О чем эта статья:
7 класс, 11 класс, ЕГЭ/ОГЭ
- Понятие функции
- Является ли уравнение окружности функцией и почему
- Уравнение с двумя переменными и его график. Уравнение окружности
- п.1. Понятие уравнения с двумя переменными
- п.2. Обобщенные правила преобразования графика уравнения
- п.4. Примеры
- Является ли уравнение окружности функцией?
- Является ли данное уравнение, уравнением окружности х2 + у2 + 8х — 4у + 40 = 0?
- Что является радиусом окружности?
- Уравнение окружности в точке пересечения графиков функций у = и радиусом r , какой будет иметь вид?
- Докажите, что линия заданная уравнением является окружностью?
- Напишите уравнение окружности, которая проходит через точки А (−7 ; 8) и В (−3 ; −4)?
- Составить уравнение окружности, диаметром которий является отрезком AB, если( — 5 ; 9), B(7 ; — 3)?
- Помогите, пожалуйста?
- Решите плз?
- Как определить является ли уравнение уравнением окружности?
- Даны точки А ( — 2 ; 14) и B (16 ; — 10)?
- Уравнение окружности.
- Функциональные уравнения. Методы их решения
- 📺 Видео
Видео:Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnlineСкачать
Понятие функции
Определение функции можно сформулировать по-разному. Рассмотрим несколько вариантов, чтобы усвоить наверняка.
1. Функция — это взаимосвязь между величинами, то есть зависимость одной переменной величины от другой.
Знакомое обозначение y = f (x) как раз и выражает идею такой зависимости одной величины от другой. Величина у зависит от величины х по определенному закону, или правилу, которое обозначается f.
Вывод: меняя х (независимую переменную, или аргумент) — меняем значение у.
2. Функция — это определенное действие над переменной.
Значит, можно взять величину х, как-то над ней поколдовать — и получить соответствующую величину у.
В технической литературе можно встретить такие определения функции для устройств, в которых на вход подается х — на выходе получается у. Схематично это выглядит так:
В этом значении слово «функция» используют и в далеких от математики областях. Например, так говорят о функциях ноутбука, костей в организме или даже о функциях менеджера в компании. В каждом перечисленном случае речь идет именно о неких действиях.
3. Функция — это соответствие между двумя множествами, причем каждому элементу первого множества соответствует один элемент второго множества. Это самое популярное определение в учебниках по математике.
Например, функция у = 2х каждому действительному числу x ставит в соответствие число y, которое в два раза больше, чем х.
Область определения — множество х, то есть область допустимых значений выражения, которое записано в формуле.
Например, для функции вида
область определения выглядит так:
- х ≠ 0 (потому что на ноль делить нельзя)
И записать это можно так: D (y): х ≠ 0.
Область значений — множество у, то есть это значения, которые может принимать функция.
Например, естественная область значений функции y = x2 — это все числа больше либо равные нулю. Можно записать вот так: Е (у): у ≥ 0.
Для примера рассмотрим соответствие между двумя множествами — человек-владелец странички в инстаграм и сама страничка, у которой есть владелец. Такое соответствие можно назвать взаимно-однозначным — у человека есть страничка, и это можно проверить. И наоборот — по аккаунту в инстаграм можно проверить, кто им владеет.
В математике тоже есть такие взаимно-однозначные функции. Например, линейная функция у = 3х +2. Каждому значению х соответствует одно и только одно значение у. И наоборот — зная у, можно сразу найти х.
Видео:Четные и нечетные функцииСкачать
Является ли уравнение окружности функцией и почему
Видео:18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать
Уравнение с двумя переменными и его график. Уравнение окружности
п.1. Понятие уравнения с двумя переменными
Мы уже знакомы со многими функциями и умеем их записывать в виде формул:
y = 2x + 5 – прямая, y = 5x 2 + 2x – 1 – парабола, (mathrm ) – гипербола.
Если записать такое выражение: x 2 (x + y) = 1 – y – в нём тоже есть две переменные x и y, и постоянная 1.
Для наших примеров:
F(x; y) = 2x – y + 5 = 0 – прямая
F(x; y) = 5x 2 + 2x – y – 1 = 0 – парабола
F(x; y) = (mathrm ) – y = 0 – гипербола
F(x; y)=x 2 (x + y) + y – 1 = 0 – некоторая кривая (график — ниже).
п.2. Обобщенные правила преобразования графика уравнения
Пусть F(x; y) = 0 – исходный график некоторой функции
Симметричное отображение относительно оси OY
Симметричное отображение относительно оси OX
Центральная симметрия относительно начала координат
Параллельный перенос графика на a единиц вправо
Параллельный перенос графика на a единиц влево
Параллельный перенос графика на b единиц вниз
Параллельный перенос графика на b единиц вверх
Сжатие графика к оси OY в a раз
Сжатие графика к оси OX в b раз
F(x; by) = 0
0 Например:
Окружность с центром в точке O(2; 1) и радиусом R = 3 задаётся уравнением: $$ mathrm $$
п.4. Примеры
Пример 1. Постройте график уравнения:
а) 2x + 7y – 14 = 0
Выразим y из уравнения: ( mathrm =-frac + 2 > ) – это прямая
б) xy + 4 = 0
Выразим y из уравнения: ( mathrm > ) – это гипербола
в) ( x+ 2) 2 + y 2 = 4
Это – уравнение окружности с центром O(–2; 0), радиусом ( mathrm =2> )
г) x 2 + 5y – 2 = 0
Выразим y из уравнения: ( mathrm > ) – это парабола
Пример 2*. Постройте график уравнения:
а) 2|x| + 5y = 10
( mathrm =-frac25|x|+2> )
Строим график для ( mathrm ), а затем отражаем его относительно оси OY в левую полуплоскость.
б) 3x + |y| = 6
|y| = –3x + 6
Строим график для y > 0: y = –3x + 6, а затем отражаем его относительно оси OX в нижнюю полуплоскость.
в) |x| + |y| = 2
|y| = –|x| + 2
Строим график для x > 0, y > 0: y = –x + 2, а затем отражаем его относительно осей OX и OY.
г) |x – 1| + |y – 2| = 4
Получим тот же ромб (квадрат), что и в (в), но его центр будет перенесен из начала координат в точку O(1; 2).
д) (mathrm +2|y-2|=4>)
Ромб по x растянется в 2 раза по диагонали, а по y – сожмётся в 2 раза по диагонали.
Пример 3. Постройте график уравнения:
а) x 2 + y 2 + 4x – 6y + 4 = 0
Выделим полные квадраты:
(x 2 + 4x + 4) + (y 2 – 6y + 9) – 9 = 0
(x + 2) 2 + (y – 3) 2 = 3 2 – уравнение окружности с центром (–2; 3), радиусом 3.
Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Является ли уравнение окружности функцией?
Геометрия | 5 — 9 классы
Является ли уравнение окружности функцией?
Конечно является, ведь что такое функция — это зависимость одной переменной от другой, т.
Окружности имеет график — а функция также может быть представлена в виде графика!
Видео:ВСЕ, ЧТО НУЖНО ЗНАТЬ ПРО ВИДЫ ФУНКЦИЙ — Четные и Нечетные ФункцииСкачать
Является ли данное уравнение, уравнением окружности х2 + у2 + 8х — 4у + 40 = 0?
Является ли данное уравнение, уравнением окружности х2 + у2 + 8х — 4у + 40 = 0.
Видео:Свойства функции. Четность и нечетность функции. 10 класс.Скачать
Что является радиусом окружности?
Что является радиусом окружности?
Видео:9 класс, 18 урок, Чётные и нечётные функцииСкачать
Уравнение окружности в точке пересечения графиков функций у = и радиусом r , какой будет иметь вид?
Уравнение окружности в точке пересечения графиков функций у = и радиусом r , какой будет иметь вид?
Видео:Неполные квадратные уравнения. Алгебра, 8 классСкачать
Докажите, что линия заданная уравнением является окружностью?
Докажите, что линия заданная уравнением является окружностью.
Видео:9 класс, 15 урок, Определение числовой функции. Область определения, область значения функцииСкачать
Напишите уравнение окружности, которая проходит через точки А (−7 ; 8) и В (−3 ; −4)?
Напишите уравнение окружности, которая проходит через точки А (−7 ; 8) и В (−3 ; −4).
При этом хорда АВ является диаметром окружности.
Видео:Четность и нечетность функцииСкачать
Составить уравнение окружности, диаметром которий является отрезком AB, если( — 5 ; 9), B(7 ; — 3)?
Составить уравнение окружности, диаметром которий является отрезком AB, если( — 5 ; 9), B(7 ; — 3).
Видео:ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать
Помогите, пожалуйста?
Точки А( — 4, 1) В (4 ; 7) Являются точками диметра окружности.
Найти диаметр окружности, координаты окружнотси, составить уравнение окружности.
Видео:10 класс, 43 урок, Уравнение касательной к графику функцииСкачать
Решите плз?
1) Доказать, что уравнение x² + y² + 4x — 2y — 4 = 0 является уравнением окружности.
Найти ее центр и радиус.
Видео:Дифференциальные уравнения, 3 урок, Однородные уравненияСкачать
Как определить является ли уравнение уравнением окружности?
Как определить является ли уравнение уравнением окружности?
Видео:Обратная функция. 10 класс.Скачать
Даны точки А ( — 2 ; 14) и B (16 ; — 10)?
Даны точки А ( — 2 ; 14) и B (16 ; — 10).
Cоставьте уравнение окружности с центром окружности, диаметром которой является отрезок AB.
Вы зашли на страницу вопроса Является ли уравнение окружности функцией?, который относится к категории Геометрия. По уровню сложности вопрос соответствует учебной программе для учащихся 5 — 9 классов. В этой же категории вы найдете ответ и на другие, похожие вопросы по теме, найти который можно с помощью автоматической системы «умный поиск». Интересную информацию можно найти в комментариях-ответах пользователей, с которыми есть обратная связь для обсуждения темы. Если предложенные варианты ответов не удовлетворяют, создайте свой вариант запроса в верхней строке.
Пусть меньшая сторона равна х, тогда большая сторона параллелограмма равна х + 4. По условию 4 / 3 = (х + 4) / х. Решаем пропорцию 4х = 3х + 12, х = 12. Одна сторона равна 12 см, другая 12 + 4 = 16 см.
Точкой пересечения биссектрис является центр вписанной в треугольник окружности, то тогда расстояние от О до стороны MN = r. Тогда расстояние от О до стороны NK = MN = 6. S∆NOK = 1 / 2 * 6 * 10 = 30 см².
S одной = 50×50 = 2500см ^ 2 Sзала = 50×2500 = 125000см ^ 2.
Видео:13. Как решить дифференциальное уравнение первого порядка?Скачать
Уравнение окружности.
Окружностью принято обозначать множество всех точек плоскости, равноудаленных от одной точки – от центра.
В формулировке окружности упоминается расстояние между точкой окружности и центром.
Формула расстояния между двумя точками М1(х1; у1) и М2(х2; у2) имеет вид:
,
Применив формулу и формулировку окружности, получаем уравнение окружности с центром в точке С (х0; у0) и радиусом r.
Отметим произвольную точку М(х; у) на этой окружности.
.
Предположим, что М принадлежит окружности с центром С и радиусом r, то МС = r.
Следовательно, МС 2 = r 2 и координаты точки М удовлетворяют уравнению окружности (х – х0 ) 2 +(у – у0 ) 2 = r 2 .
Из выше изложенного делаем вывод, что уравнение окружности с центром в точке С (х0; у0) и радиусом r имеет вид:
В случае когда центр окружности совпадает с началом координат, то получаем частный случай уравнения окружности с центром в точке О (0;0):
Видео:Функция. Область определения функции. Практическая часть. 10 класс.Скачать
Функциональные уравнения. Методы их решения
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
Министерство образования и молодежной политики Чувашской Республики
БОУ ДПО (ПК) С «Чувашский республиканский институт образования»
Кафедра математики и информационных технологий
Курсовая работа на тему:
« Функциональные уравнения. Методы их решения»
Выполнил (а): учитель математики МБОУ «СОШ № 60»
Глава 1. Понятие функционального уравнения ………………………………. 5
Глава 2. Практическая часть. Методы решения функционального уравнения.9
Одно из важнейших математических умений, которым должны овладеть учащиеся школы, — умение решать уравнения. Корень уравнения находят в одно или более действий, многие текстовые задачи решаются алгебраическим способом, в уравнении могут участвовать целые, рациональные и другие числа, то есть уравнения одновременно сами по себе являются задачами и способами решения задач, умение, решать, которые необходимы всем учащимся школы. Но во время решения тренировочных заданий мне попалось уравнение, которое я решить не смогла. Как я узнала позже от учителя, это было функциональное уравнение.
Что же такое функциональные уравнения? И какие способы их решения существуют? Эти вопросы заинтересовали меня, и я решила провести исследование. функциональный уравнение коши
Функциональными уравнениями занимаются с очень давних пор, этому курсу так и не нашлось достойного места в математических программах. А жаль. Ведь решение отдельных функциональных уравнений требует достаточно глубокого понимания предмета и прививает любовь к самостоятельной творческой работе. Так как эта тема в школьном курсе не изучается в виду её сложности, при поступлении в престижные ВУЗы, на олимпиадах, в части С ЕГЭ такие задачи встречаются.
В настоящее время практически нет никаких пособий, обучающих решению функциональных уравнений.
Поэтому ощущается потребность в пособии, которое на простых и конкретных примерах способно показать читателю со скромной математической подготовкой весь арсенал современных методов решения функциональных уравнений.
Цель работы — выяснить, что является функциональным уравнением их системами, найти способы решения и составить сборник задач для использования математическими классами.
1. изучение и анализ литературы;
2. поиск способов решения функциональных уравнений и их систем;
3. решение функциональных уравнений
4. составление сборника
Объект исследования: функциональные уравнения
Предмет исследования: изучение свойств и способов решения функциональных уравнений.
Структура: введение, понятие функционального уравнения, сборник задач, заключение.
Глава 1. Понятие функционального уравнения
Функциональное уравнение – это уравнение, которое содержит одну или несколько неизвестных функций (с заданными областями определения и значений). Решить функциональное уравнение – это, значит, найти все функции, которые тождественно ему удовлетворяют. Функциональные уравнения возникают в самых различных областях математики, обычно в тех случаях, когда требуется описать все функции, обладающие заданными свойствами. Термин функциональное уравнение обычно используется для уравнений, несводимых простыми способами к алгебраическим уравнениям. Эта несводимость чаще всего обусловлена тем, что аргументами неизвестной функции в уравнении являются не сами независимые переменные, а некоторые данные функции от них. Часто встречаются на различных математических соревнованиях.
Некоторые функциональные уравнения знакомы нам еще из школьного курса это
которые задают такие свойства функций, как чётность, нечётность, периодичность.
Задача решения функциональных уравнений является одной из самых старых в математическом анализе. Они появились почти одновременно с зачатками теории функций. Первый настоящий расцвет этой дисциплины связан с проблемой параллелограмма сил. Ещё в 1769 году Даламбер свёл обоснование закона сложения сил к решению функционального уравнения
(1)
То же уравнение и с той же целью было рассмотрено Пуассоном в 1804 году при некотором предположении аналитичности, между тем как в 1821 году Коши (1789 – 1857) нашёл общие решения
этого уравнения, предполагая только непрерывность f(x).
Даже известная формула неевклидовой геометрии для угла параллельности
была получена Н. И. Лобачевским (1792 – 1856) из функционального уравнения
, (2)
которое он решил методом, аналогичным методу Коши. Это уравнение можно привести к уравнению
.
Ряд геометрических задач, приводящих к функциональным уравнениям, рассматривал английский математик Ч. Баббедж (1792—1871). Он изучал, например, периодические кривые второго порядка, определяемые следующим свойством для любой пары точек кривой: если абсцисса второй точки равна ординате первой, то ордината второй точки равна абсциссе первой. Пусть такая кривая является графиком функции у = f(х) ; (х, f(х)) — произвольная ее точка. Тогда, согласно условию, точка с абсциссой f(х) имеет ординату х. Следовательно,
(3)
Функциональному уравнению (3) удовлетворяют, в частности, функции:
,
Одними из простейших функциональных уравнений являются уравнения Коши
Эти уравнения Коши подробно изучил в своём (Курсе Анализа), изданном в 1821 году. Непрерывные решения этих четырёх основных уравнений имеют соответственно вид
, , ,
В классе разрывных функций могут быть и другие решения. Уравнение (4) ранее рассматривалось Лежандром и Гауссом при выводе основной теоремы проективной геометрии и при исследовании гауссовского закона распределения вероятностей.
Функциональное уравнение (4) было опять применено Г. Дарбу к проблеме параллелограмма сил и к основной теореме проективной геометрии; его главное достижение — значительное ослабление предположений. Мы знаем, что функциональное уравнение Коши (4) характеризует в классе непрерывных функций линейную однородную функцию f(x) = ax . Дарбу же показал, что всякое решение, непрерывное хотя бы в одной точке или же ограниченное сверху (или снизу) в произвольно малом интервале, также должно иметь вид f(x) = ax. Дальнейшие результаты по ослаблению предположений следовали быстро один за другим (интегрируемость, измеримость на множестве положительной меры и даже мажорируемость измеримой функцией). Возникает вопрос: существует ли хоть одна какая-нибудь аддитивная функция (т. е. удовлетворяющая (4)), отличная от линейной однородной. Найти такую функцию действительно нелегко! В ходе работы мы покажем, что при рациональных x значения любой аддитивной функции должны совпадать со значениями некоторой линейной однородной функции, т. е. f(x) = ax для x Q. Казалось бы, что тогда f(x) = ax для всех действительных x. Если f(x) — непрерывна, то это действительно так, если же данное предположение отбросить — то нет. Первый пример отличного от f(x) = ax разрывного решения функционального уравнения (4) построил в 1905 году немецкий математик Г. Гамель с помощью введённого им базиса действительных чисел.
Многие функциональные уравнения не определяют конкретную функцию, а задают широкий класс функций, т. е. выражают свойство, характеризующее тот или иной класс функций. Например, функциональное уравнение f(x+1) = f(x) характеризует класс функций, имеющих период 1, а уравнение f(1+x) = f(1-x) — класс функций, симметричных относительно прямой x = 1 , и т. д.
📺 Видео
Как найти область определения функции? #shortsСкачать
Математика без Ху!ни. Уравнение касательной.Скачать
Частное решение дифференциального уравнения. 11 класс.Скачать
Определение графика линейной функции по его формулеСкачать