Эта статья посвящена одному из направлений функционально-графического метода решения уравнений, а именно, графическому методу. Сначала дано описание графического метода: раскрыта его суть, сказано, на чем базируется метод, приведено его обоснование, обговорены особенности метода, связанные с точностью. Дальше идет практическая часть: записан алгоритм решения уравнений графическим методом и показаны решения характерных примеров.
Видео:Решение системы линейных уравнений графическим методом. 7 класс.Скачать
В чем состоит метод и на чем он базируется
Графический метод решения уравнений состоит в использовании графиков функций, отвечающих частям уравнения, для нахождения с их помощью решения уравнения. Базируется он на следующем утверждении:
Решение уравнения f(x)=g(x) есть множество абсцисс точек пересечения графиков функций y=f(x) и y=g(x) .
Обоснованием этого утверждения займемся в следующем пункте. А сейчас выудим из него полезные сведения.
Основное из них таково: по количеству точек пересечения графиков функций y=f(x) и y=g(x) можно судить о количестве корней уравнения f(x)=g(x) , а по абсциссам точек пересечения можно судить о корнях этого уравнения. Проиллюстрируем сказанное.
Взглянем на чертеж, на котором изображены графики функций и .
Очевидно, в видимой области графики изображенных функций не имеют точек пересечения. За пределами видимой области графики тоже не имеют точек пересечения. Это мы можем утверждать в силу известного нам поведения графиков степенных функций и линейных функций. Отсутствие точек пересечения позволяет нам сделать вывод, что уравнение не имеет решений.
Другой пример. На следующем рисунке изображены графики функций и .
Сколько точек пересечения мы видим? Две. Известное поведение графиков показательных функций и линейных функций позволяет утверждать, что за пределами видимой области точек пересечения нет. Значит, графики функций и пересекаются в двух точках, следовательно, уравнение имеет два корня. А каковы значения этих корней? Для ответа на этот вопрос определяем абсциссы точек пересечения графиков. По рисунку находим, что абсциссы точек пересечения есть −2 и 1 . Через проверку подстановкой убеждаемся, что это действительно корни уравнения :
Здесь стоит заметить, что к проверке подстановкой мы обратились не случайно. Дело в том, что найденные по графикам значения корней можно считать лишь приближенными до проведения проверки. Подробнее об этом мы поговорим в одном из следующих пунктов этой статьи, раскрывающем особенности графического метода.
Видео:Алгебра 8 класс (Урок№6 - Решение уравнений графическим способом.)Скачать
Обоснование метода
Докажем, что множество решений уравнения f(x)=g(x) есть множество абсцисс точек пересечения графиков функций y=f(x) и y=g(x) . Для этого достаточно показать, во-первых, что если x0 – корень уравнения f(x)=g(x) , то x0 – это абсцисса одной из точек пересечения графиков функций y=f(x) и y=g(x) , и, во-вторых, если x0 – абсцисса одной из точек пересечения графиков функций y=f(x) и y=g(x) , то x0 – корень уравнения f(x)=g(x) . Приступаем к доказательству.
Пусть x0 – корень уравнения f(x)=g(x) . Тогда f(x0)=g(x0) – верное числовое равенство. Это равенство можно трактовать так: значения функции y=f(x) и y=g(x) в точке x0 совпадают. А из этого следует, что x0 – абсцисса одной из точек пересечения графиков функций y=f(x) и y=g(x) .
Первая часть доказана. Переходим к доказательству второй части.
Пусть x0 – абсцисса одной из точек пересечения графиков функций y=f(x) и y=g(x) . Это означает, что значения функций y=f(x) и y=g(x) в точке x0 равны, значит, f(x0)=g(x0) . А из этого равенства следует, что x0 – корень уравнения f(x)=g(x) .
Так доказана вторая часть.
Видео:7 класс, 35 урок, Графическое решение уравненийСкачать
Особенности метода
Графический метод предполагает использование графиков функций. В общем случае построение графиков функций – дело непростое. Поэтому, графический метод решения уравнения обычно применяется лишь тогда, когда функции, отвечающие частям уравнения, довольно простые в плане построения графиков, и при этом не видно другого аналитического метода решения. Это одна из особенностей графического метода решения уравнений.
Другая особенность касается получаемых по графикам результатов. Полученные по графикам результаты можно считать лишь приближенными. Дело здесь в том, что сами по себе графики функций — вещь не совсем точная (но при этом очень наглядная и во многих отношениях удобная), особенно если говорить о графиках, построенных от руки. Это следует из принципов, которыми мы руководствуемся при построении графиков функций. Что мы делаем для построения графика функции в общем случае? Проводим исследование функции, чтобы получить ряд «опорных» точек, таких как граничные точки области определения, максимумы-минимумы, точки перегиба, и понять поведение функции на всех интервалах ее области определения. После этого определяем несколько контрольных точек. Дальше переносим все определенные в ходе исследования точки на координатную плоскость и, сейчас внимание, соединяем их плавной линией в соответствии с выясненным в ходе исследования поведением функции. Эта «плавная линия» и есть график функции. О какой точности можно здесь говорить? Понятно, что она определяется точностью нашего построения.
С приближенными, найденными по графикам, значениями корней уравнения можно так или иначе работать. В некоторых случаях определенные по графикам значения корней оказываются точными значениями, в чем позволяет убедиться проверка подстановкой. В других случаях есть возможность уточнить значения корней до требуемой степени точности, для этого существуют специальные методы уточнения значений корней. А вот если по графикам нет возможности определить количество корней, не говоря уже об их значении, то, почти наверняка, стоит отказываться от графического метода решения уравнения. Добавим наглядности сказанному.
Давайте посмотрим на изображенные в одной прямоугольной системе координат графики функций и y=−x 2 +6·x−5 .
По этому чертежу сложно судить даже о количестве корней уравнения , не говоря уже про их значения с приемлемой степенью точности. Здесь можно лишь грубо сказать, что если корни есть, то их значения находятся на промежутке от нуля до трех. Такую прикидку мы даем по той причине, что графики функций в обозначенном промежутке очень близки, почти совпадают. Если есть возможность построить графики более точно в обозначенном промежутке, то это немного проясняет картину:
Сейчас мы видим три точки пересечения, даже можем приближенно указать их абсциссы: 1 , 2 и 2,7 . Но опять же, это не более чем приближенные результаты, нуждающиеся в проверке и строгом обосновании.
Учитывая оговоренные особенности графического метода решения уравнения, для себя можно принять следующее: к графическому методу стоит обращаться лишь тогда, когда функции, отвечающие частям уравнения, довольно простые в плане построения графиков, когда по построенным графикам можно с уверенностью указать точное количество точек их пересечения, и когда не просматривается альтернативный метод решения.
Видео:Графический способ решения систем уравнений. Алгебра, 9 классСкачать
Алгоритм решения уравнений графическим методом
Анализ приведенной выше информации позволяет записать алгоритм решения уравнений графическим методом. Чтобы решить уравнение графически, надо:
- Построить в одной прямоугольной системе координат графики функций, отвечающие левой и правой частям уравнения.
- По чертежу определить все точки пересечения графиков:
- если точек пересечения нет, то решаемое уравнение не имеет корней,
- если точки пересечения имеются, то переходим к следующему шагу алгоритма.
- По чертежу определить абсциссы всех точек пересечения графиков – это приближенные значения всех корней исходного уравнения.
- Если есть основания полагать, что некоторые или все определенные на предыдущем шаге значения являются точными значениями корней решаемого уравнения, то осуществить их проверку, например, подстановкой.
Дадим краткий комментарий к последнему шага алгоритма. Иногда определенные по чертежу приближенные значения корней оказываются точными. Обычно это касается целых значений. Но, опять же, прежде чем утверждать, что найденные значения является точными корнями уравнения, сначала нужно осуществить проверку этих значений, например, проверку подстановкой.
Видео:Алгебра 9 класс. Графическое решение систем уравненийСкачать
Решение примеров
Графический метод решения уравнений начинает входить в арсенал изучающих математику в 7 классе сразу же после знакомства с координатной плоскостью и самой первой функцией – линейной функцией y=k·x+b . Именно тогда мы сталкиваемся с заданиями, наподобие следующего: с помощью графика линейной функции y=2·x−6 определить, при каком значении x будет y=0 [1, с. 50-51]. Для ответа на поставленный вопрос мы строим график указанной линейной функции y=2·x−6 .
По чертежу находим точку пересечения графика с осью Ox (ось Ox отвечает графику функции y=0 ), и определяем абсциссу точки пересечения: x=3 . По сути, мы решаем уравнение 2·x−6=0 графическим методом.
Чуть позже в 7 классе изучается функция y=x 2 . После этого опять заходит разговор о графическом методе решения уравнений, но уже более детальный, где метод уже называется своим именем и дается его алгоритм [1, с. 149-151; 2, с. 109]. Там с его помощью решаются уравнения, одной части которых отвечает функция y=x 2 , а другой – линейная функция y=k·x+b . Например, уравнение x 2 =x+1 . Для его решения строятся в одной системе координат соответствующие графики функций y=x 2 и y=x+1 :
Графики, очевидно, пересекаются в двух точках. Можно определить приближенные значения их абсцисс: .
В 8 классе изучаются новые виды функций: y=k/x , квадратичная функция y=a·x 2 +b·x+c , . И, естественно, рассматривается графический метод решения соответствующих уравнений. Особенно тщательно разбирается графическое решение квадратных уравнений. В учебнике Мордковича А. Г. приведены аж пять способов графического решения уравнения x 2 −2·x−3=0 [2, с. 127-131].
И так далее: изучаются функции , степенные функции, тригонометрические, показательные, логарифмические, …, — рассматривается решение соответствующих уравнений графическим методом. Так к концу школьного курса математики мы начинаем воспринимать графический метод решения уравнений как общий метод, позволяющий решать уравнения не только определенных видов, но и уравнения, в которых уживаются самые разнообразные функции: показательные с корнями, тригонометрические с логарифмическими и т.д. Покажем решение такого уравнения.
Решите уравнение
В заключение вспомним, что в этой статье при разговоре об особенностях графического метода решения уравнений мы обращались к иррациональному уравнению . В качестве «благодарности» этому уравнению за помощь в обретении знаний приведем ссылку на его решение графическим методом.
Видео:Как найти корни уравнения в Excel с помощью Подбора параметраСкачать
3.1. Отделение корней нелинейного уравнения
Отделение корней – это определение их наличия, количества и нахождение для каждого их них достаточно малого отрезка [a, b], которому он принадлежит.
На первом этапе определяется число корней, их тип. Определяется интервал, в котором находятся эти корни, или определяются приближенные значения корней.
В инженерных расчетах, как правило, необходимо определять только вещественные корни. Задача отделения вещественных корней решается Аналитическими и Графическими методами.
Аналитические методы основаны на функциональном анализе.
Для алгебраического многочлена n-ой степени (полинома) с действительными коэффициентами вида
Pn(x) = an x n + an-1xn-1 +. +a1x+ a0 = 0, (an >0) (3.2)
Верхняя граница положительных действительных корней определяется по формуле Лагранжа (Маклорена):
, (3.3)
Где: k ³ 1 – номер первого из отрицательных коэффициентов полинома;
B – максимальный по модулю отрицательный коэффициент.
Нижнюю границу положительных действительных корней можно определить из вспомогательного уравнения
(3.4)
Если для этого уравнения по формуле Лагранжа верхняя граница равна R1, то
= (3.5)
Тогда все положительные корни многочлена лежат в интервале
≤x+≤.
Интервал отрицательных действительных корней многочлена определяется с использованием следующих вспомогательных функций.
и .
≤x–≤ = =.
Рассмотрим пример отделения корней с использованием этого аналитического метода.
Методом Лагранжа определим границы положительных и отрицательных корней многочлена.
3×8 – 5×7 – 6×3 – x – 9 = 0
K = 1 B = |– 9| an = 3
= 4
9×8 + x7 + 6×5 + 5x – 3 = 0
k = 8 B = 3 an = 9
Отсюда границы положительных корней 0,5 ≤ x+ ≤ 4
3×8 + 5×7 + 6×3 + x – 9 = 0
=
9×8 – x7 – 6×5 – 5x – 3 = 0
K = 1 B = 6 an = 9
Следовательно, границы отрицательных корней –2 ≤ x– ≤ –0,6
Формула Лагранжа позволяет оценить интервал, в котором находятся все действительные корни, положительные или отрицательные. Поэтому, для определения расположения каждого корня необходимо проводить дополнительные исследования.
Для трансцендентных уравнений не существует общего метода оценки интервала, в котором находятся корни. Для этих уравнений оцениваются значения функции в особых точках: разрыва, экстремума, перегиба и других.
На практике получил большее распространение Графический метод приближённой оценки вещественных корней. Для этих целей строится график функции по вычисленным её значениям.
Графически корни можно отделить 2-мя способами:
1. Построить график функции y = f(x) и определить координаты пересечений с осью абсцисс− это приближенные значения корней уравнения.На графике 3 корня.
Рис. 3.1 Отделение корней на графике f(x).
2. Преобразовать f(x)=0 к виду j(x) = y(x), где j(x) и y(x) – элементарные функции, и определить абсциссу пересечений графиков этих функций.
На графике 2 корня.
Рис. 3.2 Отделение корней по графикам функций j(x) и y(x).
Графический метод решения нелинейных уравнений широко применяется в технических расчётах, где не требуется высокая точность.
Для отделения вещественных корней можно использовать ЭВМ. Алгоритм отделения корней основан на факте Изменения знака функции в окрестности корня. Действительно, если корень вещественный, то график функции пересекает ось абсцисс, а знак функции изменяется на противоположный.
Рассмотрим Схему алгоритма отделения корней нелинейного уравнения на заданном отрезке в области определения функции.
Алгоритм позволяет определить приближённые значения всех действительных корней на отрезке [a, b]. Введя незначительные изменения в алгоритм, его можно использовать для определения приближённого значения максимального или минимального корня.
Приращение неизвестного Δx не следует выбирать слишком большим, чтобы не «проскочить» два корня.
Недостаток метода – использование большого количества машинного времени.
Видео:Графический способ решения уравнений и неравенств | Алгебра 10 классСкачать
Графический метод в задачах с параметром
Данный метод используется не только в задачах с параметром, но и для решения обыкновенных уравнений, систем уравнений или неравенств. Он входит в стандартный курс школьной программы и наверняка вы с ним сталкивались, но в несколько упрощенном варианте. Сначала я кратко напомню, в чем заключается этот метод. Затем разберем, как его применять для решения задач с параметром, и рассмотрим несколько типовых примеров.
Для начала рассмотрим уравнение с одной переменной (f(x)=0). Для того, чтобы решить его графическим методом, нужно построить график функции (y=f(x)). Точки пересечения графика с осью абсцисс (ось (х)) и будут решениями нашего уравнения.
Или рассмотрим уравнение (f(x)=g(x)). Точно так же строим на одной координатной плоскости графики функций (y=f(x)) и (y=g(x)), абсциссы точек их пересечения будут решениями уравнения.
Стоит отдельно отметить, что для решения графическим методом необходимо выполнять очень качественный и точный рисунок.
Решить графическим методом уравнение (x^2+3x=5x+3).
Решение: Построим на одной координатной плоскости графики функций (y=x^2+3x) и (y=5x+3). См. рис.1.
(y=5x+3) – красный график; (y=x^2+3x) – синий график.
Из Рис.1 видно, что графики пересекаются в точках ((-1;2)) и ((3;18)). Таким образом, решением нашего уравнения будут: (_=-1; _=3).
Теперь рассмотрим уравнение с двумя переменными (f(x,y)=0). Решением этого уравнения будет множество пар точек ((x,y)), которые можно изобразить в виде графика на координатной плоскости ((xOy)). Если решать это уравнение аналитически, то, как правило, мы выражаем одну переменную через другую ((x,y=f(x))) или ((x=f(y),y)).
В качестве примера рассмотрим обыкновенное линейное уравнение (2x-5y=10). (1) Выражаем (x=frac) – это называется общим решением уравнения. Изобразим его на координатной плоскости, построив график (Рис. 2):
🌟 Видео
8 класс, 21 урок, Графическое решение уравненийСкачать
Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать
Как решать систему уравнений графическим методом? | Математика | TutorOnlineСкачать
Графический метод решения уравнений 8 классСкачать
Решение квадратных неравенств графическим методом. 8 класс.Скачать
Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Как построить график функции без таблицыСкачать
Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать
3,5 способа отбора корней в тригонометрии | ЕГЭ по математике | Эйджей из ВебиумаСкачать
Отделение корней уравнений аналитическим методом. Уточнение корней методом половинного деленияСкачать
СЛОЖИТЕ ДВА КОРНЯСкачать
Уравнение с двумя переменными и его график. Алгебра, 9 классСкачать
Числовое решение. Функция root в MathCAD 14 (28/34)Скачать