Как определить уравнение параллельной прямой

Уравнение параллельной прямой

Альтернативная формула:
Прямая, проходящая через точку M1(x1; y1) и параллельная прямой Ax+By+C=0 , представляется уравнением

назначение сервиса . Онлайн-калькулятор предназначен для составления уравнения параллельной прямой (см. также как составить уравнение перпендикулярной прямой).

Пример №2 . Написать уравнение прямой, параллельной прямой 2x + 5y = 0 и образующей вместе с осями координат треугольник, площадь которого равна 5.
Решение. Так как прямые параллельны, то уравнение искомой прямой 2x + 5y + C = 0. Площадь прямоугольного треугольника Как определить уравнение параллельной прямой, где a и b его катеты. Найдем точки пересечения искомой прямой с осями координат:
Как определить уравнение параллельной прямой Как определить уравнение параллельной прямой Как определить уравнение параллельной прямойКак определить уравнение параллельной прямой;
Как определить уравнение параллельной прямойКак определить уравнение параллельной прямой.
Итак, A(-C/2,0), B(0,-C/5). Подставим в формулу для площади: Как определить уравнение параллельной прямой. Получаем два решения: 2x + 5y + 10 = 0 и 2x + 5y – 10 = 0 .

Пример №3 . Составить уравнение прямой, проходящей через точку (-2; 5) и параллельной прямой 5x-7y-4=0 .
Решение. Данную прямую можно представить уравнением y = 5 /7x – 4 /7 (здесь a = 5 /7). Уравнение искомой прямой есть y – 5 = 5 / 7(x – (-2)), т.е. 7(y-5)=5(x+2) или 5x-7y+45=0 .

Пример №4 . Решив пример 3 (A=5, B=-7) по формуле (2), найдем 5(x+2)-7(y-5)=0.

Пример №5 . Составить уравнение прямой, проходящей через точку (-2;5) и параллельной прямой 7x+10=0.
Решение. Здесь A=7, B=0. Формула (2) дает 7(x+2)=0, т.е. x+2=0. Формула (1) неприменима, так как данное уравнение нельзя разрешить относительно y (данная прямая параллельна оси ординат).

Видео:Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

Как определить уравнение параллельной прямой

Видео:Уравнение параллельной прямойСкачать

Уравнение параллельной прямой

Уравнение параллельной прямой

Альтернативная формула:
Прямая, проходящая через точку M1(x1; y1) и параллельная прямой Ax+By+C=0 , представляется уравнением

назначение сервиса . Онлайн-калькулятор предназначен для составления уравнения параллельной прямой (см. также как составить уравнение перпендикулярной прямой).

Пример №2 . Написать уравнение прямой, параллельной прямой 2x + 5y = 0 и образующей вместе с осями координат треугольник, площадь которого равна 5.
Решение. Так как прямые параллельны, то уравнение искомой прямой 2x + 5y + C = 0. Площадь прямоугольного треугольника Как определить уравнение параллельной прямой, где a и b его катеты. Найдем точки пересечения искомой прямой с осями координат:
Как определить уравнение параллельной прямой Как определить уравнение параллельной прямойКак определить уравнение параллельной прямойКак определить уравнение параллельной прямой;
Как определить уравнение параллельной прямойКак определить уравнение параллельной прямой.
Итак, A(-C/2,0), B(0,-C/5). Подставим в формулу для площади: Как определить уравнение параллельной прямой. Получаем два решения: 2x + 5y + 10 = 0 и 2x + 5y – 10 = 0 .

Пример №3 . Составить уравнение прямой, проходящей через точку (-2; 5) и параллельной прямой 5x-7y-4=0 .
Решение. Данную прямую можно представить уравнением y = 5 /7x – 4 /7 (здесь a = 5 /7). Уравнение искомой прямой есть y – 5 = 5 / 7(x – (-2)), т.е. 7(y-5)=5(x+2) или 5x-7y+45=0 .

Пример №4 . Решив пример 3 (A=5, B=-7) по формуле (2), найдем 5(x+2)-7(y-5)=0.

Пример №5 . Составить уравнение прямой, проходящей через точку (-2;5) и параллельной прямой 7x+10=0.
Решение. Здесь A=7, B=0. Формула (2) дает 7(x+2)=0, т.е. x+2=0. Формула (1) неприменима, так как данное уравнение нельзя разрешить относительно y (данная прямая параллельна оси ординат).

Видео:Записать уравнение прямой параллельной или перпендикулярной данной.Скачать

Записать уравнение прямой параллельной или перпендикулярной данной.

Уравнение прямой, проходящей через заданную точку параллельно заданной прямой.

Эта статья является развернутым ответом на вопрос: «Как составить уравнение прямой, проходящей через заданную точку плоскости параллельно заданной прямой»? Сначала приведена необходимая теория, после чего разобраны решения характерных задач. В заключении разобрано нахождение уравнений прямой, проходящей через заданную точку трехмерного пространства параллельно заданной прямой.

Навигация по странице.

Видео:9 класс, 7 урок, Уравнение прямойСкачать

9 класс, 7 урок, Уравнение прямой

Уравнение прямой, проходящей через заданную точку плоскости параллельно заданной прямой.

Чтобы составление уравнения прямой, проходящей через заданную точку плоскости параллельно заданной прямой, не вызвало затруднений, вспомним важные факты.

Аксиома параллельных прямых гласит: на плоскости через точку, не лежащую на заданной прямой, проходит единственная прямая, параллельная данной. Таким образом, мы можем определить конкретную прямую a на плоскости, указав прямую линию b , которой параллельна прямая a , и точку М1 , не лежащую на прямой b , через которую проходит прямая a .

Поставим перед собой следующую задачу.

Пусть на плоскости зафиксирована прямоугольная декартова система координат Oxy . Пусть в этой системе координат задана точка Как определить уравнение параллельной прямойи прямая b , которой соответствует некоторое уравнение прямой на плоскости. Требуется написать уравнение прямой a , которая проходит через точку М1 и параллельна прямой b .

Решим поставленную задачу.

Из условия мы знаем координаты точки М1 , через которую проходит прямая a . Этих данных не достаточно, чтобы написать уравнение прямой a .

Нам еще нужно знать

Как же их найти?

По условию прямая a параллельна прямой b , тогда, на основании необходимого и достаточного условия параллельности двух прямых на плоскости, в качестве направляющего вектора прямой a мы можем принять направляющий вектор прямой b , в качестве нормального вектора прямой a мы можем взять нормальный вектор прямой b , а угловой коэффициент прямой a равен угловому коэффициенту прямой b (или они оба бесконечны).

Таким образом, чтобы в прямоугольной системе координат на плоскости написать уравнение прямой a , проходящей через заданную точку Как определить уравнение параллельной прямойпараллельно заданной прямой b , нужно определить

  • или координаты направляющего вектора прямой b (Как определить уравнение параллельной прямой),
  • или координаты нормального вектора прямой b (Как определить уравнение параллельной прямой),
  • или угловой коэффициент прямой b (Как определить уравнение параллельной прямой),

принять их соответственно в качестве

  • координат направляющего вектора прямой a (Как определить уравнение параллельной прямой),
  • координат нормального вектора прямой a (Как определить уравнение параллельной прямой),
  • углового коэффициента прямой a (Как определить уравнение параллельной прямой),

и записать требуемое уравнение прямой a соответственно в виде

  • Как определить уравнение параллельной прямойили Как определить уравнение параллельной прямой,
  • Как определить уравнение параллельной прямой,
  • Как определить уравнение параллельной прямой.

Внесем ясности – приведем примеры с подробными решениями на каждый случай.

Напишите уравнение прямой, которая в прямоугольной системе координат Oxy на плоскости проходит через точку Как определить уравнение параллельной прямойпараллельно прямой Как определить уравнение параллельной прямой.

