Как определить неизвестное в уравнении ядерной реакции

Видео:Уравнения ядерных реакций для разных видов распада (видео 19)| Квантовая физика | ФизикаСкачать

Уравнения ядерных реакций для разных видов распада (видео 19)| Квантовая физика | Физика

Найдите неизвестный элемент ядерной реакции

Задача. Найти неизвестный элемент ядерной реакции. Пример реакции: , остальные реакции будут разобраны в тексте задачи (ибо лень делать страницу для каждой реакции).

Найти:
Элемент — ?

Решение

Думаем: все вопросы нахождения неизвестного элемента ядерной реакции касаются закона сохранения нуклонного и протонного заряда:

  • — количество нуклонов (протонов+нейтронов) в соответствующих атомах,
  • — количество протонов в соответствующих атомах.

Также есть набор элементов, которые могут не записываться без протонного и нуклонного заряда.

Решаем: рассматривая реакцию , исходя из (1) и (2) можем вывести два соотношения.

Считаем: исходя из (3) и (4), получаем:

Тогда: — этот элемент является нейтроном.

Ответ: (нейтрон)

Задача 2. Реакция .

Решаем: в этой задаче дополнительно необходимо «узнать» элементы. В нашей задаче — дейтерий — «тяжёлый» водород с 1 протоном (всё же водород) и 1 нейтрон. Тогда форма записи: . — нейтрон — элемент с 0 протонов и 1 нейтроном, т.е. . Тогда:

Решаем: исходя из (1) и (2) можем вывести два соотношения.

Считаем: исходя из (5) и (6), получаем:

Тогда: — используя таблицу Менделеева, заключаем, что этот элемент — фтор ( )

Ответ: (фтор).

Задача 3. Реакция .

Решаем: в этой задаче дополнительно необходимо «узнать» элементы. В нашей задаче — гамма-квант или фотон света без нейтронов и протонов. Тогда форма записи: . — протон — элемент с 1 протоном и 0 нейтронов, тогда форма записи: . — нейтрон — элемент с 0 протонов и 1 нейтроном, т.е. . Тогда:

Решаем: исходя из (1) и (2) можем вывести два соотношения.

Считаем: исходя из (7) и (8), получаем:

Тогда: — используя таблицу Менделеева, заключаем, что этот элемент — калий ( )

Ответ: (калий).

Задача 4. Реакция .

Решаем: в этой задаче дополнительно необходимо «узнать» элементы. В нашей задаче — альфа частица или ядро гелия с 2 протонами и 2 нейтронами. Тогда форма записи: . — нейтрон — элемент с 0 протонов и 1 нейтроном, т.е. . Тогда:

Решаем: исходя из (1) и (2) можем вывести два соотношения.

Считаем: исходя из (9) и (10), получаем:

Тогда: — используя таблицу Менделеева, заключаем, что этот элемент — бериллий ( ). — используя таблицу Менделеева, заключаем, что этот элемент — углерод ( )

Ответ: (бериллий), (углерод).

Задача 5. Реакция .

Решаем: в этой задаче дополнительно необходимо «узнать» элементы. В нашей задаче — свинец, из таблицы Менделеева находим количество протонов — 94. Тогда форма записи: . — кюрий, из таблицы Менделеева находим количество протонов — 96. — нейтрон — элемент с 0 протонов и 1 нейтроном, т.е. . Тогда:

Решаем: исходя из (1) и (2) можем вывести два соотношения.

Считаем: исходя из (11) и (12), получаем:

Тогда: — используя таблицу Менделеева, заключаем, что этот элемент — Гелий (или альфа-частица) ( ).

Видео:Ядерные реакции. 10 класс.Скачать

Ядерные реакции. 10 класс.

Примеры ядерных реакций: особенности, решение и формулы

Как определить неизвестное в уравнении ядерной реакции

На протяжении долгого времени человека не оставляли мечты о взаимопревращении элементов – точнее, о превращении различных металлов в один. После осознания бесплодности этих попыток утвердилась точка зрения о незыблемости химических элементов. И только открытие структуры ядра в начале XX века показало, что превращение элементов один в другой возможно – но не химическими методами, то есть воздействием на внешние электронные оболочки атомов, а путем вмешательства в структуру атомного ядра. Такого рода явления (и некоторые другие) относятся к ядерным реакциям, примеры которых будут рассмотрены ниже. Но прежде необходимо вспомнить о некоторых основных понятиях, которые потребуются в ходе этого рассмотрения.

Видео:9 класс. Решение задач "Ядерные реакции"Скачать

9 класс. Решение задач "Ядерные реакции"

Общее понятие о ядерных реакциях

Существуют явления, в которых ядро атома того или иного элемента вступает во взаимодействие с другим ядром или какой-либо элементарной частицей, то есть обменивается с ними энергией и импульсом. Подобные процессы и называются ядерными реакциями. Результатом их может стать изменение состава ядра или образование новых ядер с испусканием определенных частиц. При этом возможны такие варианты, как:

  • превращение одного химического элемента в другой;
  • деление ядра;
  • синтез, то есть слияние ядер, при котором образуется ядро более тяжелого элемента.

Начальная фаза реакции, определяемая типом и состоянием вступающих в нее частиц, называется входным каналом. Выходные каналы – это возможные пути, по которым реакция будет протекать.

Как определить неизвестное в уравнении ядерной реакции

Видео:Знакомство с уравнениями ядерных реакцийСкачать

Знакомство с уравнениями ядерных реакций

Правила записи ядерных реакций

В примерах, приведенных ниже, демонстрируются способы, с помощью которых принято описывать реакции с участием ядер и элементарных частиц.

Первый способ – тот же, что применяется в химии: в левой части ставятся исходные частицы, в правой – продукты реакции. Например, взаимодействие ядра бериллия-9 с налетающей альфа-частицей (так называемая реакция открытия нейтрона) записывается следующим образом:

Верхние индексы обозначают количество нуклонов, то есть массовые числа ядер, нижние – количество протонов, то есть атомные номера. Суммы тех и других в левой и правой части должны совпадать.

Сокращенный способ написания уравнений ядерных реакций, часто применяющийся в физике, выглядит так:

Общий вид такой записи: A (a, b1b2…) B. Здесь A – ядро-мишень; a – налетающая частица или ядро; b1, b2 и так далее – легкие продукты реакции; B – конечное ядро.

Видео:Как Решать Задачи по Химии // Задачи с Уравнением Химической Реакции // Подготовка к ЕГЭ по ХимииСкачать

Как Решать Задачи по Химии // Задачи с Уравнением Химической Реакции // Подготовка к ЕГЭ по Химии

Энергетика ядерных реакций

В ядерных превращениях выполняется закон сохранения энергии (наряду с другими законами сохранения). При этом кинетическая энергия частиц во входном и выходном канале реакции могут различаться за счет изменения энергии покоя. Так как последняя эквивалентна массе частиц, до и после реакции массы также будут неодинаковы. Но полная энергия системы всегда сохраняется.

Разность энергии покоя вступающих в реакцию и выходящих из нее частиц называется энергетическим выходом и выражается в изменении их кинетической энергии.

Как определить неизвестное в уравнении ядерной реакции

В процессах с участием ядер задействуются три вида фундаментальных взаимодействий – электромагнитное, слабое и сильное. Благодаря последнему ядро обладает такой важнейшей особенностью, как высокая энергия связи между составляющими его частицами. Она существенно выше, чем, например, между ядром и атомными электронами или между атомами в молекулах. Об этом свидетельствует заметный дефект массы – разница между суммой масс нуклонов и массой ядра, которая всегда меньше на величину, пропорциональную энергии связи: Δm = Eсв/c 2 . Расчет дефекта массы производится по простой формуле Δm = Zmp + Amn – Мя, где Z – заряд ядра, A – массовое число, mp – масса протона (1,00728 а.е.м.), mn – масса нейтрона (1,00866 а.е.м.), Mя – масса ядра.

При описании ядерных реакций используется понятие удельной энергии связи (то есть в расчете на один нуклон: Δmc 2 /A).

Видео:Урок 471. Ядерные реакции. Энергетический выход ядерной реакцииСкачать

Урок 471. Ядерные реакции. Энергетический выход ядерной реакции

Энергия связи и стабильность ядер

Наибольшей устойчивостью, то есть наивысшей удельной энергией связи, отличаются ядра с массовым числом от 50 до 90, например, железо. Такой «пик стабильности» обусловлен нецентральным характером ядерных сил. Поскольку каждый нуклон взаимодействует только с соседями, на поверхности ядра он связан слабее, нежели внутри. Чем меньше в ядре взаимодействующих нуклонов, тем меньше и энергия связи, поэтому легкие ядра менее стабильны. В свою очередь, с ростом количества частиц в ядре возрастают кулоновские силы отталкивания между протонами, так что энергия связи тяжелых ядер тоже уменьшается.

Таким образом, для легких ядер наиболее вероятными, то есть энергетически выгодными, являются реакции слияния с формированием устойчивого ядра средней массы, для тяжелых же – напротив, процессы распада и деления (нередко многоступенчатые), в результате которых также образуются более стабильные продукты. Этим реакциям свойственен положительный и часто очень высокий энергетический выход, сопровождающий увеличение энергии связи.

Ниже мы рассмотрим некоторые примеры ядерных реакций.

Видео:Решение задач на ядерные реакцииСкачать

Решение задач на ядерные реакции

Реакции распада

Ядра могут претерпевать спонтанное изменение состава и структуры, при которых происходит испускание каких-либо элементарных частиц или фрагментов ядра, таких как альфа-частицы или более тяжелые кластеры.

Так, при альфа-распаде, возможном благодаря квантовому туннелированию, альфа-частица преодолевает потенциальный барьер ядерных сил и покидает материнское ядро, которое, соответственно, уменьшает атомный номер на 2, а массовое число – на 4. Например, ядро радия-226, испуская альфа-частицу, превращается в радон-222:

Энергия распада ядра радия-226 составляет около 4,87 МэВ.

Как определить неизвестное в уравнении ядерной реакции

Бета-распад, обусловленный слабым взаимодействием, происходит без изменения количества нуклонов (массового числа), но с увеличением или уменьшением заряда ядра на 1, при испускании антинейтрино или нейтрино, а также электрона или позитрона. Примером ядерной реакции данного типа является бета-плюс-распад фтора-18. Здесь один из протонов ядра превращается в нейтрон, излучаются позитрон и нейтрино, а фтор превращается в кислород-18:

Энергия бета-распада фтора-18 – около 0,63 МэВ.

Видео:Ядерные реакции. Простой и понятный советский научный фильм.Скачать

Ядерные реакции. Простой и понятный советский научный фильм.

Деление ядер

Гораздо больший энергетический выход имеют реакции деления. Так называется процесс, при котором ядро самопроизвольно или вынужденно распадается на близкие по массе осколки (как правило, два, редко – три) и некоторые более легкие продукты. Ядро делится, если его потенциальная энергия превысит исходное значение на некоторую величину, называемую барьером деления. Однако вероятность спонтанного процесса даже для тяжелых ядер невелика.

Как определить неизвестное в уравнении ядерной реакции

Она существенно возрастает при получении ядром соответствующей энергии извне (при попадании в него частицы). Наиболее легко проникает в ядро нейтрон, поскольку он не подвержен силам электростатического отталкивания. Попадание нейтрона приводит к повышению внутренней энергии ядра, оно деформируется с образованием перетяжки и делится. Осколки разлетаются под действием кулоновских сил. Пример ядерной реакции деления демонстрирует уран-235, поглотивший нейтрон:

Расщепление на барий-144 и криптон-89 – лишь один из возможных вариантов деления урана-235. Эту реакцию можно записать в виде 235 92U + 1 0n → 236 92U* → 144 56Ba + 89 36Kr + 3 1 0n, где 236 92U* – сильно возбужденное составное ядро с высокой потенциальной энергией. Избыток ее наряду с разностью энергий связи материнского и дочерних ядер выделяется главным образом (около 80%) в форме кинетической энергии продуктов реакции, а также частично в форме потенциальной энергии осколков деления. Общая энергия деления массивного ядра – примерно 200 МэВ. В пересчете на 1 грамм урана-235 (при условии, что прореагировали все ядра) это составляет 8,2 ∙ 10 4 мегаджоулей.

Видео:Сложные уравнения. Как решить сложное уравнение?Скачать

Сложные уравнения. Как решить сложное уравнение?

Цепные реакции

Деление урана-235, а также таких ядер, как уран-233 и плутоний-239, характеризуется одной важной особенностью – наличием среди продуктов реакции свободных нейтронов. Эти частицы, проникая в другие ядра, в свою очередь, способны инициировать их деление опять-таки с вылетом новых нейтронов и так далее. Подобный процесс именуется цепной ядерной реакцией.

Как определить неизвестное в уравнении ядерной реакции

Течение цепной реакции зависит от того, как соотносится число вылетающих нейтронов очередного поколения с количеством их в предыдущем поколении. Это отношение k = Ni/Ni–1 (здесь N – количество частиц, i – порядковый номер поколения) носит название коэффициента размножения нейтронов. При k 1 число нейтронов, а значит, и делящихся ядер, возрастает лавинообразно. Пример цепной ядерной реакции такого типа – взрыв атомной бомбы. При k = 1 процесс протекает стационарно, примером чему служит реакция, управляемая при помощи поглощающих нейтроны стержней, в ядерных реакторах.

Видео:Решение матричных уравненийСкачать

Решение матричных уравнений

Ядерный синтез

Наибольшее энерговыделение (в расчете на один нуклон) происходит при слиянии легких ядер – так называемых реакциях синтеза. Чтобы вступить в реакцию, положительно заряженные ядра должны преодолеть кулоновский барьер и сблизиться на расстояние сильного взаимодействия, не превышающее размеров самого ядра. Поэтому они должны обладать чрезвычайно большой кинетической энергией, что означает высокие температуры (десятки миллионов градусов и выше). По этой причине реакции синтеза еще называют термоядерными.

Пример ядерной реакции синтеза – образование гелия-4 с вылетом нейтрона при слиянии ядер дейтерия и трития:

Здесь высвобождается энергия 17,6 МэВ, что в расчете на один нуклон более чем в 3 раза превышает энергию деления урана. Из них 14,1 МэВ приходится на кинетическую энергию нейтрона и 3,5 МэВ – ядра гелия-4. Такая существенная величина создается за счет огромной разницы в энергиях связи ядер дейтерия (2,2246 МэВ) и трития (8,4819 МэВ) с одной стороны, и гелия-4 (28,2956 МэВ) – с другой.

Как определить неизвестное в уравнении ядерной реакции

В реакциях деления ядра высвобождается энергия электрического отталкивания, в то время как при синтезе энерговыделение происходит за счет сильного взаимодействия – самого мощного в природе. Это и определяет столь значительный энергетический выход данного типа ядерных реакций.

Видео:КАК НАЙТИ НЕИЗВЕСТНОЕ СЛАГАЕМОЕ В УРАВНЕНИИ? Примеры | МАТЕМАТИКА 5 классСкачать

КАК НАЙТИ НЕИЗВЕСТНОЕ СЛАГАЕМОЕ В УРАВНЕНИИ? Примеры | МАТЕМАТИКА 5 класс

Примеры решения задач

Рассмотрим реакцию деления 235 92U + 1 0n → 140 54Xe + 94 38Sr + 2 1 0n. Каков ее энергетический выход? В общем виде формула для его расчета, отражающая разность энергий покоя частиц до и после реакции, выглядит следующим образом:

Вместо умножения на квадрат скорости света можно умножить разность масс на коэффициент 931,5 и получить значение энергии в мегаэлектронвольтах. Подставив в формулу соответствующие значения атомных масс, получим:

Q = (235,04393 + 1,00866 – 139,92164 – 93,91536 — 2∙1,00866) ∙ 931,5 ≈ 184,7 МэВ.

Как определить неизвестное в уравнении ядерной реакции

Еще один пример – на реакцию синтеза. Это один из этапов протон-протонного цикла – главного источника солнечной энергии.

Применим ту же формулу:

Q = (2 ∙ 3,01603 – 4,00260 — 2 ∙ 1,00728) ∙ 931,5 ≈ 13,9 МэВ.

Основная доля этой энергии – 12,8 МэВ – приходится в данном случае на гамма-фотон.

Мы рассмотрели только простейшие примеры ядерных реакций. Физика этих процессов чрезвычайно сложна, они отличаются огромным разнообразием. Исследование и применение ядерных реакций имеет большое значение как в практической области (энергетика), так и в фундаментальной науке.

Видео:Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?

Ядерные реакции. Выделение и поглощение энергии при ядерных реакциях. Термоядерные реакции синтеза лёгких ядер

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Как определить неизвестное в уравнении ядерной реакции

На этом уроке мы узнаем, что такое ядерные реакции, рассмотрим законы сохранения при ядерных реакциях, выясним причину изменения суммарной массы ядер, а также научимся вычислять энергетический выход таких реакций. В конце урока узнаем, какой колоссальный выход энергии получается при термоядерных реакциях.

🔥 Видео

Нахождение неизвестного слагаемогоСкачать

Нахождение неизвестного слагаемого

Решение задач на термохимические уравнения. 8 класс.Скачать

Решение задач на термохимические уравнения. 8 класс.

Математика 3 класс (Урок№3 - Решение уравнений с неизвестным уменьшаемым, с неизвестным вычитаемым.)Скачать

Математика 3 класс (Урок№3 - Решение уравнений с неизвестным уменьшаемым, с неизвестным вычитаемым.)

Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать

Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?

Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 классСкачать

Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 класс

Как найти неизвестное уменьшаемоеСкачать

Как найти неизвестное уменьшаемое

Как найти неизвестное число? Решение уравненийСкачать

Как найти неизвестное число? Решение уравнений

Математика это не ИсламСкачать

Математика это не Ислам
Поделиться или сохранить к себе: