Уравнение с двумя переменными и его решение
Уравнение вида ax+by = c , где a,b,c — данные числа, называется линейным уравнением с двумя переменными x и y.
Например: 2x+5y = 6; -x+1,5y = 0; $frac$ x-8y = 7
Уравнение с двумя переменными может быть не только линейным, т.е. содержать не только первые степени переменных x и y.
Например: $2x^2+y^2 = 3, x-5y^2 = 1, 7x^3+y = 7$
Решением уравнения с двумя переменными называется упорядоченная пара значений переменных (x,y), обращающая это уравнение в тождество.
О тождествах – см. §3 данного справочника
Например: для уравнения 2x+5y=6 решениями являются пары
x = -2, y = 2; x = -1,y = 1,6; x = -3,y = 2,4 и т.д.
Уравнение имеет бесконечное множество решений.
Свойства уравнения с двумя переменными
Уравнения с двумя переменными, имеющие одни и те же решения, называют равносильными. Уравнения с двумя переменными, не имеющие решений, также считают равносильными.
Уравнения с двумя переменными имеют такие же свойства, как и уравнения с одной переменной:
- если в уравнении перенести слагаемое из одной части в другую и изменить его знак, получится уравнение, равносильное данному;
- если обе части уравнения умножить или разделить на одно и то же, отличное от нуля число, то получится уравнение, равносильное данному.
Например: $2x+5y = 6 ⟺5y = -2x+6 iff y = -0,4x+1,2$
Примеры
Пример 1. Из данного линейного уравнения выразите y через x и x через y:
Алгоритм: рассмотрим 3x+4y=10
1) оставим слагаемое с выражаемой переменной с одной стороны, остальные слагаемые перенесем в другую сторону: 4y=-3x+10
2) разделим полученное уравнение слева и справа на коэффициент при выражаемой переменной: y=-0,75x+2,5 — искомое выражение y(x).
Аналогично для x(y): $3x+4y = 10 iff 3x = -4y+10 iff x = -1 frac y+3 frac$
Видео:Линейное уравнение с двумя переменными. 7 класс.Скачать
Линейные уравнения с двумя переменными
Линейные уравнения с двумя переменными
Определение: Линейные уравнения с двумя переменными – это уравнение вида ax+by+c=0, где x, y — переменные, a, b,c – некоторые числа.
Например: 5х + 2у = 10; -7х+у = 5; х – у =2
Определение: Решение уравнения с двумя переменными – это пара значений переменных, обращающая это уравнение в верное равенство.
Если х=4, у=1,5 , то 2 ∙ 4 – 3 ∙ 1,5 = 10
т. е. пара чисел (4; 1,5) не является решением уравнения.
Определение: Равносильные уравнения – это уравнения, имеющие одни и те же решения или не имеющие их.
1. В уравнении можно перенести слагаемое из одной части уравнения в другую, изменив его знак.
2. Обе части уравнения можно множить или разделить на одно и то же отличное от нуля число.
Выразить одну переменную через другую:
1) 2х +у = 5 2) 3)
График линейного уравнения с двумя переменными
Определение: График уравнения с двумя переменными – это множество всех точек координатной плоскости, координаты которых являются решениями этого уравнения.
1. Пример: 3х + 2у = 6, где а=3, b=2, c=6
План 1) Выразить переменную у
у =
у = -1,5х +3 линейная функция вида y = kx + b,
2) Составить таблицу значений х и у
3) Построить график
2. Частные случаи построения графика ax + by = c
у =
x =
х = 2
Графика не существует
График – вся координатная плоскость
Решение систем уравнений с двумя переменными. Графический способ.
Определение: Система уравнений – это несколько уравнений, для которых находят общее решение.
Определение: Решение системы уравнений с двумя переменными – это пара значений переменных, обращающая каждое уравнение в верное равенство.
Если х=7, у=5, то , , верно,
т. е. (7; 5) – решение системы уравнений.
Определение: Решить систему – это значит найти все ее решения или доказать, что решений нет.
План решения системы уравнений графическим способом
1. Выразить переменную у в первом уравнении.
2. Выразить переменную у во втором уравнении.
3. В одной системе построить графики данных функций.
4. Координаты точки пересечения графиков и является решением системы уравнений.
Пример:
1) х +у = 6 → у = 6-х линейная функция, график вида у = kx + b, k = -1, b = 6
Видео:7 класс, 8 урок, Линейное уравнение с двумя переменными и его графикСкачать
Алгебра и начала математического анализа. 11 класс
Конспект урока
Алгебра и начала математического анализа, 11 класс
Урок №42. Линейные уравнения и неравенства с двумя переменными
Перечень вопросов, рассматриваемых в теме:
- Решение уравнений, неравенств, систем уравнений и систем неравенств с двумя переменными;
- Изображение в координатной плоскости множества решений уравнений, неравенств, систем уравнений, систем неравенств;
- Нахождение площади получившейся фигуры.
Глоссарий по теме
Уравнение вида ax + by + c = 0 называется линейным уравнением с двумя переменными, где a, b и c — некоторые числа (a ≠ 0 , b ≠0), а, х и у — переменные.
Колягин Ю.М., Ткачева М.В., Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.
Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И. Учебник: Алгебра 9 кл с углубленным изучением математики Мнемозина, 2014.
Открытые электронные ресурсы:
Решу ЕГЭ образовательный портал для подготовки к экзаменам https://ege.sdamgia.ru/.
Открытый банк заданий ЕГЭ ФИПИ, Элементы комбинаторики, статистики и теории вероятностей, базовый уровень. Элементы комбинаторики, статистики и теории вероятностей. Базовый уровень. http://ege.fipi.ru/.
Теоретический материал для самостоятельного изучения
Уравнения, а также системы уравнений имеют давнюю историю. Нам известно, что уже в Древнем Вавилоне и Индии повседневные задачи, связанные с земляными работами или планированием военных расходов, а также астрономическими наблюдениями решались с помощью уравнений и их систем.
В то время еще не существовало привычного нам формального языка математики. Вавилоняне, также, как и индусы не использовали в своих трактатах привычные нам «икс» и «игрек». Не обозначали степень надстрочными индексами. И т.д. Их уравнения записаны в виде текстовых задач. Также, как и решения, не похожи на современные, а скорее напоминают цепочку логических рассуждений.
Вместе с тем, если перевести в привычный нам вид те уравнения, которые умели решать в Древнем Вавилоне, то мы увидим: . И в древнем индийском манускрипте «Ариабхаттиам», датируемом 499 годом нашей эры, также встречаются задачи, решаемые с помощью квадратных уравнений. Индийские мудрецы (слово ученый тоже еще не существовало) уже не ограничивались решением конкретных житейских задач, но и работали над решением квадратного уравнения в общем виде.
Привычный нам вид уравнения обретают только в конце шестнадцатого века, благодаря трудам Франсу Виета (1540 – 1603 гг.). Именно он, помимо прочих своих научных достижений обладает и неофициальным титулом «создатель алгебры». Поскольку разработал и активно внедрял символический язык алгебры – те самые, привычные нам «иксы и игреки».
1.Найдите уравнения, которые являются линейными.
4х + 5у = 10; ; у = 7х +4
Ответ: 4х + 5у = 10; у = 7х +4
Сегодня на уроке мы вспомним что такое линейные уравнения и неравенства с двумя переменными; системы линейный уравнений и неравенств, а также научимся изображать множество на плоскости, задаваемое линейным уравнением и неравенством.
- Линейные уравнения с двумя переменными.
Уравнение вида ах + by +с =0, где а,b,с – некоторые числа, называется линейным уравнением с двумя переменными х и у.
Решением уравнения ах + by +с =0, где а,b,с – некоторые числа, называется пара значений обращающая уравнение в верное числовое равенство.
Если одновременно а и b, то уравнение ах + by +с =0 является уравнением некоторой прямой. Для построения прямой достаточно найти две точки этой прямой.
Построить график уравнения 2х+у =1
На координатной плоскости отметим точки с координатами (0;1) и (2;-3). Через две точки на плоскости проведем прямую. Полученная прямая является геометрической моделью уравнения 2х+у =1.
- Линейные неравенства с двумя переменными.
Линейным неравенством с двумя переменными называется неравенство вида ах + bу + с 0, где х и у – переменные, а, b, c – некоторые числа.
Решением неравенства с двумя переменными называется пара значений переменных, обращающая его в верное равенство.
Является ли пара (2;1) решением неравенства 5х + 2у > 4 . Является, тк при подстановке в него вместо х числа 2, а вместо у числа 1 получается верное равенство 10 + 2 > 4.
Если каждое решение неравенства с двумя переменными изобразить точкой в координатной плоскости, то получится график этого неравенства. Он является некоторой фигурой.
Найти множество точек координатной плоскости, удовлетворяющих неравенству 3х – 2у +6 > 0.
- Уравнение 3х – 2у +6 = 0 является уравнением прямой, проходящей через точки(- 2; 0) и (0; 3).
- Пусть точка М1(х1,у1) лежит в заштрихованной полуплоскости (ниже прямой 3х – 2у +6 = 0, а М2(х1,у2)лежит на прямой 3х – 2у +6 = 0. Тогда 2у2 – 3х1 – 6 = 0, а 2у1 – 3х1 – 6 0 штриховкой (рис. 1)
Рисунок 1 – решение неравенства 3х – 2у +6 > 0
Если в линейном неравенстве с двумя переменными знак неравенства заменить знаком равенства, то получится линейное уравнение ах + by +с =0, графиком которого является прямая при условии, что и . Прямая разбивает плоскость на две полуплоскости. Одна из них является графиком неравенства ах + bу + с 0
Чтобы решить неравенство ах + bу + c 0, достаточно взять какую-нибудь точку М1(х1; у1), не лежащую на прямой aх + bу + c = 0, и определить знак числа aх1 + bу1 + c.
🎦 Видео
ЛИНЕЙНОЕ УРАНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ — Как решать линейное уравнение // Алгебра 7 классСкачать
Видеоурок ЛИНЕЙНОЕ УРАВНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ 7 КЛАСССкачать
Нелинейные уравнения с двумя переменными и их геометрический смысл. 9 класс.Скачать
ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать
Алгебра 7 Линейное уравнение с двумя переменными и его графикСкачать
Линейное уравнение с двумя переменными. 6 класс.Скачать
ГРАФИК ЛИНЕЙНОГО УРАВНЕНИЯ С ДВУМЯ ПЕРЕМЕННЫМИ 7 КЛАСС видеоурокСкачать
Линейное уравнение с двумя переменными Определение и его разновидности. Алгебра 7 класс.Скачать
Линейное уравнение с двумя переменными и его график. График линейной функции - 7 класс алгебраСкачать
Линейное уравнение с двумя переменными 7 классСкачать
Линейное уравнение с двумя переменными.Скачать
Линейное уравнение с двумя переменными и его график | Алгебра 7 класс #43 | ИнфоурокСкачать
Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnlineСкачать
Как выразить х через у в линейном уравнении с двумя переменнымиСкачать
Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Как проверить, является ли данная пара чисел решением линейного уравнения с двумя переменнымиСкачать
МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэСкачать
Нахождение коэффициента линейного уравнения с двумя переменными при данных значениях переменныхСкачать