Из параметрических уравнений прямой Как определить уравнение параллельной прямойнам сразу видны координаты ее направляющего вектора Как определить уравнение параллельной прямой. Этот вектор является направляющим вектором прямой, уравнение которой нам требуется составить. Уравнение прямой, проходящей через точку Как определить уравнение параллельной прямойи имеющей направляющий вектор с координатами Как определить уравнение параллельной прямой, имеет вид Как определить уравнение параллельной прямой.

Это и есть искомые уравнения прямой, проходящей через заданную точку Как определить уравнение параллельной прямойпараллельно заданной прямой Как определить уравнение параллельной прямой.

Как определить уравнение параллельной прямой.

Иногда требуется составить уравнение прямой определенного вида, проходящей через заданную точку плоскости параллельно заданной прямой. В этом случае сначала записываем уравнение прямой, которое проще всего получить, после чего приводим его к нужному виду.

Составьте уравнение прямой в отрезках, если эта прямая в прямоугольной системе координат Oxy проходит через точку плоскости с координатами Как определить уравнение параллельной прямойпараллельно прямой Как определить уравнение параллельной прямой.

Очевидно, нормальным вектором прямой, общее уравнение которой имеет вид Как определить уравнение параллельной прямой, является вектор Как определить уравнение параллельной прямой. Этот вектор также является нормальным вектором прямой, уравнение которой мы ищем. Общее уравнение прямой, проходящей через точку с координатами Как определить уравнение параллельной прямойи имеющей нормальный вектор Как определить уравнение параллельной прямойимеет вид Как определить уравнение параллельной прямой. Это общее уравнение прямой, проходящей через точку с координатами Как определить уравнение параллельной прямойпараллельно прямой Как определить уравнение параллельной прямой. Осталось перейти от полученного уравнения прямой Как определить уравнение параллельной прямойк требуемому уравнению прямой в отрезках: Как определить уравнение параллельной прямой.

Как определить уравнение параллельной прямой.

Напишите уравнение прямой, которая в прямоугольной системе координат Oxy на плоскости проходит через точку Как определить уравнение параллельной прямойи параллельна прямой Как определить уравнение параллельной прямой.

Мы знаем, что угловые коэффициенты параллельных прямых равны (или бесконечны), тогда Как определить уравнение параллельной прямой— угловой коэффициент прямой, уравнение которой нам требуется составить. По условию эта прямая проходит через точку Как определить уравнение параллельной прямой, следовательно, ее уравнение имеет вид Как определить уравнение параллельной прямой.

Как определить уравнение параллельной прямой.

Итак, уравнение прямой a , проходящей через заданную точку плоскости M1 параллельно заданной прямой b , проще всего записывать в таком виде, в котором записано уравнение заданной прямой b .

Видео:Линейная функция. Составить уравнение прямой проходящей через точку и перпендикулярно прямой.Скачать

Линейная функция. Составить уравнение прямой проходящей через точку и перпендикулярно прямой.

Уравнения прямой, проходящей через заданную точку пространства параллельно заданной прямой.

В трехмерном пространстве через точку М1 , не лежащую на прямой b , проходит единственная прямая a , параллельная прямой b . Таким образом, прямую в пространстве можно задать, указав точку, через которую она проходит, и прямую, которой она параллельна.

Пусть в трехмерном пространстве зафиксирована прямоугольная система координат Oxyz , задана прямая b некоторыми уравнениями прямой в пространстве и точка Как определить уравнение параллельной прямой. Требуется написать уравнения прямой a , проходящей через точку M1 параллельно прямой b .

Направляющим вектором прямой a является направляющий вектор прямой b . Таким образом, по известным уравнениям прямой b мы можем определить координаты ее направляющего вектора, а, следовательно, и координаты направляющего вектора прямой a . После этого мы можем записать канонические уравнения прямой a в пространстве и параметрические уравнения прямой a в пространстве, так как известны координаты точки, лежащей на прямой a , и координаты направляющего вектора прямой a .

Рассмотрим решения примеров.

Напишите уравнения прямой, которая проходит через начало прямоугольной системы координат Oxyz в трехмерном пространстве параллельно прямой Как определить уравнение параллельной прямой.

Очевидно, направляющим вектором прямой Как определить уравнение параллельной прямойявляется вектор с координатами Как определить уравнение параллельной прямой. Этот же вектор является направляющим вектором прямой, уравнение которой мы составляем. По условию эта прямая проходит через точку Как определить уравнение параллельной прямой, следовательно, ее канонические уравнения имеют вид Как определить уравнение параллельной прямой.

Как определить уравнение параллельной прямой.

От канонических уравнений прямой a при необходимости можно будет перейти к уравнениям двух плоскостей, пересекающихся по прямой a .

В трехмерном пространстве в прямоугольной системе координат Oxyz заданы три точки Как определить уравнение параллельной прямой. Напишите уравнения двух плоскостей, которые пересекаются по прямой, проходящей через точку С параллельно прямой АВ .

Направляющим вектором прямой, проходящей через точку С параллельно прямой АВ , является вектор Как определить уравнение параллельной прямой. По координатам точек В и А мы можем вычислить координаты вектора Как определить уравнение параллельной прямой(при необходимости смотрите статью вычисление координат вектора по координатам точек конца и начала вектора): Как определить уравнение параллельной прямой. Канонические уравнения прямой, проходящей через точку Как определить уравнение параллельной прямойи имеющей направляющий вектор Как определить уравнение параллельной прямой, запишутся как Как определить уравнение параллельной прямой.

Осталось получить уравнения двух пересекающихся плоскостей, задающих эту прямую:
Как определить уравнение параллельной прямой

Как определить уравнение параллельной прямой.

Видео:Уравнение касательной, параллельной заданной прямой.Скачать

Уравнение касательной, параллельной заданной прямой.

Уравнение параллельной прямой

Как составить уравнение прямой параллельной данной прямой и проходящей через данную точку?

Пусть y = k1x+b1 — данная прямая. С учётом условия параллельности прямых уравнение прямой, параллельной данной, имеет вид y = k1x+b2.

Так как эта прямая проходит через точку M(xo; yo), то её координаты удовлетворяют уравнению прямой. Подставив в уравнение xo и yo, мы найдем b:

1) Составить уравнение прямой, которая проходит через точку A(4;21) и параллельна прямой y=3x-8.

Так как угловые коэффициенты у параллельных прямых равны, то k2=k1=3 и уравнение прямой, параллельной прямой y=3x-8, имеет вид y=3x+b. Так как искомая прямая проходит через точку A(4;21), подставляем в уравнение прямой координаты A (x=4; y=21):

21=3·4+b, откуда находим b: b= 21-12= 9.

Итак, уравнение прямой, параллельной прямой y=3x-8, проходящей через точку A(4;21) — y=3x+9.

2) Написать уравнение прямой, параллельной прямой x=5, проходящей через точку B(-3; 5).

Так как прямая x=5 параллельна оси Oy, то и параллельная ей прямая также параллельна Oy, а значит, уравнение этой прямой имеет вид x=a.

Так как эта прямая проходит через точку B(-3; 5), то её абсцисса удовлетворяет уравнению прямой: a= -3.

Итак, уравнение прямой, параллельной прямой x=5 и проходящей через точку B(-3; 5) — x= -3.

3) Написать уравнение прямой, параллельной прямой y= -11, проходящей через точку K(2; 4).

Так как прямая y= -11 параллельна оси Ox, то и параллельная ей прямая также параллельна оси Ox. Поэтому уравнение прямой имеет вид y=b.

Поскольку эта прямая проходит через точку K(2; 4), то её ордината удовлетворяет уравнению прямой: b=4.

Уравнение прямой, параллельной прямой y= -11 и проходящей через точку K(2; 4) — y=4.

Видео:Как составить уравнение прямой, проходящей через две точки на плоскости | МатематикаСкачать

Как составить уравнение прямой, проходящей через две точки на плоскости | Математика

Уравнение параллельной прямой

Как составить уравнение прямой параллельной данной прямой и проходящей через данную точку?

Пусть y = k1x+b1 — данная прямая. С учётом условия параллельности прямых уравнение прямой, параллельной данной, имеет вид y = k1x+b2.

Так как эта прямая проходит через точку M(xo; yo), то её координаты удовлетворяют уравнению прямой. Подставив в уравнение xo и yo, мы найдем b:

1) Составить уравнение прямой, которая проходит через точку A(4;21) и параллельна прямой y=3x-8.

Так как угловые коэффициенты у параллельных прямых равны, то k2=k1=3 и уравнение прямой, параллельной прямой y=3x-8, имеет вид y=3x+b. Так как искомая прямая проходит через точку A(4;21), подставляем в уравнение прямой координаты A (x=4; y=21):

21=3·4+b, откуда находим b: b= 21-12= 9.

Итак, уравнение прямой, параллельной прямой y=3x-8, проходящей через точку A(4;21) — y=3x+9.

2) Написать уравнение прямой, параллельной прямой x=5, проходящей через точку B(-3; 5).

Так как прямая x=5 параллельна оси Oy, то и параллельная ей прямая также параллельна Oy, а значит, уравнение этой прямой имеет вид x=a.

Так как эта прямая проходит через точку B(-3; 5), то её абсцисса удовлетворяет уравнению прямой: a= -3.

Итак, уравнение прямой, параллельной прямой x=5 и проходящей через точку B(-3; 5) — x= -3.

3) Написать уравнение прямой, параллельной прямой y= -11, проходящей через точку K(2; 4).

Так как прямая y= -11 параллельна оси Ox, то и параллельная ей прямая также параллельна оси Ox. Поэтому уравнение прямой имеет вид y=b.

Поскольку эта прямая проходит через точку K(2; 4), то её ордината удовлетворяет уравнению прямой: b=4.

Уравнение прямой, параллельной прямой y= -11 и проходящей через точку K(2; 4) — y=4.

📺 Видео

Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

12. Уравнения прямой в пространстве Решение задачСкачать

12. Уравнения прямой в пространстве Решение задач

10. Параллельность и перпендикулярность плоскостей Решение задачСкачать

10. Параллельность и перпендикулярность плоскостей Решение задач

Прямая y=8x+11 параллельна касательной к графику функции y=x^2+7x-7. Найдите абсциссу точки касания.Скачать

Прямая y=8x+11 параллельна касательной к графику функции y=x^2+7x-7. Найдите абсциссу точки касания.

Аналитическая геометрия, 6 урок, Уравнение прямойСкачать

Аналитическая геометрия, 6 урок, Уравнение прямой

Составляем уравнение прямой по точкамСкачать

Составляем уравнение прямой по точкам

Часть 8 Уравнение прямой проходящей через точку и перпендикулярную к заданной прямойСкачать

Часть 8 Уравнение прямой проходящей через точку и перпендикулярную к заданной прямой

Уравнение прямой, проходящей через точку параллельно OX, OY или через начало координат. Урок 5. 8 клСкачать

Уравнение прямой, проходящей через точку параллельно OX, OY или через начало координат. Урок 5. 8 кл

Уравнение прямой, проходящей через две точки, и прямой, перпендикулярной заданной прямойСкачать

Уравнение прямой, проходящей через две точки, и прямой, перпендикулярной заданной прямой

Написать канонические и параметрические уравнения прямой в пространствеСкачать

Написать канонические и параметрические уравнения прямой в пространстве

Видеоурок "Канонические уравнения прямой"Скачать

Видеоурок "Канонические уравнения прямой"

Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.

7 класс, 24 урок, Определение параллельных прямыхСкачать

7 класс, 24 урок, Определение параллельных прямых
Поделиться или сохранить к себе: