin x соответствует линейное однородное ДУ y ( 4 ) + y ( 3 ) — 5 y ‘ ‘ + y ‘ — 6 y = 0 .

Более детальный разбор теории и примеров по теме вы можете найти на странице « Линейные однородные и неоднородные дифференциальные уравнения высших порядков с постоянными коэффициентами».

Линейные однородные и неоднородные дифференциальные уравнения высших порядков y ( n ) + f n — 1 ( x ) · y ( n — 1 ) + . . . + f 1 ( x ) · y ‘ + f 0 ( x ) · y = 0 и y ( n ) + f n — 1 ( x ) · y ( n — 1 ) + . . . + f 1 ( x ) · y ‘ + f 0 ( x ) · y = f ( x )

Найти решение ЛНДУ высших порядков можно благодаря сумме y = y 0 + y

, где y 0 — общее решение соответствующего ЛОДУ, а y

— частное решение неоднородного дифференциального уравнения.

y 0 представляет собой линейную комбинацию линейно независимых функций y 1 , y 2 , . . . , y n , каждая из которых является частным решением ЛОДУ, то есть, обращает равенство y ( n ) + f n — 1 ( x ) · y ( n — 1 ) + . . . + f 1 ( x ) · y ‘ + f 0 ( x ) · y = 0 в тождество. Частные решения y 1 , y 2 , . . . , y n обычно подбираются из известных систем линейно независимых функций. Подобрать их далеко не всегда просто и возможно, в этом и заключается основная проблема.

После того, как мы найдем общее решение ЛОДУ, найти частное решение соответствующего ЛНДУ можно благодаря методу вариации произвольных постоянных. Итак, y = y 0 + y

Получить более подробную информацию по теме можно в разделе «Дифференциальные уравнения высших порядков».

Видео:Определяем тип ДУ 1Скачать

Определяем тип ДУ 1

Системы дифференциальных уравнений вида d x d t = a 1 x + b 1 y + c 1 d y d t = a 2 x + b 2 y + c 2

Данная тема подробно разобрана на странице «Системы дифференциальных уравнений». Там же приведены примеры задач с подробных разбором.

Видео:Дифференциальные уравнения, 1 урок, Дифференциальные уравнения. Основные понятияСкачать

Дифференциальные уравнения, 1 урок, Дифференциальные уравнения. Основные понятия

Типы дифференциальных уравнений

Как отличить дифференциальные уравнения первого порядка

Далее в тексте – функции своих аргументов. Штрих ′ означает производную по аргументу. – постоянные.

Видео:Дифференциальные уравнения. 11 класс.Скачать

Дифференциальные уравнения. 11 класс.

Дифференциальные уравнения первого порядка

Особенности дифференциальных уравнений первого порядка

При решении уравнений первого порядка функцию y и переменную x следует считать равноправными. То есть решение может быть в виде так и в виде .

Дифференциальные уравнения первого порядка, разрешенные относительно производной

Уравнения с разделяющимися переменными

;
. Подробнее
Приводящиеся к уравнениям с разделяющимися переменными:
Подробнее

Однородные уравнения

Однородные уравнения не меняют свой вид при замене
,
где t – постоянная. При такой замене производная не меняется:
.
В общем виде обобщенно однородные уравнения можно записать посредством однородных функций:
,
где и – однородные функции с равными показателями однородности, то есть обладающие следующим свойством:
.
Общий вид однородных уравнений также можно выразить через произвольную функцию:
. Подробнее

Приводящиеся к однородным
,
где и – однородные функции с равными показателями однородности. В общем виде такие уравнения можно выразить через произвольную функцию:
. Подробнее

Обобщенно однородные уравнения не меняют свой вид при замене
,
где t – постоянная, . Для производной такая замена выглядит так:
.
В общем виде обобщенно однородные уравнения можно записать посредством однородных функций:
,
где и – однородные функции с равными показателями однородности.
Обобщенно однородные уравнения также можно записать через произвольную функцию:
. Подробнее

Линейные дифференциальные уравнения и приводящиеся к ним

  • Линейное по y:
  • Линейное по f(y):
  • Линейное по x:
  • Линейное по f(x):

Уравнения Риккати

Уравнения Якоби

Уравнения в полных дифференциалах

Интегрирующий множитель

Если дифференциальное уравнение первого порядка не приводится ни к одному из перечисленных типов, то следует попытаться найти интегрирующий множитель, чтобы свести его к уравнению в полных дифференциалах:
;
. Подробнее

Уравнения, не разрешенные относительно производной y′

Уравнения, допускающие решение относительно производной y′

Сначала нужно попытаться разрешить уравнение относительно производной y′ . Если это возможно, то уравнение может быть приведено к одному из перечисленных выше типов.

Уравнения, не разрешенные относительно производной y′

Уравнения, допускающие разложение на множители:
.
Подробнее
Уравнения, не содержащие x и y:
. Подробнее
Уравнения, не содержащие x или y:
, или . Подробнее

Уравнения, разрешенные относительно зависимой переменной y

Уравнения Клеро:
. Подробнее
Уравнения Лагранжа:
. Подробнее
Уравнения, приводящиеся к уравнению Бернулли:
;
. Подробнее

Видео:18+ Математика без Ху!ни. Дифференциальные уравнения. Однородное уравнение.Скачать

18+ Математика без Ху!ни. Дифференциальные уравнения. Однородное уравнение.

Дифференциальные уравнения высших порядков

Дифференциальные уравнения высших порядков, решаемые в квадратурах

Уравнения, содержащие переменную и старшую производную

Общий случай:
. Подробнее
Разрешенные относительно старшей производной:
. Подробнее
Разрешенные относительно переменной:
. Подробнее

Уравнения, содержащие только производные порядков n и n-1

Общий случай:
. Подробнее
Разрешенные относительно младшей производной:
. Подробнее
Разрешенные относительно старшей производной:
. Подробнее

Уравнения, содержащие только производные порядков n и n-2

Общий случай:
. Подробнее
Разрешенные относительно старшей производной:
. Подробнее

Дифференциальные уравнения, допускающие понижение порядка

Уравнения, не содержащие зависимую переменную y (и возможно несколько первых производных):
, или
. Подробнее
Уравнения, не содержащие независимую переменную x:
. Подробнее
Уравнения, однородные относительно функции и ее производных y, y′, y′′, . :
, причем
. Подробнее
Обобщенно однородные уравнения относительно переменных x, y:
, причем
. Подробнее
Дифференциальные уравнения с полной производной:
. Подробнее

Линейные дифференциальные уравнения с постоянными коэффициентами и приводящиеся к ним

Линейные однородные уравнения с постоянными коэффициентами:
. Подробнее
Линейные неоднородные уравнения с постоянными коэффициентами:
.
Решение методом Бернулли (двух функций)
Решение методом Лагранжа (вариация постоянных)
Решение линейной подстановкой
Линейные неоднородные уравнения со специальной неоднородной частью:
,
где – многочлены степеней и . Подробнее
Уравнения Эйлера:
. Подробнее

Использованная литература:
В.В. Степанов, Курс дифференциальных уравнений, «ЛКИ», 2015.
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

Автор: Олег Одинцов . Опубликовано: 12-05-2012 Изменено: 26-11-2021

🎬 Видео

Однородное дифференциальное уравнениеСкачать

Однородное дифференциальное уравнение

2. Дифференциальные уравнения с разделяющимися переменными. Часть 1.Скачать

2. Дифференциальные уравнения с разделяющимися переменными. Часть 1.

Определение типов дифференциальных уравнений первого порядка...Скачать

Определение типов дифференциальных уравнений первого порядка...

Решите уравнение ★ y'-2y=e^(2x) ★ Линейное дифференциальное уравнение 1-го порядкаСкачать

Решите уравнение ★ y'-2y=e^(2x) ★ Линейное дифференциальное уравнение 1-го порядка

4. Однородные дифференциальные уравнения (часть 1)Скачать

4. Однородные дифференциальные уравнения (часть 1)
Поделиться или сохранить к себе: