Как определить начальную скорость тела по уравнению

Механическое движение

Как определить начальную скорость тела по уравнению

О чем эта статья:

Содержание
  1. Механическое движение
  2. Прямолинейное равномерное движение
  3. Скалярные величины (определяются только значением)
  4. Векторные величины (определяются значением и направлением)
  5. Проецирование векторов
  6. Уравнение движения
  7. Прямолинейное равноускоренное движение
  8. Уравнение движения и формула конечной скорости
  9. Движение по вертикали
  10. Как найти скорость с ускорением и временем: разные подходы, проблемы, примеры
  11. Как найти скорость по графику ускорения и времени?
  12. Как найти начальную скорость с ускорением и временем?
  13. Как найти изменение скорости в зависимости от ускорения и времени
  14. Решены задачи о том, как найти скорость с ускорением и временем.
  15. Задача 1) Лодка движется с начальной скоростью 11 м / с. Лодка развивает ускорение 3 м / с. 2 каждые 10 секунд. Затем рассчитайте изменение скорости и конечную скорость лодки.
  16. Задача 2) График ускорение – время приведен ниже. Найдите изменение скорости и вычислите начальную скорость, если конечная скорость равна 54 м / с.
  17. Задача 3) дается график ускорение – время для определения изменения скорости.
  18. Задача 4) Найдите начальную скорость мяча, который ускоряется со скоростью 6 м / с. 2 со временем 8 сек. Конечная скорость мяча составляет 100 м / с.
  19. Задача 5) Рассчитайте изменение скорости движущегося объекта, имеющего начальную скорость 34 м / с. Ускорение объекта 12 м / с. 2 , а изменение по времени — 7 сек.
  20. Задача 6) Диск движется с начальной скоростью 25 м / с. Диск меняет свою скорость каждые 10 секунд. Изменение ускорения 5 м / с. 2 . Рассчитайте конечную скорость диска.
  21. report this ad Похожие сообщения
  22. Ускорение против. Замедление: подробный анализ
  23. Примеры положительного ускорения: подробный анализ
  24. Поверхностное ускорение без трения: исчерпывающая информация…
  25. Как найти ускорение свободного падения:…
  26. Как найти ускорение свободного падения…
  27. Пример гравитационного ускорения: подробные сведения
  28. Как рассчитать ускорение с помощью…
  29. Как найти среднюю скорость…
  30. Скорость графика постоянного ускорения против…
  31. Как найти ускорение с…
  32. Как рассчитать силу без…
  33. Как найти нормальную силу…
  34. 15 Пример чистой силы:…
  35. Как найти нормальную силу…
  36. Как найти чистую силу:…
  37. Мгновенная скорость и ускорение: сравнительное…
  38. Отрицательно ли замедление: подробные факты
  39. Как определить конечную скорость…
  40. Как найти скорость с помощью…
  41. Как найти скорость с помощью…
  42. Свяжитесь с нами
  43. Наша миссия
  44. Виды скорости в физике и методы их вычисления
  45. Скорость в физике — что это такое
  46. Виды скорости в физике, основные характеристики
  47. Формулы скорости при движении разных видов
  48. Примеры задач с решением

Видео:Графики зависимости кинематических величин от времени при равномерном и равноускоренном движенииСкачать

Графики зависимости кинематических величин от времени при равномерном и равноускоренном движении

Механическое движение

Когда мы идем в школу или на работу, автобус подъезжает к остановке или сладкий корги гуляет с хозяином, мы имеем дело с механическим движением.

Механическим движением называется изменение положения тел в пространстве относительно других тел с течением времени.

«Относительно других тел» — очень важные слова в этом определении. Для описания движения нам нужны:

  • тело отсчета
  • система координат
  • часы

В совокупности эти три параметра образуют систему отсчета.

В механике есть такой раздел — кинематика. Он отвечает на вопрос, как движется тело. Дальше мы с помощью кинематики опишем разные виды механического движения. Не переключайтесь 😉

Прямолинейное равномерное движение

Движение по прямой, при котором тело проходит равные участки пути за равные промежутки времени называют прямолинейным равномерным. Это любое движение с постоянной скоростью.

Например, если у вас ограничение скорости на дороге 60 км/ч, и у вас нет никаких препятствий на пути — скорее всего, вы будете двигаться прямолинейно равномерно.

Мы можем охарактеризовать это движение следующими величинами.

Скалярные величины (определяются только значением)

  • Время — в международной системе единиц СИ измеряется в секундах [с].
  • Путь — длина траектории (линии, по которой движется тело). В случае прямолинейного равномерного движения — длина отрезка [м].

Векторные величины (определяются значением и направлением)

  • Скорость — характеризует быстроту перемещения и направление движения материальной точки [м/с].
  • Перемещение — вектор, проведенный из начальной точки пути в конечную [м].

Видео:Физика - перемещение, скорость и ускорение. Графики движения.Скачать

Физика - перемещение, скорость и ускорение. Графики движения.

Проецирование векторов

Векторное описание движения полезно, так как на одном чертеже всегда можно изобразить много разнообразных векторов и получить перед глазами наглядную «картину» движения.

Однако всякий раз использовать линейку и транспортир, чтобы производить действия с векторами, очень трудоёмко. Поэтому эти действия сводят к действиям с положительными и отрицательными числами — проекциями векторов.

Если вектор сонаправлен с осью, то его проекция равна длине вектора. А если вектор противоположно направлен оси — проекция численно равна длине вектора, но отрицательна. Если вектор перпендикулярен — его проекция равна нулю.

Как определить начальную скорость тела по уравнению

Скорость может определяться по вектору перемещения и пути, только это будут две разные характеристики.

Скорость — это векторная физическая величина, которая характеризует быстроту перемещения, а средняя путевая скорость — это отношение длины пути ко времени, за которое путь был пройден.

Скорость

— скорость [м/с]
— перемещение [м]
— время [с]

Средняя путевая скорость

V ср.путевая = S/t

V ср.путевая — средняя путевая скорость [м/с]
S — путь [м]
t — время [с]

Задача

Найдите, с какой средней путевой скоростью должен двигаться автомобиль, если расстояние от Санкт-Петербурга до Великого Новгорода в 210 километров ему нужно пройти за 2,5 часа. Ответ дайте в км/ч.

Решение:

Возьмем формулу средней путевой скорости
V ср.путевая = S/t

Подставим значения:
V ср.путевая = 210/2,5 = 84 км/ч

Ответ: автомобиль будет двигаться со средней путевой скоростью равной 84 км/ч

Уроки физики в онлайн-школе Skysmart не менее увлекательны, чем наши статьи!

Видео:Урок 18 (осн). Координаты тела. График движения. График скоростиСкачать

Урок 18 (осн). Координаты тела. График движения. График скорости

Уравнение движения

Одной из основных задач механики является определение положения тела относительно других тел в данный момент времени. Для решения этой задачи помогает уравнение движения, то есть зависимость координаты тела от времени х = х(t).

Уравнение движения

x(t) — искомая координата в момент времени t [м]
x0 — начальная координата [м]
vx — скорость тела в данный момент времени [м/с]
t — момент времени [с]

Если положительное направление оси ОХ противоположно направлению движения тела, то проекция скорости тела на ось ОХ отрицательна, скорость меньше нуля (v

Уравнение движения при движении против оси

x(t) — искомая координата в момент времени t [м]
x0 — начальная координата [м]
vx — скорость тела в данный момент времени [м/с]
t — момент времени [с]

Видео:Физика - уравнения равноускоренного движенияСкачать

Физика - уравнения равноускоренного движения

Прямолинейное равноускоренное движение

Чтобы разобраться с тем, что за тип движения в этом заголовке, нужно ввести новое понятие — ускорение.

Ускорение — векторная физическая величина, характеризующая быстроту изменения скорости. В международной системе единиц СИ измеряется в метрах, деленных на секунду в квадрате.

СИ — международная система единиц. «Перевести в СИ» означает перевод всех величин в метры, килограммы, секунды и другие единицы измерения без приставок. Исключение — килограмм с приставкой «кило».

Итак, равноускоренное прямолинейное движение — это движение с ускорением по прямой линии. Движение, при котором скорость тела меняется на равную величину за равные промежутки времени.

Уравнение движения и формула конечной скорости

Основная задача механики не поменялась по ходу текста — определение положения тела относительно других тел в данный момент времени. У равноускоренного движения в уравнении появляется ускорение.

Уравнение движения для равноускоренного движения

x(t) — искомая координата в момент времени t [м]
x0 — начальная координата [м]
v0x — начальная скорость тела в [м/с]
t — время [с]
ax — ускорение [м/с 2 ]

Для этого процесса также важно уметь находить конечную скорость — решать задачки так проще. Конечная скорость находится по формуле:

Формула конечной скорости

— конечная скорость тела [м/с]
— начальная скорость тела [м/с]
— время [с]
— ускорение [м/с 2 ]

Задача

Найдите местоположение автобуса, который разогнался до скорости 60 км/ч за 3 минуты, через 0,5 часа после начала движения из начала координат.

Решение:

Сначала найдем ускорение автобуса. Его можно выразить из формулы конечной скорости:

Так как автобус двигался с места, . Значит

Время дано в минутах, переведем в часы, чтобы соотносилось с единицами измерения скорости.

3 минуты = 3/60 часа = 1/20 часа = 0,05 часа

Подставим значения:
a = v/t = 60/0,05 = 1200 км/ч 2
Теперь возьмем уравнение движения.
x(t) = x0 + v0xt + axt 2 /2

Начальная координата равна нулю, начальная скорость, как мы уже выяснили — тоже. Значит уравнение примет вид:

Ускорение мы только что нашли, а вот время будет равно не 3 минутам, а 0,5 часа, так как нас просят найти координату в этот момент времени.

Подставим циферки:
км

Ответ: через полчаса координата автобуса будет равна 150 км.

Видео:УСКОРЕНИЕ - Что такое равноускоренное движение? Как найти ускорение // Урок Физики 9 классСкачать

УСКОРЕНИЕ - Что такое равноускоренное движение? Как найти ускорение // Урок Физики 9 класс

Движение по вертикали

Движение по вертикали — это частный случай равноускоренного движения. Дело в том, что на Земле тела падают с одинаковым ускорением — ускорением свободного падения. Для Земли оно приблизительно равно 9,81 м/с 2 , а в задачах мы и вовсе осмеливаемся округлять его до 10 (физики просто дерзкие).

Вообще в значении ускорения свободного падения для Земли очень много знаков после запятой. В школе обычно дают значение: g = 9,8 м/с 2 . В экзаменах ОГЭ и ЕГЭ в справочных данных дают g = 10 м/с 2 .

Частным случаем движения по вертикали (частным случаем частного случая, получается) считается свободное падение — это равноускоренное движение под действием силы тяжести, когда другие силы, действующие на тело, отсутствуют или пренебрежимо малы.

Помните о том, что свободное падение — это не всегда движение по вертикали из состояния покоя. Если мы бросаем тело вверх, то начальная скорость, конечно же, будет.

Видео:Скорость и перемещение при прямолинейном равноускоренном движении. 9 класс.Скачать

Скорость и перемещение при прямолинейном равноускоренном движении. 9 класс.

Как найти скорость с ускорением и временем: разные подходы, проблемы, примеры

Скорость, ускорение и время являются основными величинами для вывода уравнения движения. В общем, производная скорости по времени дает ускорение.

В кинематике скорость можно найти, используя ускорение и время. С скорость и ускорение связаны с величиной и направлением, для определения скорости мы используем как алгебраический метод, так и интегральное исчисление. В этом посте обсуждается, как найти скорость с учетом ускорения и времени, используя оба метода.

Представим, что тело движется с ускорением «а», преодолевая определенное расстояние в момент «t».

Алгебраическим методом:

Из кинематического определения ускорение — скорость изменения скорости движущегося тела.

Здесь мы рассматриваем; изначально тело имеет минимальную скорость; следовательно, начальную скорость можно считать приблизительно нулевой.

Переставляя члены, мы получаем скорость тела как;

Методом интегрального исчисления:

Производная по времени от скорость дает ускорение тела. Это определяется следующим уравнением.

Преобразуя приведенное выше уравнение

Интегрируя приведенное выше уравнение по времени t

Где; C — интегральная постоянная.

Следовательно; v = при + C

Вышеприведенное уравнение дает скорость; таким образом, умножение ускорения на время дает скорость.

Видео:Урок 44. Вращение твердого тела. Линейная и угловая скорость. Период и частота вращения.Скачать

Урок 44. Вращение твердого тела. Линейная и угловая скорость. Период и частота вращения.

Как найти скорость по графику ускорения и времени?

Построен график ускорения в зависимости от времени, что позволяет определить различные физические величины, такие как рывки и удары. скорость. Область, покрытая графиком «ускорение – время», показывает скорость.

Например, машина движется с начальной скоростью 16 м / с. Как со временем, машина начинает разгоняться. В ускорение автомобиля постоянна во времени. Через некоторое время машина внезапно останавливается, что показано на приведенном ниже графике.

Пунктирная линия используется как контрольная линия, когда тело останавливается.

Площадь, занимаемая в график ускорение – время представляет собой прямоугольник. Площадь прямоугольника определяется как

Из приведенного выше графика длина прямоугольника — это ускорение, а ширина — время; следовательно, уравнение

Но площадь графика at — это скорость, тогда

Следовательно, по определению На графике времени разгона площадь — это не что иное, как скорость.

Видео:Решение графических задач на равномерное движениеСкачать

Решение графических задач на равномерное движение

Как найти начальную скорость с ускорением и временем?

Когда тело начинает перемещаться из одной точки в другую, сначала оно обладает некоторой скоростью. Тело не нуждается в постоянной скорости, пока оно не достигнет своего конечного пункта назначения. Скорость тела изменяется со временем, когда оно движется, и, следовательно, тело приобретает ускорение.

Из приведенного выше объяснения ясно, что движущееся тело может иметь разные скорости. Тела скорость на начальном этапе может отличаться от финального. Давайте обсудим нахождение скорости с ускорением и временем в начальной точке.

Рассмотрим сначала автомобиль, движущийся со скоростью vi, а его скорость изменится через некоторое время t. Теперь тело ускоряется с ускорением «а», и, наконец, когда оно достигает конечной точки, оно имеет скорость vf.

Начальную скорость можно рассчитать тремя способами.

Используя алгебраический метод:

Ускорение из-за изменения скорости определяется выражением

Вышеприведенное уравнение дает начальную скорость движущегося тела.

По расчетам:

Исходя из определения ускорения, уравнение имеет вид

Интегрируя приведенное выше уравнение, выбирая пределы в качестве начальной скорости vi в момент времени t = 0 и конечной скорости vf в момент t.

Преобразуя приведенное выше уравнение, мы получаем начальную скорость.

Графическим методом:

Построен график зависимости скорости от времени, наклон которого дает ускорение — затем, найдя наклон, можно вычислить начальную скорость.

Исходя из приведенного выше графика, мы можем сказать это.

  • В единый интервал временискорость тела изменяется.
  • OD — время, затрачиваемое телом на путешествие, а BD — конечная скорость тела.
  • Перпендикулярные линии от BD к A проводятся параллельно OD. Таким же образом проводится линия BE параллельно OD.

На приведенном выше графике показано, что

Начальная скорость тела vi = ОА

Конечная скорость тела vf = БД

На графике BD = BC + DC

Следовательно, vf = ВС + ПОС

vf = до нашей эры + ви

На графике наклон = ускорение a

Но AC = t (из графика)

Подставляя значение BC

Видео:Траектория и уравнения движения точки. Задача 1Скачать

Траектория и уравнения движения точки. Задача 1

Как найти изменение скорости в зависимости от ускорения и времени

В общем, изменение скорости со временем дает ускорение.

Пусть тело движется с ускорением ‘a’ со временем ‘t’, изначально скорость объекта равна vi, а в конечной точке имеет скорость vf. Тогда изменение скорости определяется по уравнению:

Где ∆v — изменение скорости, а ∆t — изменение во времени.

Но изменение скорости определяется разница между начальной и конечной скоростью. Это дается уравнением ниже.

Изменение в скорость можно рассчитать с помощью графика «ускорение – время». Площадь под графиком at показывает изменение скорости.

Давайте ясно поймем это, рассмотрев пример, представленный графиком, приведенным ниже.

Площадь на графике времени ускорения представляет собой треугольник. Следовательно, вычисляя изменение скорости дается путем вычисления площади треугольника. Формула для определения площади треугольника:

Здесь h — высота треугольника, ускорение считается высотой, а b — основание треугольника, которое определяется осью времени. Таким образом, изменение скорости равно

По изменению скорости мы можем узнать начальную и конечную скорость тела.

Видео:Урок 37. Движение тела, брошенного под углом к горизонту (начало)Скачать

Урок 37. Движение тела, брошенного под углом к горизонту (начало)

Решены задачи о том, как найти скорость с ускорением и временем.

Видео:Как найти проекцию вектора скорости и ускорения. Выполнялка 112Скачать

Как найти проекцию вектора скорости и ускорения. Выполнялка 112

Задача 1) Лодка движется с начальной скоростью 11 м / с. Лодка развивает ускорение 3 м / с. 2 каждые 10 секунд. Затем рассчитайте изменение скорости и конечную скорость лодки.

Решение:

Данные приведены для расчета:

Начальная скорость лодки vi = 11 м / с.

Изменение ускорения, достигаемого лодкой a = 3 м / с 2 .

Изменение по времени t = 10 сек.

Чтобы найти окончательную скорость, уравнение

Видео:Графики зависимости пути и скорости от времениСкачать

Графики зависимости пути и скорости от времени

Задача 2) График ускорение – время приведен ниже. Найдите изменение скорости и вычислите начальную скорость, если конечная скорость равна 54 м / с.

Решение:

Конечная скорость vf = 54 м / с. На графике ускорение-время покрытая область представляет собой трапецию. Таким образом, площадь трапеции определяется выражением

Где a и b — прилегающее основание трапеции, h — высота. Из графика; a = 9 единиц, b = 5 единиц, h = 4 единицы.

Изменение скорости равно площади трапеции.

Чтобы найти начальную скорость

Видео:Уравнение движения тела дано в виде x=2−3t. ВычислиСкачать

Уравнение движения тела дано в виде x=2−3t. Вычисли

Задача 3) дается график ускорение – время для определения изменения скорости.

Решение:

Приведенный выше график можно разделить на три части, представленные пунктирной линией, как показано на рисунке ниже.

На приведенном выше графике можно понять следующие термины.

OAD и BCE — треугольник; площадь треугольника задается формулой

ABCD — прямоугольник; площадь прямоугольника определяется выражением

Чтобы найти изменение скорости, необходимо вычислить сумму площадей всех геометрических структур.

Изменение скорости ∆v = 180 м / с.

Видео:Уравнение движенияСкачать

Уравнение движения

Задача 4) Найдите начальную скорость мяча, который ускоряется со скоростью 6 м / с. 2 со временем 8 сек. Конечная скорость мяча составляет 100 м / с.

Решение:

Приведены данные: ускорение мяча a = 6 м / с2.

Конечная скорость vf = 100 м / с.

Для нахождения начальной скорости тела задается уравнение

Видео:Теория движение тела брошенного вертикально вверхСкачать

Теория движение тела брошенного вертикально вверх

Задача 5) Рассчитайте изменение скорости движущегося объекта, имеющего начальную скорость 34 м / с. Ускорение объекта 12 м / с. 2 , а изменение по времени — 7 сек.

Решение:

Начальная скорость объекта vi = 34 м / с.

Ускорение объекта a = 12 м / с 2 .

Изменение по времени t = 7 сек.

Конечная скорость объекта определяется выражением;

Изменение скорости определяется выражением;

Видео:Определение координаты движущегося тела | Физика 9 класс #3 | ИнфоурокСкачать

Определение координаты движущегося тела | Физика 9 класс #3 | Инфоурок

Задача 6) Диск движется с начальной скоростью 25 м / с. Диск меняет свою скорость каждые 10 секунд. Изменение ускорения 5 м / с. 2 . Рассчитайте конечную скорость диска.

Решение:

Начальная скорость диска vi = 25 м / с.

Изменение ускорения ∆a = 5 м / с 2 .

Изменение времени ∆t = 10 сек.

Изменение скорости равно

Конечная скорость диска может быть рассчитана по формуле, приведенной ниже.

Последние сообщения о передовой науке и исследованиях

Я Кирти К. Мурти, я закончила аспирантуру по физике со специализацией в области физики твердого тела. Я всегда считал физику фундаментальным предметом, связанным с нашей повседневной жизнью. Будучи студентом естественных наук, я люблю изучать новые вещи в физике. Как писатель, моя цель — через свои статьи дойти до читателей в упрощенной форме.
Свяжитесь со мной — keerthikmurthy24@gmail.com

Видео:Расчет ускорения по графикуСкачать

Расчет ускорения по графику

Как определить начальную скорость тела по уравнению report this ad Похожие сообщения

Ускорение против. Замедление: подробный анализ

Примеры положительного ускорения: подробный анализ

Поверхностное ускорение без трения: исчерпывающая информация…

Как найти ускорение свободного падения:…

Как найти ускорение свободного падения…

Пример гравитационного ускорения: подробные сведения

Как рассчитать ускорение с помощью…

Как найти среднюю скорость…

Скорость графика постоянного ускорения против…

Как найти ускорение с…

Как рассчитать силу без…

Как найти нормальную силу…

15 Пример чистой силы:…

Как найти нормальную силу…

Как найти чистую силу:…

Мгновенная скорость и ускорение: сравнительное…

Отрицательно ли замедление: подробные факты

Как определить конечную скорость…

Как найти скорость с помощью…

Как найти скорость с помощью…

Видео:Урок 25. График скорости РУД. Перемещение при РУД.Скачать

Урок 25. График скорости РУД. Перемещение при РУД.

Свяжитесь с нами

Электронная почта: hr@lambdageeks.com
support@lambdageeks.com

Контактное лицо: + 91-8106864654

Видео:Урок 16 (осн) Средняя скорость. Вычисление пути и времени движенияСкачать

Урок 16 (осн) Средняя скорость. Вычисление пути и времени движения

Наша миссия

Наша миссия — служить и делиться своим опытом с большим и разносторонним сообществом студентов или работающих профессионалов для удовлетворения их потребностей в обучении.

Видео:Лабораторная работа "Исследование равноускоренного движения без начальной скорости"Скачать

Лабораторная работа "Исследование равноускоренного движения без начальной скорости"

Виды скорости в физике и методы их вычисления

Скорость в физике — что это такое

Скорость — векторная физическая величина, которая характеризуется направлением и быстротой перемещения материальной точки.

В международной системе единиц (СИ) единица измерения скорости обозначается как метр в секунду ( м с ) .

На практике зачастую используют внесистемные единицы измерения скорости. Например: километр в час ( к м ч ) .

В физике понятие скорости встречается в разделе «Кинематика», в котором дается описание механического движения, а это основа изучения скорости как векторной физической величины.

Скорость может характеризоваться быстротой перемещения не только материальной точки, но и еще элементарных частиц и волн.

Скорость звука — это величина, которая показывает, на какое расстояние может распространиться звуковая волна за единицу времени.

Скорость света — абсолютная величина, которая показывает скорость распространения электромагнитных волн.

Виды скорости в физике, основные характеристики

В физике существуют такие виды скорости, как: начальная скорость, равномерная скорость, средняя скорость, мгновенная скорость.

  1. Начальная скорость — это скорость в течении начального момента времени. Начальная скорость подразумевается какой-то момент времени, в который начинается измерение скорости (обычно t = t 0 ).
  2. Равномерная скорость — это скорость при равномерном движении, численно равная отношению пути, пройденного телом, ко времени, затраченному на прохождение этого пути.
  3. Средняя скорость — это отношение всего пройденного пути к затраченному на это движение времени.
  4. Мгновенная скорость — это векторная величина, равная отношению перемещения к малому промежутку времени, за которое это перемещение производится.

Скорость принято записывать буквой ϑ , в СИ она обозначается как м с .

Как писалось выше, скорость равна отношению пути S ко времени t.

Формулы скорости при движении разных видов

Нахождение начальной скорости зависит от задачи и от исходных данных. Ее можно найти по конечной скорости, ускорению и времени: ϑ н = ϑ 0 — ( α ∙ t ) , где:

ϑ н — начальная скорость;

ϑ 0 — конечная скорость;

Равномерная — находится по обычной формуле скорости: ϑ = S t , где:

Формула средней скорости: ϑ с р = S о б щ t о б щ .

Формула мгновенной скорости: ϑ ⇀ = ∆ S ⇀ ∆ t .

Примеры задач с решением

На автомобиле за 3 часа проехали 180 км с одной и той же скоростью. Чему равна скорость автомобиля?

Решение:

Скорость — это расстояние, пройденное телом за единицу времени. Чтобы определить скорость, нужно пройденное расстояние разделить на время движения.

Если за 3 часа автомобиль проехал 180 километров с одной и той же скоростью, то разделив 180 км на 3 часа мы определим расстояние, которое проезжал автомобиль за один час. А это и есть скорость движения.

ϑ = 180 3 = 60 к м ч

Ответ: скорость автомобиля составляет 60 км/ч.

Первый час автомобиль ехал со скоростью 100 км/ч, следующие два часа — со скоростью 90 км/ч, а затем два часа — со скоростью 80 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. Ответ дайте в км/ч.

В условии сказано о трех участках пути.

ϑ с р = S о б щ t о б щ

ϑ с р = S 1 + S 2 + S 3 t 1 + t 2 + t 3

Участки пути нам не даны, но мы можем без труда их вычислить:

Первый участок пути составил 1∙100 = 100 километров.

Второй участок пути составил 2∙90 = 180 километров.

Третий участок пути составил 2∙80 = 160 километров.

ϑ с р = 100 + 180 + 160 1 + 2 + 2 / = 440 5 = 88 к м ч

Ответ: средняя скорость составляет 88 км/ч.

Конечная скорость после 2 секунд движения с ускорением 0,2 м/с², равна 3 м/с. Найти начальную скорость.

ϑ н = ϑ 0 — ( α ∙ t )

ϑ н = 3 — ( 0 , 2 ∙ 2 ) = 2 , 6 м с

Ответ: начальная скорость составляет 2,6 м/с.

Поделиться или сохранить к себе: