Зачастую в рамках решения задач нам приходится искать множество значений функции на области определения или отрезке. Например, это нужно делать при решении разных типов неравенств, оценках выражений и др.
В рамках этого материала мы расскажем, что из себя представляет область значений функции, приведем основные методы, которыми ее можно вычислить, и разберем задачи различной степени сложности. Для наглядности отдельные положения проиллюстрированы графиками. Прочитав эту статью, вы получите исчерпывающее представление об области значений функции.
Начнем с базовых определений.
Множество значений функции y = f ( x ) на некотором интервале x представляет собой множество всех значений, которые данная функция принимает при переборе всех значений x ∈ X .
Область значений функции y = f ( x ) – это множество всех ее значений, которые она может принять при переборе значений x из области x ∈ ( f ) .
Область значений некоторой функции принято обозначать E ( f ) .
Обратите внимание, что понятие множества значений функции не всегда тождественно области ее значений. Эти понятия будут равнозначны только в том случае, если интервал значений x при нахождении множества значений совпадет с областью определения функции.
Важно также различать область значений и область допустимых значений переменной x для выражения в правой части y = f ( x ) . Область допустимых значений x для выражения f ( x ) и будет областью определения данной функции.
Ниже приводится иллюстрация, на которой показаны некоторые примеры. Синие линии – это графики функций, красные – асимптоты, рыжие точки и линии на оси ординат – это области значений функции.
Очевидно, что область значений функции можно получить при проецировании графика функции на ось O y . При этом она может представлять собой как одно число, так и множество чисел, отрезок, интервал, открытый луч, объединение числовых промежутков и др.
Рассмотрим основные способы нахождения области значений функции.
Начнем с определения множества значений непрерывной функции y = f ( x ) на некотором отрезке, обозначенном [ a ; b ] . Мы знаем, что функция, непрерывная на некотором отрезке, достигает на нем своего минимума и максимума, то есть наибольшего m a x x ∈ a ; b f ( x ) и наименьшего значения m i n x ∈ a ; b f ( x ) . Значит, у нас получится отрезок m i n x ∈ a ; b f ( x ) ; m a x x ∈ a ; b f ( x ) , в котором и будут находиться множества значений исходной функции. Тогда все, что нам нужно сделать, – это найти на этом отрезке указанные точки минимума и максимума.
Возьмем задачу, в которой нужно определить область значений арксинуса.
Условие: найдите область значений y = a r c sin x .
Решение
В общем случае область определения арксинуса располагается на отрезке [ — 1 ; 1 ] . Нам надо определить наибольшее и наименьшее значение указанной функции на нем.
y ‘ = a r c sin x ‘ = 1 1 — x 2
Мы знаем, что производная функции будет положительной для всех значений x , расположенных в интервале [ — 1 ; 1 ] , то есть на протяжении всей области определения функция арксинуса будет возрастать. Значит, самое маленькое значение она примет при x , равном — 1 , а самое большое – при x , равном 1 .
m i n x ∈ — 1 ; 1 a r c sin x = a r c sin — 1 = — π 2 m a x x ∈ — 1 ; 1 a r c sin x = a r c sin 1 = π 2
Таким образом, область значений функции арксинус будет равна E ( a r c sin x ) = — π 2 ; π 2 .
Ответ: E ( a r c sin x ) = — π 2 ; π 2
Условие: вычислите область значений y = x 4 — 5 x 3 + 6 x 2 на заданном отрезке [ 1 ; 4 ] .
Решение
Все, что нам нужно сделать, – это вычислить наибольшее и наименьшее значение функции в заданном интервале.
Для определения точек экстремума надо произвести следующие вычисления:
y ‘ = x 4 — 5 x 3 + 6 x 2 ‘ = 4 x 3 + 15 x 2 + 12 x = x 4 x 2 — 15 x + 12 y ‘ = 0 ⇔ x ( 4 x 2 — 15 x + 12 ) = 0 x 1 = 0 ∉ 1 ; 4 и л и 4 x 2 — 15 x + 12 = 0 D = — 15 2 — 4 · 4 · 12 = 33 x 2 = 15 — 33 8 ≈ 1 . 16 ∈ 1 ; 4 ; x 3 = 15 + 33 8 ≈ 2 . 59 ∈ 1 ; 4
Теперь найдем значения заданной функции в концах отрезка и точках x 2 = 15 — 33 8 ; x 3 = 15 + 33 8 :
y ( 1 ) = 1 4 — 5 · 1 3 + 6 · 1 2 = 2 y 15 — 33 8 = 15 — 33 8 4 — 5 · 15 — 33 8 3 + 6 · 15 — 33 8 2 = = 117 + 165 33 512 ≈ 2 . 08 y 15 + 33 8 = 15 + 33 8 4 — 5 · 15 + 33 8 3 + 6 · 15 + 33 8 2 = = 117 — 165 33 512 ≈ — 1 . 62 y ( 4 ) = 4 4 — 5 · 4 3 + 6 · 4 2 = 32
Значит, множество значений функции будет определяться отрезком 117 — 165 33 512 ; 32 .
Ответ: 117 — 165 33 512 ; 32 .
Перейдем к нахождению множества значений непрерывной функции y = f ( x ) в промежутках ( a ; b ) , причем a ; + ∞ , — ∞ ; b , — ∞ ; + ∞ .
Начнем с определения наибольшей и наименьшей точки, а также промежутков возрастания и убывания на заданном интервале. После этого нам нужно будет вычислить односторонние пределы в концах интервала и/или пределы на бесконечности. Иными словами, нам надо определить поведении функции в заданных условиях. Для этого у нас есть все необходимые данные.
Условие: вычислите область значений функции y = 1 x 2 — 4 на интервале ( — 2 ; 2 ) .
Решение
Определяем наибольшее и наименьшее значение функции на заданном отрезке
y ‘ = 1 x 2 — 4 ‘ = — 2 x ( x 2 — 4 ) 2 y ‘ = 0 ⇔ — 2 x ( x 2 — 4 ) 2 = 0 ⇔ x = 0 ∈ ( — 2 ; 2 )
У нас получилось максимальное значение, равное 0 , поскольку именно в этой точке происходит перемена знака функции и график переходит к убыванию. См. на иллюстрацию:
То есть y ( 0 ) = 1 0 2 — 4 = — 1 4 будет максимальным значений функции.
Теперь определим поведение функции при таком x, который стремится к — 2 с правой стороны и к + 2 с левой стороны. Иными словами, найдем односторонние пределы:
lim x → — 2 + 0 1 x 2 — 4 = lim x → — 2 + 0 1 ( x — 2 ) ( x + 2 ) = = 1 — 2 + 0 — 2 — 2 + 0 + 2 = — 1 4 · 1 + 0 = — ∞ lim x → 2 + 0 1 x 2 — 4 = lim x → 2 + 0 1 ( x — 2 ) ( x + 2 ) = = 1 2 — 0 — 2 2 — 0 + 2 = 1 4 · 1 — 0 = — ∞
У нас получилось, что значения функции будут возрастать от минус бесконечности до — 1 4 тогда, когда аргумент изменяется в пределах от — 2 до 0 . А когда аргумент меняется от 0 до 2 , значения функции убывают к минус бесконечности. Следовательно, множеством значений заданной функции на нужном нам интервале будет ( — ∞ ; — 1 4 ] .
Ответ: ( — ∞ ; — 1 4 ] .
Условие: укажите множество значений y = t g x на заданном интервале — π 2 ; π 2 .
Решение
Нам известно, что в общем случае производная тангенса в — π 2 ; π 2 будет положительной, то есть функция будет возрастать. Теперь определим, как ведет себя функция в заданных границах:
lim x → π 2 + 0 t g x = t g — π 2 + 0 = — ∞ lim x → π 2 — 0 t g x = t g π 2 — 0 = + ∞
Мы получили рост значений функции от минус бесконечности к плюс бесконечности при изменении аргумента от — π 2 до π 2 ,и можно сказать, что множеством решений данной функции будет множество всех действительных чисел.
Ответ: — ∞ ; + ∞ .
Условие: определите, какова область значений функции натурального логарифма y = ln x .
Решение
Нам известно, что данная функция является определенной при положительных значениях аргумента D ( y ) = 0 ; + ∞ . Производная на заданном интервале будет положительной: y ‘ = ln x ‘ = 1 x . Значит, на нем происходит возрастание функции. Далее нам нужно определить односторонний предел для того случая, когда аргумент стремится к 0 (в правой части), и когда x стремится к бесконечности:
lim x → 0 + 0 ln x = ln ( 0 + 0 ) = — ∞ lim x → ∞ ln x = ln + ∞ = + ∞
Мы получили, что значения функции будут возрастать от минус бесконечности до плюс бесконечности при изменении значений x от нуля до плюс бесконечности. Значит, множество всех действительных чисел – это и есть область значений функции натурального логарифма.
Ответ: множество всех действительных чисел – область значений функции натурального логарифма.
Условие: определите, какова область значений функции y = 9 x 2 + 1 .
Решение
Данная функция является определенной при условии, что x – действительное число. Вычислим наибольшие и наименьшие значения функции, а также промежутки ее возрастания и убывания:
y ‘ = 9 x 2 + 1 ‘ = — 18 x ( x 2 + 1 ) 2 y ‘ = 0 ⇔ x = 0 y ‘ ≤ 0 ⇔ x ≥ 0 y ‘ ≥ 0 ⇔ x ≤ 0
В итоге мы определили, что данная функция будет убывать, если x ≥ 0 ; возрастать, если x ≤ 0 ; она имеет точку максимума y ( 0 ) = 9 0 2 + 1 = 9 при переменной, равной 0 .
Посмотрим, как же ведет себя функция на бесконечности:
lim x → — ∞ 9 x 2 + 1 = 9 — ∞ 2 + 1 = 9 · 1 + ∞ = + 0 lim x → + ∞ 9 x 2 + 1 = 9 + ∞ 2 + 1 = 9 · 1 + ∞ = + 0
Из записи видно, что значения функции в этом случае будут асимптотически приближаться к 0.
Подведем итоги: когда аргумент изменяется от минус бесконечности до нуля, то значения функции возрастают от 0 до 9 . Когда значения аргумента меняются от 0 до плюс бесконечности, соответствующие значения функции будут убывать от 9 до 0 . Мы отобразили это на рисунке:
На нем видно, что областью значений функции будет интервал E ( y ) = ( 0 ; 9 ]
Ответ: E ( y ) = ( 0 ; 9 ]
Если нам надо определить множество значений функции y = f ( x ) на промежутках [ a ; b ) , ( a ; b ] , [ a ; + ∞ ) , ( — ∞ ; b ] , то нам понадобится провести точно такие же исследования. Эти случаи мы пока не будем разбирать: далее они нам еще встретятся в задачах.
А как быть в случае, если область определения некоторой функции представляет из себя объединение нескольких промежутков? Тогда нам надо вычислить множества значений на каждом из этих промежутков и объединить их.
Условие: определите, какова будет область значений y = x x — 2 .
Решение
Поскольку знаменатель функции не должен быть обращен в 0 , то D ( y ) = — ∞ ; 2 ∪ 2 ; + ∞ .
Начнем с определения множества значений функции на первом отрезке — ∞ ; 2 , который представляет из себя открытый луч. Мы знаем, что функция на нем будет убывать, то есть производная данной функции будет отрицательной.
lim x → 2 — 0 x x — 2 = 2 — 0 2 — 0 — 2 = 2 — 0 = — ∞ lim x → — ∞ x x — 2 = lim x → — ∞ x — 2 + 2 x — 2 = lim x → — ∞ 1 + 2 x — 2 = 1 + 2 — ∞ — 2 = 1 — 0
Тогда в тех случаях, когда аргумент изменяется по направлению к минус бесконечности, значения функции будут асимптотически приближаться к 1 . Если же значения x меняются от минус бесконечности до 2 , то значения будут убывать от 1 до минус бесконечности, т.е. функция на этом отрезке примет значения из интервала — ∞ ; 1 . Единицу мы исключаем из наших рассуждений, поскольку значения функции ее не достигают, а лишь асимптотически приближаются к ней.
Для открытого луча 2 ; + ∞ производим точно такие же действия. Функция на нем также является убывающей:
lim x → 2 + 0 x x — 2 = 2 + 0 2 + 0 — 2 = 2 + 0 = + ∞ lim x → + ∞ x x — 2 = lim x → + ∞ x — 2 + 2 x — 2 = lim x → + ∞ 1 + 2 x — 2 = 1 + 2 + ∞ — 2 = 1 + 0
Значения функции на данном отрезке определяются множеством 1 ; + ∞ . Значит, нужная нам область значений функции, заданной в условии, будет объединением множеств — ∞ ; 1 и 1 ; + ∞ .
Ответ: E ( y ) = — ∞ ; 1 ∪ 1 ; + ∞ .
Это можно увидеть на графике:
Особый случай – периодические функции. Их область значения совпадает с множеством значений на том промежутке, который отвечает периоду этой функции.
Условие: определите область значений синуса y = sin x .
Решение
Синус относится к периодической функции, а его период составляет 2 пи. Берем отрезок 0 ; 2 π и смотрим, каким будет множество значений на нем.
y ‘ = ( sin x ) ‘ = cos x y ‘ = 0 ⇔ cos x = 0 ⇔ x = π 2 + πk , k ∈ Z
В рамках 0 ; 2 π у функции будут точки экстремума π 2 и x = 3 π 2 . Подсчитаем, чему будут равны значения функции в них, а также на границах отрезка, после чего выберем самое большое и самое маленькое значение.
y ( 0 ) = sin 0 = 0 y π 2 = sin π 2 = 1 y 3 π 2 = sin 3 π 2 = — 1 y ( 2 π ) = sin ( 2 π ) = 0 ⇔ min x ∈ 0 ; 2 π sin x = sin 3 π 2 = — 1 , max x ∈ 0 ; 2 π sin x = sin π 2 = 1
Ответ: E ( sin x ) = — 1 ; 1 .
Если вам нужно знать области значений таких функций, как степенная, показательная, логарифмическая, тригонометрическая, обратная тригонометрическая, то советуем вам перечитать статью об основных элементарных функциях. Теория, которую мы приводим здесь, позволяет проверить указанные там значения. Их желательно выучить, поскольку они часто требуются при решении задач. Если вы знаете области значений основных функций, то легко сможете находить области функций, которые получены из элементарных с помощью геометрического преобразования.
Условие: определите область значения y = 3 a r c cos x 3 + 5 π 7 — 4 .
Решение
Нам известно, что отрезок от 0 до пи есть область значений арккосинуса. Иными словами, E ( a r c cos x ) = 0 ; π или 0 ≤ a r c cos x ≤ π . Мы можем получить функцию a r c cos x 3 + 5 π 7 из арккосинуса, сдвинув и растянув ее вдоль оси O x , но такие преобразования нам ничего не дадут. Значит, 0 ≤ a r c cos x 3 + 5 π 7 ≤ π .
Функция 3 a r c cos x 3 + 5 π 7 может быть получена из арккосинуса a r c cos x 3 + 5 π 7 с помощью растяжения вдоль оси ординат, т.е. 0 ≤ 3 a r c cos x 3 + 5 π 7 ≤ 3 π . Финалом преобразований является сдвиг вдоль оси O y на 4 значения. В итоге получаем двойное неравенство:
0 — 4 ≤ 3 a r c cos x 3 + 5 π 7 — 4 ≤ 3 π — 4 ⇔ — 4 ≤ 3 arccos x 3 + 5 π 7 — 4 ≤ 3 π — 4
Мы получили, что нужная нам область значений будет равна E ( y ) = — 4 ; 3 π — 4 .
Ответ: E ( y ) = — 4 ; 3 π — 4 .
Еще один пример запишем без пояснений, т.к. он полностью аналогичен предыдущему.
Условие: вычислите, какова будет область значений функции y = 2 2 x — 1 + 3 .
Решение
Перепишем функцию, заданную в условии, как y = 2 · ( 2 x — 1 ) — 1 2 + 3 . Для степенной функции y = x — 1 2 область значений будет определена на промежутке 0 ; + ∞ , т.е. x — 1 2 > 0 . В таком случае:
2 x — 1 — 1 2 > 0 ⇒ 2 · ( 2 x — 1 ) — 1 2 > 0 ⇒ 2 · ( 2 x — 1 ) — 1 2 + 3 > 3
Значит, E ( y ) = 3 ; + ∞ .
Ответ: E ( y ) = 3 ; + ∞ .
Теперь разберем, как найти область значений функции, которая не является непрерывной. Для этого нам надо разбить всю область на промежутки и найти множества значений на каждом из них, после чего объединить то, что получилось. Чтобы лучше понять это, советуем повторить основные виды точек разрыва функции.
Условие: дана функция y = 2 sin x 2 — 4 , x ≤ — 3 — 1 , — 3 x ≤ 3 1 x — 3 , x > 3 . Вычислите область ее значений.
Решение
Данная функция является определенной для всех значений x . Проведем ее анализ на непрерывность при значениях аргумента, равных — 3 и 3 :
lim x → — 3 — 0 f ( x ) = lim x → — 3 2 sin x 2 — 4 = 2 sin — 3 2 — 4 = — 2 sin 3 2 — 4 lim x → — 3 + 0 f ( x ) = lim x → — 3 ( 1 ) = — 1 ⇒ lim x → — 3 — 0 f ( x ) ≠ lim x → — 3 + 0 f ( x )
Имеем неустранимый разрыв первого рода при значении аргумента — 3 . При приближении к нему значения функции стремятся к — 2 sin 3 2 — 4 , а при стремлении x к — 3 с правой стороны значения будут стремиться к — 1 .
lim x → 3 — 0 f ( x ) = lim x → 3 — 0 ( — 1 ) = 1 lim x → 3 + 0 f ( x ) = lim x → 3 + 0 1 x — 3 = + ∞
Имеем неустранимый разрыв второго рода в точке 3 . Когда функция стремится к нему, ее значения приближаются к — 1 , при стремлении к той же точке справа – к минус бесконечности.
Значит, вся область определения данной функции является разбитой на 3 интервала ( — ∞ ; — 3 ] , ( — 3 ; 3 ] , ( 3 ; + ∞ ) .
На первом из них у нас получилась функция y = 2 sin x 2 — 4 . Поскольку — 1 ≤ sin x ≤ 1 , получаем:
— 1 ≤ sin x 2 1 ⇒ — 2 ≤ 2 sin x 2 ≤ 2 ⇒ — 6 ≤ 2 sin x 2 — 4 ≤ — 2
Значит, на данном промежутке ( — ∞ ; — 3 ] множество значении функции – [ — 6 ; 2 ] .
На полуинтервале ( — 3 ; 3 ] получилась постоянная функция y = — 1 . Следовательно, все множество ее значений в данном случае будет сводится к одному числу — 1 .
На втором промежутке 3 ; + ∞ у нас есть функция y = 1 x — 3 . Она является убывающей, потому что y ‘ = — 1 ( x — 3 ) 2 0 . Она будет убывать от плюс бесконечности до 0 , но самого 0 не достигнет, потому что:
lim x → 3 + 0 1 x — 3 = 1 3 + 0 — 3 = 1 + 0 = + ∞ lim x → + ∞ 1 x — 3 = 1 + ∞ — 3 = 1 + ∞ + 0
Значит, множество значений исходной функции при x > 3 представляет собой множество 0 ; + ∞ . Теперь объединим полученные результаты: E ( y ) = — 6 ; — 2 ∪ — 1 ∪ 0 ; + ∞ .
Ответ: E ( y ) = — 6 ; — 2 ∪ — 1 ∪ 0 ; + ∞ .
Решение показано на графике:
Условие: есть функция y = x 2 — 3 e x . Определите множество ее значений.
Решение
Она определена для всех значений аргумента, представляющих собой действительные числа. Определим, в каких промежутках данная функция будет возрастать, а в каких убывать:
y ‘ = x 2 — 3 e x ‘ = 2 x e x — e x ( x 2 — 3 ) e 2 x = — x 2 + 2 x + 3 e x = — ( x + 1 ) ( x — 3 ) e x
Мы знаем, что производная обратится в 0 , если x = — 1 и x = 3 . Поместим эти две точки на ось и выясним, какие знаки будет иметь производная на получившихся интервалах.
Функция будет убывать на ( — ∞ ; — 1 ] ∪ [ 3 ; + ∞ ) и возрастать на [ — 1 ; 3 ] . Точкой минимума будет — 1 , максимума – 3 .
Теперь найдем соответствующие значения функции:
y ( — 1 ) = — 1 2 — 3 e — 1 = — 2 e y ( 3 ) = 3 2 — 3 e 3 = 6 e — 3
Посмотрим на поведение функции на бесконечности:
lim x → — ∞ x 2 — 3 e x = — ∞ 2 — 3 e — ∞ = + ∞ + 0 = + ∞ lim x → + ∞ x 2 — 3 e x = + ∞ 2 — 3 e + ∞ = » open=» + ∞ + ∞ = = lim x → + ∞ x 2 — 3 ‘ e x ‘ = lim x → + ∞ 2 x e x = » open=» + ∞ + ∞ = = lim x → + ∞ 2 x ‘ ( e x ) ‘ = 2 lim x → + ∞ 1 e x = 2 · 1 + ∞ = + 0
Для вычисления второго предела было использовано правило Лопиталя. Изобразим ход нашего решения на графике.
На нем видно, что значения функции будут убывать от плюс бесконечности до — 2 e тогда, когда аргумент меняется от минус бесконечности до — 1 . Если же он изменяется от 3 до плюс бесконечности, то значения будут убывать от 6 e — 3 до 0 , но при этом 0 достигнут не будет.
Таким образом, E ( y ) = [ — 2 e ; + ∞ ) .
Ответ: E ( y ) = [ — 2 e ; + ∞ )
Видео:Функция. Область определения функции. Практическая часть. 10 класс.Скачать
Область значения функции
Видео:9 класс, 15 урок, Определение числовой функции. Область определения, область значения функцииСкачать
Что такое функции, области определения и значений функции
Функция — вид зависимости, при котором каждому элементу одного множества ставится в соответствие элемент другого множества.
В общем виде функцию в алгебре обозначают как y=f(x). Переменную x называют независимой переменной или аргументом функции, переменную y — зависимой переменной или значением функции.
Основными характеристиками функции являются:
- область определения;
- область значений.
Определение 2
Область определения — множество значений, которые может принимать аргумент функции, то есть переменная x. Область определения иногда называют областью допустимых значений. Обозначение области допустимых значений функции f: D (f).
Также область определения можно трактовать как проекцию графика функции на ось абсцисс.
Областью значений называется множество всех значений функции (переменной y), полученных при переборе всех значений переменной x из области определения. Принято следующее обозначение области значений: E (f).
В графическом изображении область значений — проекция графика функции на ось ординат.
Нахождение области значений осуществляется одним из следующих способов:
- графически;
- аналитически (по уравнению).
Видео:Функция. Множество значений функции. Практическая часть. 10 класс.Скачать
Способы нахождения области значений некоторых функций по графику
Чаще всего графический способ используют для функций с достаточно простой зависимостью. В этом случае построение графика не вызывает трудностей.
Приведем алгоритм нахождения области значений функции по графику:
- Ищем область определения функции. Например, у показательной функции или параболы аргумент может принимать любое значение из множества действительных чисел R, то есть E(f)=R. Если выражение f(x) является дробным, область определения находится из условия неравенства нулю знаменателя. Если выражение f(x) находится под квадратным корнем, область определения можно узнать из неравенства f(x)≥0.
- Строим график функции по точкам.
- По графику функции находим ее минимум. Значение y_ будет являться нижней границей области значений. В том случае, когда минимум невозможно определить визуально, то есть функция не имеет минимума, границей будет -∞.
- Аналогично определяем максимум y_ и, соответственно, верхнюю границу области значений. Если максимум не определяется, границей области значения является +∞.
- Записываем область значений функции, при этом необходимо учесть точки разрыва, если они есть. Точки разрыва возникают, например, при исключении из области определения таких значений аргументов, при которых знаменатель обращается в ноль. Область значений записывают в виде числового промежутка. Границы, входящие в область, заключают в квадратные скобки, не входящие — в круглые. Если область значений включает в себя несколько числовых промежутков, их объединяют знаком «U», например: (-∞; 4]U[6; +∞).
Видео:Множество значений функции #14Скачать
Как найти область значений функции по уравнению
Нахождение области значений функции по заданному уравнению также сводится к вычислению экстремумов.
Рассмотрим два случая:
- Нахождение области значений функции, непрерывной на некотором заданном отрезке.
- Нахождение области значений функции, непрерывной на некотором интервале. Сюда же отнесем случаи, когда функция не существует в какой-либо точке. Например, точка нуля знаменателя, в которой функция не существует, а область определения терпит разрыв.
Алгоритм поиска области значений для первого случая:
- Находим производную функции.
- Приравниваем производную к нулю, находим корни уравнения f′(x)=0 и точки, в которых производная не существует — критические точки.
- Отмечаем корни, критические точки и границы заданного интервала на прямой и определяем знаки производной на каждом получившемся промежутке.
- Находим минимумы и максимумы функции. Если в некоторой точке x1 производная меняет знак с «+» на «-», то точка x1 — максимум, если с «-» на «+» — минимум.
- Подставляя значения аргументов для минимума и максимума функции в выражение f(x), находим минимальное и максимальное значения функции. В том случае, если имеются точки, в которых производная не существует, значение функции вычисляем через пределы по формулам: lim x → x 1 — 0 f ( x ) и lim x → x 1 + 0 f ( x ) .
- Записываем область значений функции.
Для второго случая:
- Находим производную, приравниваем ее к нулю и определяем знаки производной на каждом промежутке.
- Определяем значение функции в каждой из точек. Для определения значения функции в граничных точках, а также в точках разрыва или точках, в которых производная не существует, вычисляем пределы функции аналогично указанным в пункте 5 для первого случая.
- Определяем и записываем область значений.
Видео:Найти множество значений функции | Задача 1Скачать
Примеры решений
Рассмотрим несколько примеров на нахождение области значений функции и приведем их решения.
Найти область значений функции y = x по графику.
Найдем область определения функции. Выражение под знаком квадратного корня всегда положительно, то есть x≥0, и область определения D(f(x))=[0; +∞). Теперь построим график функции.
Из графика видно, что минимальное значение переменная y принимает при x=0. Максимальное значение не определяется, при этом видно, что при возрастании x значении y также растет. Получили, что y m i n = 0 , а область значений E(f(x))=[0; +∞).
Найти область значений функции y = 4 x x 2 + 2 на отрезке [-2; 2].
Найдем область определения функции. Функция представляет собой дробь, однако, ее знаменатель не будет равен нулю при любых значениях x. Действительно, квадрат любого числа есть положительное число, получили в знаменателе сумму положительных чисел. Тогда D=R, где R — множество действительных чисел.
Найдем производную функции: y ‘ ( x ) = 4 x x 2 + 2 ‘ = 4 ( 2 — x 2 ) ( x 2 + 2 ) 2 .
Приравняем числитель производной к нулю и найдем корни получившегося уравнения: 8 — 4 x 2 = 0 ; x 1 = — 2 и x 2 = 2 .
Отметим корни на координатной оси и, поочередно подставляя значения x = — 4 , — 2 , 2 , 4 , определим знаки производной на каждом промежутке.
Из рисунка видно, что функция имеет один минимум и максимум. Вычислим значения y m i n и y m a x :
y m i n = y ( — 2 ) = 4 · ( — 2 ) ( — 2 ) 2 + 2 = — 2 ;
y m a x = y ( 2 ) = 4 · ( 2 ) ( 2 ) 2 + 2 = 2 .
Экстремумы функции входят в заданный интервал и не являются точками разрыва области определения функции, то есть минимальные и максимальные значения должны быть включены в область значений.
Ответ: E ( f ( x ) ) = [ — 2 ; 2 ] .
Найти область значений функции y = 5 x + 1 на области действительных чисел.
Найдем область определения функции. Знаменатель не может быть равным нулю, значит, D ( f ( x ) ) = ( — ∞ ; — 1 ) U ( — 1 ; + ∞ ) .
Найдем производную: y ‘ ( x ) = — 5 ( x + 1 ) 2 .
Получили, что производная не равна нулю при любых x. При x=-1 знаменатель производной обращается в ноль, то есть в данной точке производная не существует.
Отметим точку x=-1 и рассмотрим два промежутка: (-∞;-1) и (-1;+∞).
Определим знаки производной на каждом промежутке.
Из рисунка видно, что функция убывает на обоих интервалах и не имеет максимума или минимума.
Теперь определим значение функции в точке x=-1, для чего вычислим пределы функции при x→-1-0 и x→-1+0.
lim x → ( — 1 — 0 ) 5 x + 1 = 5 — 1 — 0 + 1 = 5 — 0 = — ∞ ;
lim x → ( — 1 + 0 ) 5 x + 1 = 5 — 1 + 0 + 1 = 5 + 0 = + ∞ .
Итак, точка x=-1 — это точка разрыва второго рода.
Значение функции на границах заданного интервала -∞ и +∞ также вычисляется с помощью пределов:
lim x → — ∞ 5 x + 1 = 5 — ∞ + 1 = 0 ;
lim x → + ∞ 5 x + 1 = 5 + ∞ + 1 = 0 .
Данная функция является гиперболой с асимптотами x=-1 и y=0.
Видео:Множество значений тригонометрических функцийСкачать
Область значения функций в задачах ЕГЭ
Разделы: Математика
Понятие функции и всё, что с ним связано, относится к традиционно сложным, не до конца понятым. Особым камнем преткновения при изучении функции и подготовке к ЕГЭ являются область определения и область значений (изменения) функции.
Нередко учащиеся не видят разницы между областью определения функции и областью её значений.
И если задачи на нахождение области определения функции учащимся удаётся освоить, то задачи на нахождение множества значений функции вызывают у них немалые затруднения.
Цель данной статьи: ознакомление с методами нахождения значений функции.
В результате рассмотрения данной темы был изучен теоретический материал, рассмотрены способы решения задач на нахождение множеств значений функции, подобран дидактический материал для самостоятельной работы учащихся.
Данная статья может быть использована учителем при подготовке учащихся к выпускным и вступительным экзаменам, при изучении темы “Область значения функции” на факультативных занятиях элективных курсах по математике.
I. Определение области значений функции.
Областью (множеством) значений E(у) функции y = f(x) называется множество таких чисел y0, для каждого из которых найдётся такое число x0, что: f(x0) = y0.
Напомним области значений основных элементарных функций.
Функция | Множество значений |
y = kx+ b | E(y) = (-∞;+∞) |
y = x 2n | E(y) = [0;+∞) |
y = x 2n +1 | E(y) = (-∞;+∞) |
y = k/x | E(y) = (-∞;0)u(0;+∞) |
y = x 1/2n | E(y) = [0;+∞) |
y = x 1/2n+1 | E(y) = (-∞;+∞) |
y = a x | E(y) = (0;+∞) |
y = logax | E(y) = (-∞;+∞) |
y = sin x | E(y) = [-1;1] |
y = cos x | E(y) = [-1;1] |
y = tg x | E(y) = (-∞;+∞) |
y = ctg x | E(y) = (-∞;+∞) |
y = arcsin x | E(y) = [-π/2 ; π/2] |
y = arcos x | E(y) = [0; π] |
y = arctg x | E(y) = (-π/2 ; π/2) |
y = arcctg x | E(y) = (0; π) |
Заметим также, что областью значения всякого многочлена чётной степени является промежуток [m;+∞) , где m – наименьшее значение этого многочлена, либо промежуток
(-∞;n] , где n – наибольшее значение этого многочлена.
II. Свойства функций, используемые при нахождении области значений функции
Для успешного нахождения множества значений функции надо хорошо знать свойства основных элементарных функций, особенно их области определения, области значений и характер монотонности. Приведём свойства непрерывных, монотонных дифференцируемых функций, наиболее часто используемые при нахождении множества значений функций.
- Если функция f(x) непрерывна и возрастает на отрезке [a;b], то множество значений функции на этом отрезке есть отрезок [f(a),f(b)]. При этом каждое значение А [f(a),f(b)] функция принимает ровно при одном значении x принадлежит [a,b], т.е уравнение f(x) = А имеет единственный корень на отрезке [a,b]. Если же f(x) – непрерывная и убывающая на отрезке [a,b] функция, то её множество значений на [a,b] есть отрезок [f(a),f(b)].
- Если функция f(x) непрерывна на отрезке [a,b] и m = min f(x), M = max f(x) – её наименьшее и наибольшее значение на этом отрезке, то множество значений f(x) на [a,b] есть отрезок [m;M].
- Если функция непрерывна на отрезке [a,b] и дифференцируема (имеет производную) в интервале (a,b), то наибольшее и наименьшее значения функции на отрезке [a,b] существуют и достигаются либо на концах отрезка, либо в критических точках функции, расположенных на отрезке
Свойства 2 и 3, как правило, используются вместе свойством элементарной функции быть непрерывной в своей области определения. При этом наиболее простое и краткое решение задачи на нахождение множества значений функции достигается на основании свойства 1, если несложными методами удаётся определить монотонность функции. Решение задачи ещё упрощается, если функция, вдобавок, – чётная или нечётная, периодическая и т.д. Таким образом, при решении задач на нахождение множеств значений функции следует по мере надобности проверять и использовать следующие свойства функции:
- непрерывность;
- монотонность;
- дифференцируемость;
- чётность, нечётность, периодичность и т.д.
Несложные задачи на нахождение множества значений функции в большинстве своём ориентированны:
а) на использование простейших оценок и ограничений: (2 х >0, -1≤sinx?1, 0≤cos 2 x?1 и т.д.);
б) на выделение полного квадрата: х 2 – 4х + 7 = (х – 2) 2 + 3;
в) на преобразование тригонометрических выражений: 2sin 2 x – 3cos 2 x + 4 = 5sin 2 x +1;
г) использование монотонности функции x 1/3 + 2 x-1 возрастает на R.
III. Рассмотрим способы нахождения областей значений функций.
а) последовательное нахождение значений сложных аргументов функции;
б) метод оценок;
в) использование свойств непрерывности и монотонности функции;
г) использование производной;
д) использование наибольшего и наименьшего значений функции;
е) графический метод;
ж) метод введения параметра;
з) метод обратной функции.
Раскроем суть этих методов на конкретных примерах.
Пример 1. Найдите область значений E(y) функции y = log0,5(4 – 2·3 x – 9 x ).
Решим этот пример методом последовательного нахождения значений сложных аргументов функции. Выделив полный квадрат под логарифмом, преобразуем функцию
y = log0,5(5 – (1 + 2·3 x – 3 2x )) = log0,5(5 – (3 x + 1) 2 )
И последовательно найдём множества значений её сложных аргументов:
E(3 x ) = (0;+∞), E(3 x + 1) = (1;+∞), E(-(3 x + 1) 2 = (-∞;-1), E(5 – (3 x +1) 2 ) = (-∞;4)
Обозначим t = 5 – (3 x +1) 2 , где -∞≤t≤4. Тем самым задача сводится к нахождению множества значений функции y = log0,5t на луче (-∞;4). Так как функция y = log0,5t определена лишь при, то её множество значений на луче (-∞;4) совпадает со множеством значений функции на интервале (0;4), представляющем собой пересечение луча (-∞;4) с областью определения (0;+∞) логарифмической функции. На интервале (0;4) эта функция непрерывна и убывает. При t > 0 она стремится к +∞, а при t = 4 принимает значение -2, поэтому E(y) = (-2, +∞).
Пример 2. Найдите область значений функции
y = cos7x + 5cosx
Решим этот пример методом оценок, суть которого состоит в оценке непрерывной функции снизу и сверху и в доказательстве достижения функцией нижней и верхней границы оценок. При этом совпадение множества значений функции с промежутком от нижней границы оценки до верхней обуславливается непрерывностью функции и отсутствием у неё других значений.
Из неравенств -1≤cos7x?1, -5≤5cosx?5 получим оценку -6≤y?6. При x = р и x = 0 функция принимает значения -6 и 6, т.е. достигает нижней и верхней границы оценки. Как линейная комбинация непрерывных функций cos7x и cosx, функция y непрерывна на всей числовой оси, поэтому по свойству непрерывной функции она принимает все значения с -6 до 6 включительно, и только их, так как в силу неравенств -6≤y?6 другие значения у неё невозможны. Следовательно, E(y) = [-6;6].
Пример 3. Найдите область значений E(f) функции f(x) = cos2x + 2cosx.
По формуле косинуса двойного угла преобразуем функция f(x) = 2cos 2 x + 2cosx – 1 и обозначим t = cosx. Тогда f(x) = 2t 2 + 2t – 1. Так как E(cosx) =
[-1;1], то область значений функции f(x) совпадает со множеством значений функции g(t) = 2t 2 + 2t – 1 на отрезке [-1;1], которое найдём графическим методом. Построив график функции y = 2t 2 + 2t – 1 = 2(t + 0,5) 2 – 1,5 на промежутке [-1;1], находим E(f) = [-1,5; 3].
Замечание – к нахождению множества значений функции сводятся многие задачи с параметром, связанные, в основном, с разрешимостью и числом решений уравнения и неравенств. Например, уравнение f(x) = а разрешимо тогда и только тогда, когда
a E(f) Аналогично, уравнение f(x) = а имеет хотя бы один корень, расположенный на некотором промежутке Х, или не имеет ни одного корня на этом промежутке тогда и только тогда, когда а принадлежит или не принадлежит множеству значений функции f(x) на промежутке Х. Также исследуются с привлечением множества значений функции и неравенства f(x)≠ а, f(x)>а и т.д. В частности, f(x)≠ а для всех допустимых значений х, если a E(f)
Пример 4. При каких значениях параметра а уравнение (x + 5) 1/2 = a(x 2 + 4) имеет единственный корень на отрезке [-4;-1].
Запишем уравнение в виде (x + 5) 1/2 / (x 2 + 4) = a . Последнее уравнение имеет хотя бы один корень на отрезке [-4;-1] тогда и только тогда, когда а принадлежит множеству значений функции f(x) = (x + 5) 1/2 / (x 2 + 4) на отрезке [-4;-1]. Найдём это множество, используя свойство непрерывности и монотонности функции.
На отрезке [-4;-1] функция y = xІ + 4 непрерывна, убывает и положительна, поэтому функция g(x) = 1/(x 2 + 4) непрерывна и возрастает на этом отрезке, так как при делении на положительную функцию характер монотонности функции меняется на противоположный. Функция h(x) = (x + 5) 1/2 непрерывна и возрастает в своей области определения D(h) = [-5;+∞) и, в частности на отрезке [-4;-1], где она, кроме того, положительна. Тогда функция f(x)=g(x)·h(x), как произведение двух непрерывных, возрастающих и положительных функций, также непрерывна и возрастает на отрезке [-4;-1], поэтому её множество значений на [-4;-1] есть отрезок [f(-4); f(-1)] = [0,05; 0,4]. Следовательно, уравнение имеет решение на отрезке [-4;-1], причём единственное (по свойству непрерывной монотонной функции), при 0,05 ≤ a ≤ 0,4
Замечание. Разрешимость уравнения f(x) = a на некотором промежутке Х равносильна принадлежности значений параметра а множеству значений функции f(x) на Х. Следовательно, множество значений функции f(x) на промежутке Х совпадает с множеством значений параметра а, для которых уравнение f(x) = a имеет хотя бы один корень на промежутке Х. В частности, область значений E(f) функции f(x)совпадает с множеством значений параметра а, для которых уравнение f(x) = a имеет хотя бы один корень.
Пример 5. Найдите область значений E(f) функции
Решим пример методом введения параметра, согласно которому E(f) совпадает с множеством значений параметра а, для которых уравнение
имеет хотя бы один корень.
При а=2 уравнение является линейным – 4х – 5 = 0 с ненулевым коэффициентом при неизвестной х , поэтому имеет решение. При а≠2 уравнение является квадратным, поэтому оно разрешимо тогда и только тогда, когда его дискриминант
Так как точка а = 2 принадлежит отрезку
то искомым множеством значений параметра а, значит, и областью значений E(f) будет весь отрезок.
Как непосредственное развитие метода введения параметра при нахождении множества значений функции, можно рассматривать метод обратной функции, для нахождения которой надо решить относительно х уравнение f(x)= y, считая y параметром. Если это уравнение имеет единственное решение x =g(y), то область значений E(f) исходной функции f(x) совпадает с областью определения D(g) обратной функции g(y). Если же уравнение f(x)= y имеет несколько решений x =g1(y), x =g2(y) и т.д., то E(f) равна объединению областей определений функции g1(y), g2(y) и т.д.
Пример 6. Найдите область значений E(y) функции y = 5 2/(1-3x).
найдём обратную функцию x = log3((log5y – 2)/(log5y)) и её область определения D(x):
Так как уравнения относительно х имеет единственное решение, то
E(y) = D(x) = (0; 1)(25;+ ∞ ).
Если область определения функции состоит из нескольких промежутков или функция на разных промежутках задана разными формулами, то для нахождения области значений функции надо найти множества значений функции на каждом промежутке и взять их объединение.
Пример 7. Найдите области значений f(x) и f(f(x)), где
Найдём сначала множество значений функции f(x) на луче (-∞;1], где она совпадает с выражением 4 x + 9·4 -x + 3. Обозначим t = 4 x . Тогда f(x) = t + 9/t + 3, где 0 2 . На промежутке (0;4] производная g’(t) определена и обращается там в нуль при t = 3. При 0 1 функция f(x) совпадает с выражением 2cos(x-1) 1/2 + 7. Квадратный корень (x-1) 1/2 при x > 1 определён и принимает все положительные значения, поэтому cos(x-1) 1/2 принимает все значения от -1 до 1 включительно, а выражение 2cos(x-1) 1/2 + 7 принимает все значения от 5 до 9 включительно. Следовательно, множеством значений функции f(x) на луче (1;+∞) будет отрезок [5;9].
Теперь, объединив промежутки [9;+∞) и [5;9] – множества значений функции f(f(x)), обозначим t = f(x). Тогда f(f(x)) = f(t), где При указанных t функция f(t) = 2cos(x-1) 1/2 + 7 и она снова принимает все значения от 5 до 9 включительно, т.е. область значений E(fІ) = E(f(f(x))) = [5;9].
Аналогично, обозначив z = f(f(x)), можно найти область значений E(f 3 ) функции f(f(f(x))) = f(z), где 5 ≤ z ≤ 9 и т.д. Убедитесь, что E(f 3 ) = [2cos8 1/2 + 7; 2cos2 + 7].
Наиболее универсальным методом нахождения множества значений функции является использование наибольшего и наименьшего значений функции на заданном промежутке.
Пример 8. При каких значениях параметра р неравенcтво 8 x —р ≠ 2 x+1 – 2 x выполняется для всех -1 ≤ x x , запишем неравенство в виде р ≠ t 3 – 2t 2 + t. Так как t = 2 x – непрерывная возрастающая функция на R, то при -1 ≤ x -1 ≤ t 2 ↔
0,5 ≤ t 3 – 2t 2 + t при 0,5 ≤ t 2 – 4t + 1. Следовательно, f(t) дифференцируема, значит, и непрерывна на отрезке [0,5;4]. Из уравнения f’(t) = 0 найдём критические точки функции t = 1/3, t = 1, первая из которых не принадлежит отрезку [0,5;4], а вторая принадлежит ему. Так как f(0,5) = 1/8, f(1) = 0, f(4) = 36, то, по свойству дифференцируемой функции, 0 – наименьшее, а 36 – наибольшее значение функции f(t) на отрезке [0,5;4]. Тогда f(t), как непрерывная функция, принимает на отрезке [0,5;4] все значения от 0 до 36 включительно, причём значение 36 принимает только при t = 4, поэтому при 0,5 ≤ t
Данная тема имеет практическое значение. В школьном курсе математики изучается тема “Область значения функции”. Такие задачи обязательно содержатся в заданиях различных математических тестов, в частности в заданиях единого государственного экзамена.
Результаты работы можно использовать на уроках и дополнительных занятиях при подготовке учащихся выпускным и вступительным экзаменам, при самостоятельной подготовке учащихся по данной теме.
- Сильвестров В.В. Множество значений функции: Учебное пособие.– Чебоксары, 2004.
- Амелькин В.В., Рабцевич В.Л. Задачи с параметрами.– Минск, 1996.
- Горнштейн П.И., Полонский В.Б., Якир М.С. Задачи с параметрами. – Москва – Харьков, 1998.
- Мочалов В.В., Сильвестров В.В. Уравнения и неравенства с параметрами: Учебное пособие. 4-е изд., доп., перераб. – М., 2006.
- Сильвестров В.В. Неравенства с параметром на едином государственном экзамене // Математика для школьников. 2008. № 2.
📹 Видео
Множество значений функции #12Скачать
Функция. Область определения и область значений функцииСкачать
Область определения тригонометрических функцийСкачать
Функция. Область определения и множество значений функции.Скачать
СПОРИМ ты поймешь Математику — Функция и ее свойства, Область определения, Нули ФункцииСкачать
Функция. Область определения и область значения функции. Алгебра, 9 классСкачать
Найти множество значений функции | Задача 2Скачать
Функции. Урок №4. Область значений функции.Скачать
Множество значений функции-1Скачать
Множество значений функции #15Скачать
Множество значений функции #11Скачать
ОБЛАСТЬ ОПРЕДЕЛЕНИЯ и МНОЖЕСТВО ЗНАЧЕНИЙ тригонометрических функций тригонометрияСкачать
Область значений функцииСкачать
Алгебра 9 класс. Область определения функцииСкачать