Как объяснить уравнения с двумя неизвестными

Решение уравнений с двумя неизвестными

В математике большая часть задач ориентирована на решение стандартных уравнений, в которых представлена одна переменная. Однако, некоторые из них, помимо числовых выражений, содержат одновременно две неизвестные. Перед тем как приступить к решению такого уравнения, стоит изучить его определение.

Содержание
  1. Определение
  2. Решение задач
  3. Система уравнений с двумя неизвестными
  4. Метод подстановки
  5. Метод сложения
  6. Графический метод
  7. Видео
  8. Уравнения с двумя переменными (неопределенные уравнения)
  9. Урок 1.
  10. Ход урока.
  11. 1) Орг. момент.
  12. 2) Актуализация опорных знаний.

    Определение. Линейным уравнением с двумя переменными называется уравнение вида mx + ny = k, где m, n, k – числа, x, y – переменные. Определение. Решением уравнения с двумя переменными называется пара значений переменных, обращающая это уравнение в верное равенство. Уравнения с двумя переменными, имеющими одни и те же решения, называются равносильными. 1. 5x+2y=12 (2)y = -2.5x+6 Данное уравнение может иметь сколько угодно решений. Для этого достаточно взять любое значение x и найти соответствующее ему значение y. Пусть x = 2, y = -2.5•2+6 = 1 x = 4, y = -2.5•4+6 =- 4 Пары чисел (2;1); (4;-4) – решения уравнения (1). Данное уравнение имеет бесконечно много решений. 3) Историческая справка Неопределенные (диофантовы) уравнения – это уравнения, содержащие более одной переменной. В III в. н.э. – Диофант Александрийский написал “Арифметику”, в которой расширил множество чисел до рациональных, ввел алгебраическую символику. Так же Диофант рассмотрел проблемы решения неопределенных уравнений и им даны методы решения неопределенных уравнений второй и третьей степени. 4) Изучение нового материала.

    Определение: Неоднородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = k, где m, n, k, x, y Z k0 Если свободный член k в уравнении (1) не делится на наибольший общий делитель (НОД) чисел m и n, то уравнение (1) не имеет целых решений. Пример: 34x – 17y = 3. НОД (34; 17) = 17, 3 не делится нацело на 17, в целых числах решения нет. Пусть k делится на НОД (m, n). Делением всех коэффициентов можно добиться, что m и n станут взаимно простыми. Если m и n уравнения (1) взаимно простые числа, то это уравнение имеет по крайней мере одно решение. Если коэффициенты m и n уравнения (1) являются взаимно простыми числами, то это уравнение имеет бесконечно много решений: где (; ) – какое-либо решение уравнения (1), t Z Определение. Однородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = 0, где (2) m, n, x, y Z Если m и n – взаимно простые числа, то всякое решение уравнения (2) имеет вид 5) Домашнее задание. Решить уравнение в целых числах:
  13. 9x – 18y = 5 x + y= xy Несколько детей собирали яблоки. Каждый мальчик собрал по 21 кг, а девочка по 15 кг. Всего они собрали 174 кг. Сколько мальчиков и сколько девочек собирали яблоки?
  14. Видео
Замечание. На данном уроке не представлены примеры решения уравнений в целых числах. Поэтому домашнее задание дети решают исходя из утверждения 1 и подбором. Урок 2. 1) Организационный момент 2) Проверка домашнего задания 5 не делится нацело на 9, в целых числах решений нет. Методом подбора можно найти решение 3) Составим уравнение: Пусть мальчиков x, x Z, а девочек у, y Z, то можно составить уравнение 21x + 15y = 174 Многие учащиеся, составив уравнение, не смогут его решить. Ответ: мальчиков 4, девочек 6. 3) Изучение нового материала Столкнувшись с трудностями при выполнении домашнего задания, учащиеся убедились в необходимости изучения их методов решений неопределенных уравнений. Рассмотрим некоторые из них. I. Метод рассмотрения остатков от деления. Пример. Решить уравнение в целых числах 3x – 4y = 1. Левая часть уравнения делится на 3, следовательно, должна делиться и правая часть. Рассмотрим три случая. Если y = 3m, m Z, то 4y + 1= 4•3m + 1 = 12m + 1 не делится на 3. Если y = 3 m + 1, то 4y +1 = 4• (3m + 1)+1 = 12m + 5 не делится на 3. Если y = 3 m + 2, то 4y +1 = 4• (3m + 2)+1 = 12m + 9 делится на 3, поэтому 3x = 12m + 9, следовательно, x = 4m + 3, а y = 3m + 2. Ответ: где m Z. Описанный метод удобно применять в случае, если числа m и n не малы, но зато разлагаются на простые сомножители. Пример: Решить уравнения в целых числах. Пусть y = 4n, тогда 16 — 7y = 16 – 7•4n = 16 – 28n = 4*(4-7n) делится на 4. y = 4n+1, тогда 16 – 7y = 16 – 7• (4n + 1) = 16 – 28n – 7 = 9 – 28n не делится на 4. y = 4n+2, тогда 16 – 7y = 16 – 7• (4n + 2) = 16 – 28n – 14 = 2 – 28n не делится на 4. y = 4n+3, тогда 16 – 7y = 16 – 7• (4n + 3) = 16 – 28n – 21 = -5 – 28n не делится на 4. Следовательно, y = 4n, тогда 4x = 16 – 7•4n = 16 – 28n, x = 4 – 7n Ответ: , где n Z. II. Неопределенные уравнения 2-ой степени Сегодня на уроке мы лишь коснемся решения диофантовых уравнений второго порядка. И из всех типов уравнений рассмотрим случай, когда можно применить формулу разности квадратов или другой способ разложения на множители. Пример: Решить уравнение в целых числах. 13 – простое число, поэтому оно может быть разложено на множители лишь четырьмя способами: 13 = 13•1 = 1•13 = (-1)(-13) = (-13)(-1) Рассмотрим эти случаи а) => б) => в) => г) => 4) Домашнее задание. Примеры. Решить уравнение в целых числах: а) 2x = 4 2x = 5 2x = 5 x = 2 x = 5/2 x = 5/2 y = 0 не подходит не подходит 2x = -4 не подходит не подходит x = -2 y = 0 б) в) Итоги. Что значит решить уравнение в целых числах? Какие методы решения неопределенных уравнений вы знаете? Упражнения для тренировки. 1) Решите в целых числах. а) 8x + 12y = 32 x = 1 + 3n, y = 2 — 2n, n Z б) 7x + 5y = 29 x = 2 + 5n, y = 3 – 7n, n Z в) 4x + 7y = 75 x = 3 + 7n, y = 9 – 4n, n Z г) 9x – 2y = 1 x = 1 – 2m, y = 4 + 9m, m Z д) 9x – 11y = 36 x = 4 + 11n, y = 9n, n Z е) 7x – 4y = 29 x = 3 + 4n, y = -2 + 7n, n Z ж) 19x – 5y = 119 x = 1 + 5p, y = -20 + 19p, p Z з) 28x – 40y = 60 x = 45 + 10t, y = 30 + 7t, t Z 2) Найти целые неотрицательные решения уравнения: а) 8x + 65y = 81 x = 2, y = 1 б) 17x + 23y = 183 x = 4, y = 5 3) Найти все пары целых чисел (x; y), удовлетворяющие следующим условиям а) x + y = xy (0;0), (2;2) б) (1;2), (5;2), (-1;-1), (-5;-2) Число 3 можно разложить на множители: a) б) в) г) в) (11;12), (-11;-12), (-11;12), (11;-12) г) (24;23), (24;-23), (-24;-23), (-24;23) д) (48;0), (24;1), (24;-1) е) x = 3m; y = 2m, mZ ж) y = 2x – 1 x = m: y = 2m – 1, m Z з) x = 2m; y = m; x = 2m; y = -m, m Z и) решений нет 4) Решить уравнения в целых числах (-3;-2), (-1;1), (0;4), (2;-2), (3;1), (5;4) (x — 3)(xy + 5) = 5 (-2;3), (2;-5), (4;0) (y + 1)(xy – 1)=3 (0;-4), (1;-2), (1;2) (-4;-1), (-2;1), (2;-1), (4;1) (-11;-12), (-11;12), (11;-12), (11;12) (-24;23), (-24;23), (24;-23), (24;23) 5) Решить уравнения в целых числах. а) (-1;0) б) (5;0) в) (2;-1) г) (2; -1) Детская энциклопедия “Педагогика”, Москва, 1972 г. Алгебра-8, Н.Я. Виленкин, ВО “Наука”, Новосибирск, 1992 г. Конкурсные задачи, основанные на теории чисел. В.Я. Галкин, Д.Ю. Сычугов. МГУ, ВМК, Москва, 2005г. Задачи повышенной трудности в курсе алгебры 7-9 классов. Н.П. Косрыкина. “Просвещение”, Москва, 1991 г. Алгебра 7, Макарычев Ю.Н., “Просвещение”. Системы линейных уравнений Линейные уравнения (уравнения первой степени) с двумя неизвестными Системы из двух линейных уравнений с двумя неизвестными Системы из трех линейных уравнений с тремя неизвестными Линейные уравнения (уравнения первой степени) с двумя неизвестными Определение 1 . Линейным уравнением (уравнением первой степени) с двумя неизвестными x и y называют уравнение, имеющее вид ax +by = c , (1) где a , b , c – заданные числа. Определение 2 . Решением уравнения (1) называют пару чисел (x ; y) , для которых формула (1) является верным равенством. Пример 1 . Найти решение уравнения 2x +3y = 10 (2) Решение . Выразим из равенства (2) переменную y через переменную x : (3) Из формулы (3) следует, что решениями уравнения (2) служат все пары чисел вида где x – любое число. Замечание . Как видно из решения примера 1, уравнение (2) имеет бесконечно много решений. Однако важно отметить, что не любая пара чисел (x ; y) является решением этого уравнения. Для того, чтобы получить какое-нибудь решение уравнения (2), число x можно взять любым, а число y после этого вычислить по формуле (3). Системы из двух линейных уравнений с двумя неизвестными Определение 3 . Системой из двух линейных уравнений с двумя неизвестными x и y называют систему уравнений, имеющую вид (4) Определение 4 . В системе уравнений (4) числа a1 , b1 , a2 , b2 называют коэффициентами при неизвестных , а числа c1 , c2 – свободными членами . Определение 5 . Решением системы уравнений (4) называют пару чисел (x ; y) , являющуюся решением как одного, так и другого уравнения системы (4). Определение 6 . Две системы уравнений называют равносильными (эквивалентными) , если все решения первой системы уравнений являются решениями второй системы, и все решения второй системы являются решениями первой системы. Равносильность систем уравнений обозначают, используя символ «» Системы линейных уравнений решают с помощью метода последовательного исключения неизвестных , который мы проиллюстрируем на примерах. Пример 2 . Решить систему уравнений (5) Решение . Для того, чтобы решить систему (5) исключим из второго уравнения системы неизвестное х . С этой целью сначала преобразуем систему (5) к виду, в котором коэффициенты при неизвестном x в первом и втором уравнениях системы станут одинаковыми. Если первое уравнение системы (5) умножить на коэффициент, стоящий при x во втором уравнении (число 7 ), а второе уравнение умножить на коэффициент, стоящий при x в первом уравнении (число 2 ), то система (5) примет вид (6) Теперь совершим над системой (6) следующие преобразования: первое уравнение системы оставим без изменений; из второго уравнения вычтем первое уравнение и заменим второе уравнение системы на полученную разность. В результате система (6) преобразуется в равносильную ей систему Из второго уравнения находим y = 3 , и, подставив это значение в первое уравнение, получаем Пример 3 . Найти все значения параметра p , при которых система уравнений (7) а) имеет единственное решение; б) имеет бесконечно много решений; в) не имеет решений. Решение . Выражая x через y из второго уравнения системы (7) и подставляя полученное выражение вместо x в первое уравнение системы (7), получим Следовательно, система (7) равносильна системе (8) Исследуем решения системы (8) в зависимости от значений параметра p . Для этого сначала рассмотрим первое уравнение системы (8): y (2 – p) (2 + p) = 2 + p (9) Если , то уравнение (9) имеет единственное решение Следовательно, система (8) равносильна системе Таким образом, в случае, когда , система (7) имеет единственное решение Если p = – 2 , то уравнение (9) принимает вид , и его решением является любое число . Поэтому решением системы (7) служит бесконечное множество всех пар чисел , где y – любое число. Если p = 2 , то уравнение (9) принимает вид и решений не имеет, откуда вытекает, что и система (7) решений не имеет. Системы из трех линейных уравнений с тремя неизвестными Определение 7 . Системой из трех линейных уравнений с тремя неизвестными x , y и z называют систему уравнений, имеющую вид (10) Определение 9 . Решением системы уравнений (10) называют тройку чисел (x ; y ; z) , при подстановке которых в каждое из трех уравнений системы (10) получается верное равенство. Пример 4 . Решить систему уравнений (11) Решение . Будем решать систему (11) при помощи метода последовательного исключения неизвестных . Для этого сначала исключим из второго и третьего уравнений системы неизвестное y , совершив над системой (11) следующие преобразования: первое уравнение системы оставим без изменений; ко второму уравнению прибавим первое уравнение и заменим второе уравнение системы на полученную сумму; из третьего уравнения вычтем первое уравнение и заменим третье уравнение системы на полученную разность. В результате система (11) преобразуется в равносильную ей систему (12) Теперь исключим из третьего уравнения системы неизвестное x , совершив над системой (12) следующие преобразования: первое и второе уравнения системы оставим без изменений; из третьего уравнения вычтем второе уравнение и заменим третье уравнение системы на полученную разность. В результате система (12) преобразуется в равносильную ей систему (13) Из системы (13) последовательно находим Пример 5 . Решить систему уравнений (14) Решение . Заметим, что из данной системы можно получить удобное следствие, сложив все три уравнения системы: Если числа (x ; y ; z) являются решением системы (14), то они должны удовлетворять и уравнению (15). Однако в таком случае числа (x ; y ; z) должны также быть решением системы, которая получается, если из каждого уравнения системы (14) вычесть уравнение (15): Поскольку мы использовали следствие из системы (14), не задумываясь о том, являются ли сделанные преобразования системы (14) равносильными, то полученный результат нужно проверить. Подставив тройку чисел (3 ; 0 ; –1) в исходную систему (14), убеждаемся, что числа (3 ; 0 ; –1) действительно являются ее решением. Замечание . Рекомендуем посетителю нашего сайта, интересующемуся методами решения систем уравнений, ознакомиться также c разделом справочника «Системы с нелинейными уравнениями» и нашим учебным пособием «Системы уравнений».
  • 3) Историческая справка
  • 4) Изучение нового материала.

    Определение: Неоднородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = k, где m, n, k, x, y Z k0 Если свободный член k в уравнении (1) не делится на наибольший общий делитель (НОД) чисел m и n, то уравнение (1) не имеет целых решений. Пример: 34x – 17y = 3. НОД (34; 17) = 17, 3 не делится нацело на 17, в целых числах решения нет. Пусть k делится на НОД (m, n). Делением всех коэффициентов можно добиться, что m и n станут взаимно простыми. Если m и n уравнения (1) взаимно простые числа, то это уравнение имеет по крайней мере одно решение. Если коэффициенты m и n уравнения (1) являются взаимно простыми числами, то это уравнение имеет бесконечно много решений: где (; ) – какое-либо решение уравнения (1), t Z Определение. Однородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = 0, где (2) m, n, x, y Z Если m и n – взаимно простые числа, то всякое решение уравнения (2) имеет вид 5) Домашнее задание. Решить уравнение в целых числах:
  • 9x – 18y = 5 x + y= xy Несколько детей собирали яблоки. Каждый мальчик собрал по 21 кг, а девочка по 15 кг. Всего они собрали 174 кг. Сколько мальчиков и сколько девочек собирали яблоки? Замечание. На данном уроке не представлены примеры решения уравнений в целых числах. Поэтому домашнее задание дети решают исходя из утверждения 1 и подбором. Урок 2. 1) Организационный момент 2) Проверка домашнего задания 5 не делится нацело на 9, в целых числах решений нет. Методом подбора можно найти решение 3) Составим уравнение: Пусть мальчиков x, x Z, а девочек у, y Z, то можно составить уравнение 21x + 15y = 174 Многие учащиеся, составив уравнение, не смогут его решить. Ответ: мальчиков 4, девочек 6. 3) Изучение нового материала Столкнувшись с трудностями при выполнении домашнего задания, учащиеся убедились в необходимости изучения их методов решений неопределенных уравнений. Рассмотрим некоторые из них. I. Метод рассмотрения остатков от деления. Пример. Решить уравнение в целых числах 3x – 4y = 1. Левая часть уравнения делится на 3, следовательно, должна делиться и правая часть. Рассмотрим три случая. Если y = 3m, m Z, то 4y + 1= 4•3m + 1 = 12m + 1 не делится на 3. Если y = 3 m + 1, то 4y +1 = 4• (3m + 1)+1 = 12m + 5 не делится на 3. Если y = 3 m + 2, то 4y +1 = 4• (3m + 2)+1 = 12m + 9 делится на 3, поэтому 3x = 12m + 9, следовательно, x = 4m + 3, а y = 3m + 2. Ответ: где m Z. Описанный метод удобно применять в случае, если числа m и n не малы, но зато разлагаются на простые сомножители. Пример: Решить уравнения в целых числах. Пусть y = 4n, тогда 16 — 7y = 16 – 7•4n = 16 – 28n = 4*(4-7n) делится на 4. y = 4n+1, тогда 16 – 7y = 16 – 7• (4n + 1) = 16 – 28n – 7 = 9 – 28n не делится на 4. y = 4n+2, тогда 16 – 7y = 16 – 7• (4n + 2) = 16 – 28n – 14 = 2 – 28n не делится на 4. y = 4n+3, тогда 16 – 7y = 16 – 7• (4n + 3) = 16 – 28n – 21 = -5 – 28n не делится на 4. Следовательно, y = 4n, тогда 4x = 16 – 7•4n = 16 – 28n, x = 4 – 7n Ответ: , где n Z. II. Неопределенные уравнения 2-ой степени Сегодня на уроке мы лишь коснемся решения диофантовых уравнений второго порядка. И из всех типов уравнений рассмотрим случай, когда можно применить формулу разности квадратов или другой способ разложения на множители. Пример: Решить уравнение в целых числах. 13 – простое число, поэтому оно может быть разложено на множители лишь четырьмя способами: 13 = 13•1 = 1•13 = (-1)(-13) = (-13)(-1) Рассмотрим эти случаи а) => б) => в) => г) => 4) Домашнее задание. Примеры. Решить уравнение в целых числах: а) 2x = 4 2x = 5 2x = 5 x = 2 x = 5/2 x = 5/2 y = 0 не подходит не подходит 2x = -4 не подходит не подходит x = -2 y = 0 б) в) Итоги. Что значит решить уравнение в целых числах? Какие методы решения неопределенных уравнений вы знаете? Упражнения для тренировки. 1) Решите в целых числах. а) 8x + 12y = 32 x = 1 + 3n, y = 2 — 2n, n Z б) 7x + 5y = 29 x = 2 + 5n, y = 3 – 7n, n Z в) 4x + 7y = 75 x = 3 + 7n, y = 9 – 4n, n Z г) 9x – 2y = 1 x = 1 – 2m, y = 4 + 9m, m Z д) 9x – 11y = 36 x = 4 + 11n, y = 9n, n Z е) 7x – 4y = 29 x = 3 + 4n, y = -2 + 7n, n Z ж) 19x – 5y = 119 x = 1 + 5p, y = -20 + 19p, p Z з) 28x – 40y = 60 x = 45 + 10t, y = 30 + 7t, t Z 2) Найти целые неотрицательные решения уравнения: а) 8x + 65y = 81 x = 2, y = 1 б) 17x + 23y = 183 x = 4, y = 5 3) Найти все пары целых чисел (x; y), удовлетворяющие следующим условиям а) x + y = xy (0;0), (2;2) б) (1;2), (5;2), (-1;-1), (-5;-2) Число 3 можно разложить на множители: a) б) в) г) в) (11;12), (-11;-12), (-11;12), (11;-12) г) (24;23), (24;-23), (-24;-23), (-24;23) д) (48;0), (24;1), (24;-1) е) x = 3m; y = 2m, mZ ж) y = 2x – 1 x = m: y = 2m – 1, m Z з) x = 2m; y = m; x = 2m; y = -m, m Z и) решений нет 4) Решить уравнения в целых числах (-3;-2), (-1;1), (0;4), (2;-2), (3;1), (5;4) (x — 3)(xy + 5) = 5 (-2;3), (2;-5), (4;0) (y + 1)(xy – 1)=3 (0;-4), (1;-2), (1;2) (-4;-1), (-2;1), (2;-1), (4;1) (-11;-12), (-11;12), (11;-12), (11;12) (-24;23), (-24;23), (24;-23), (24;23) 5) Решить уравнения в целых числах. а) (-1;0) б) (5;0) в) (2;-1) г) (2; -1) Детская энциклопедия “Педагогика”, Москва, 1972 г. Алгебра-8, Н.Я. Виленкин, ВО “Наука”, Новосибирск, 1992 г. Конкурсные задачи, основанные на теории чисел. В.Я. Галкин, Д.Ю. Сычугов. МГУ, ВМК, Москва, 2005г. Задачи повышенной трудности в курсе алгебры 7-9 классов. Н.П. Косрыкина. “Просвещение”, Москва, 1991 г. Алгебра 7, Макарычев Ю.Н., “Просвещение”. Системы линейных уравнений Линейные уравнения (уравнения первой степени) с двумя неизвестными Системы из двух линейных уравнений с двумя неизвестными Системы из трех линейных уравнений с тремя неизвестными Линейные уравнения (уравнения первой степени) с двумя неизвестными Определение 1 . Линейным уравнением (уравнением первой степени) с двумя неизвестными x и y называют уравнение, имеющее вид ax +by = c , (1) где a , b , c – заданные числа. Определение 2 . Решением уравнения (1) называют пару чисел (x ; y) , для которых формула (1) является верным равенством. Пример 1 . Найти решение уравнения 2x +3y = 10 (2) Решение . Выразим из равенства (2) переменную y через переменную x : (3) Из формулы (3) следует, что решениями уравнения (2) служат все пары чисел вида где x – любое число. Замечание . Как видно из решения примера 1, уравнение (2) имеет бесконечно много решений. Однако важно отметить, что не любая пара чисел (x ; y) является решением этого уравнения. Для того, чтобы получить какое-нибудь решение уравнения (2), число x можно взять любым, а число y после этого вычислить по формуле (3). Системы из двух линейных уравнений с двумя неизвестными Определение 3 . Системой из двух линейных уравнений с двумя неизвестными x и y называют систему уравнений, имеющую вид (4) Определение 4 . В системе уравнений (4) числа a1 , b1 , a2 , b2 называют коэффициентами при неизвестных , а числа c1 , c2 – свободными членами . Определение 5 . Решением системы уравнений (4) называют пару чисел (x ; y) , являющуюся решением как одного, так и другого уравнения системы (4). Определение 6 . Две системы уравнений называют равносильными (эквивалентными) , если все решения первой системы уравнений являются решениями второй системы, и все решения второй системы являются решениями первой системы. Равносильность систем уравнений обозначают, используя символ «» Системы линейных уравнений решают с помощью метода последовательного исключения неизвестных , который мы проиллюстрируем на примерах. Пример 2 . Решить систему уравнений (5) Решение . Для того, чтобы решить систему (5) исключим из второго уравнения системы неизвестное х . С этой целью сначала преобразуем систему (5) к виду, в котором коэффициенты при неизвестном x в первом и втором уравнениях системы станут одинаковыми. Если первое уравнение системы (5) умножить на коэффициент, стоящий при x во втором уравнении (число 7 ), а второе уравнение умножить на коэффициент, стоящий при x в первом уравнении (число 2 ), то система (5) примет вид (6) Теперь совершим над системой (6) следующие преобразования: первое уравнение системы оставим без изменений; из второго уравнения вычтем первое уравнение и заменим второе уравнение системы на полученную разность. В результате система (6) преобразуется в равносильную ей систему Из второго уравнения находим y = 3 , и, подставив это значение в первое уравнение, получаем Пример 3 . Найти все значения параметра p , при которых система уравнений (7) а) имеет единственное решение; б) имеет бесконечно много решений; в) не имеет решений. Решение . Выражая x через y из второго уравнения системы (7) и подставляя полученное выражение вместо x в первое уравнение системы (7), получим Следовательно, система (7) равносильна системе (8) Исследуем решения системы (8) в зависимости от значений параметра p . Для этого сначала рассмотрим первое уравнение системы (8): y (2 – p) (2 + p) = 2 + p (9) Если , то уравнение (9) имеет единственное решение Следовательно, система (8) равносильна системе Таким образом, в случае, когда , система (7) имеет единственное решение Если p = – 2 , то уравнение (9) принимает вид , и его решением является любое число . Поэтому решением системы (7) служит бесконечное множество всех пар чисел , где y – любое число. Если p = 2 , то уравнение (9) принимает вид и решений не имеет, откуда вытекает, что и система (7) решений не имеет. Системы из трех линейных уравнений с тремя неизвестными Определение 7 . Системой из трех линейных уравнений с тремя неизвестными x , y и z называют систему уравнений, имеющую вид (10) Определение 9 . Решением системы уравнений (10) называют тройку чисел (x ; y ; z) , при подстановке которых в каждое из трех уравнений системы (10) получается верное равенство. Пример 4 . Решить систему уравнений (11) Решение . Будем решать систему (11) при помощи метода последовательного исключения неизвестных . Для этого сначала исключим из второго и третьего уравнений системы неизвестное y , совершив над системой (11) следующие преобразования: первое уравнение системы оставим без изменений; ко второму уравнению прибавим первое уравнение и заменим второе уравнение системы на полученную сумму; из третьего уравнения вычтем первое уравнение и заменим третье уравнение системы на полученную разность. В результате система (11) преобразуется в равносильную ей систему (12) Теперь исключим из третьего уравнения системы неизвестное x , совершив над системой (12) следующие преобразования: первое и второе уравнения системы оставим без изменений; из третьего уравнения вычтем второе уравнение и заменим третье уравнение системы на полученную разность. В результате система (12) преобразуется в равносильную ей систему (13) Из системы (13) последовательно находим Пример 5 . Решить систему уравнений (14) Решение . Заметим, что из данной системы можно получить удобное следствие, сложив все три уравнения системы: Если числа (x ; y ; z) являются решением системы (14), то они должны удовлетворять и уравнению (15). Однако в таком случае числа (x ; y ; z) должны также быть решением системы, которая получается, если из каждого уравнения системы (14) вычесть уравнение (15): Поскольку мы использовали следствие из системы (14), не задумываясь о том, являются ли сделанные преобразования системы (14) равносильными, то полученный результат нужно проверить. Подставив тройку чисел (3 ; 0 ; –1) в исходную систему (14), убеждаемся, что числа (3 ; 0 ; –1) действительно являются ее решением. Замечание . Рекомендуем посетителю нашего сайта, интересующемуся методами решения систем уравнений, ознакомиться также c разделом справочника «Системы с нелинейными уравнениями» и нашим учебным пособием «Системы уравнений».
  • Урок 2.
  • 1) Организационный момент
  • 2) Проверка домашнего задания
  • 3) Изучение нового материала
  • 4) Домашнее задание.
  • Системы линейных уравнений
  • Линейные уравнения (уравнения первой степени) с двумя неизвестными
  • Системы из двух линейных уравнений с двумя неизвестными
  • Системы из трех линейных уравнений с тремя неизвестными
  • Видео:Линейное уравнение с двумя переменными. 7 класс.Скачать

    Линейное уравнение с двумя переменными. 7 класс.

    Определение

    Итак, уравнением с двумя неизвестными называют любое равенство следующего типа:

    a*x + b*y =с, где a, b, c — числа, x, y — неизвестные переменные.

    Ниже приведены несколько примеров:

    Уравнение с двумя неизвестными точно так же, как и с одной, имеет решение. Однако такие выражения, как правило, имеют бесконечное множество разных решений, поэтому в алгебре их принято называть неопределенными.

    Видео:ЛИНЕЙНОЕ УРАНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ — Как решать линейное уравнение // Алгебра 7 классСкачать

    ЛИНЕЙНОЕ УРАНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ — Как решать линейное уравнение // Алгебра 7 класс

    Решение задач

    Чтобы решить подобные задачи, необходимо отыскать любую пару значений x и y, которая удовлетворяла бы его, другими словами, обращала бы уравнение с неизвестными x и y в правильное числовое равенство. Найти удовлетворяющую пару чисел можно при помощи метода подбора.

    Для наглядности объяснений подберем корни для выражения: y-x = 6.

    При y=5 и x=-1 равенство становится верным тождеством 5- (-1) = 6. Поэтому пару чисел (-1; 5) можно считать корнями выражения y-x = 6. Ответ: (-1; 5).

    Необходимо отметить, что записывать полученный ответ по правилам необходимо в скобках через точку с запятой. Первым указывается значение х, вторым — значение y.

    У равенств такого вида может и не быть корней. Рассмотрим такой случай на следующем примере: x+y = x+y+9

    Приведем исходное равенство к следующему виду:

    В результате мы видим ошибочное равенство, следовательно, это выражение не имеет корней.

    При решении уравнений можно пользоваться его свойствами. Первое их них: каждое слагаемое можно вынести в другую часть выражения. Вместе с этим обязательно нужно поменять знак на обратный. Получившееся равенство будет равнозначно исходному.

    Например, из выражения 20y — 3x = 16 перенесем неизвестное y в другую его часть.

    Оба равенства равносильны.

    Второе свойство: допустимо умножать или делить части выражения на одинаковое число, не равное нолю. В итоге получившиеся равенства будут равнозначны.

    Оба уравнения также равносильны.

    Как объяснить уравнения с двумя неизвестными

    Видео:Линейное уравнение с двумя переменными.Скачать

    Линейное уравнение с двумя переменными.

    Система уравнений с двумя неизвестными

    Система уравнений представляет собой некоторое количество равенств, выполняющихся одновременно. В большинстве задач приходится находить решение системы, состоящей из двух равенств с двумя переменными.

    Для решения системы уравнений необходимо найти пару чисел, обращающих оба уравнения системы в правильное равенство. Решением может служить одна пара чисел, несколько пар чисел или вовсе их отсутствие.

    Решить подобные системы уравнений можно, применяя следующие методы.

    Метод подстановки

    1. Выражаем неизвестное из любого равенства через вторую переменную.
    2. Подставляем получившееся выражение неизвестного во второе равенство и решаем его.
    3. Делаем подстановку полученного значения неизвестного и вычисляем значение второго неизвестного.

    Метод сложения

    1. Приводим к равенству модули чисел при каком-либо неизвестном.
    2. Производим вычисление одной из переменных, произведя сложение или вычитание полученных выражений.
    3. Подставляем найденное значение в какое-либо уравнение в первоначальной системе и вычисляем вторую переменную.

    Графический метод

    1. Выражаем в каждом равенстве одну переменную через другую.
    2. Строим графики двух имеющихся уравнений в одной координатной плоскости.
    3. Определяем точку их пересечения и ее координаты. На этом шаге у вас может получиться три варианта: графики пересекаются — у системы единственно верный вариант решения; прямые параллельны друг другу — система решений не имеет; графики совпадают — у системы бесконечно много решений.
    4. Делаем проверку, подставив полученные значения в исходную систему равенств.

    При нахождении корней у одной системы всеми этими способами у вас обязательно должен получиться одинаковый результат, если вы, конечно, все сделали правильно.

    В настоящее время есть возможность решения подобных задач с помощью встроенных средств офисной программы Excel, а также на специализированных онлайн-ресурсах и калькуляторах. С помощью них вы легко можете проверить правильность своих вычислений и результатов.

    Надеемся, что наша статья помогла вам в освоении этой базовой темы школьной математики. Если же вы пока не можете справиться с решением уравнений такого вида, не расстраивайтесь. Для понимания и закрепления изученной темы рекомендуется как можно больше практиковаться, и тогда у вас без труда получится решать задачи любой сложности. Желаем вам удачи в покорении математических вершин!

    Видео:Математика. Линейные диофантовы уравнения с двумя неизвестными. Центр онлайн-обучения «Фоксфорд»Скачать

    Математика. Линейные диофантовы уравнения с двумя неизвестными. Центр онлайн-обучения «Фоксфорд»

    Видео

    Из этого видео вы узнаете, как решать уравнения с двумя неизвестными.

    Видео:Видеоурок ЛИНЕЙНОЕ УРАВНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ 7 КЛАСССкачать

    Видеоурок ЛИНЕЙНОЕ УРАВНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ 7 КЛАСС

    Уравнения с двумя переменными (неопределенные уравнения)

    Разделы: Математика

    Обращение автора к данной теме не является случайным. Уравнения с двумя переменными впервые встречаются в курсе 7-го класса. Одно уравнение с двумя переменными имеет бесконечное множество решений. Это наглядно демонстрирует график линейной функции, заданный в виде ax + by=c. В школьном курсе учащиеся изучают системы двух уравнений с двумя переменными. В результате из поля зрения учителя и, поэтому ученика, выпадает целый ряд задач, с ограниченными условиями на коэффициент уравнения, а также методы их решения.

    Речь идет о решении уравнения с двумя неизвестными в целых или натуральных числах.

    В школе натуральные и целые числа изучаются в 4-6-х классах. К моменту окончания школы не все ученики помнят различия между множествами этих чисел.

    Однако задача типа “решить уравнение вида ax + by=c в целых числах” все чаще встречается на вступительных экзаменах в ВУЗы и в материалах ЕГЭ.

    Решение неопределенных уравнений развивает логическое мышление, сообразительность, внимание анализировать.

    Я предлагаю разработку нескольких уроков по данной теме. У меня нет однозначных рекомендаций по срокам проведения этих уроков. Отдельные элементы можно использовать и в 7-м классе (для сильного класса). Данные уроки можно взять за основу и разработать небольшой элективный курс по предпрофильной подготовке в 9-м классе. И, конечно, этот материал можно использовать в 10-11 классах для подготовки к экзаменам.

    Цель урока:

      повторение и обобщение знаний по теме “Уравнения первого и второго порядка”
    • воспитание познавательного интереса к учебному предмету
    • формирование умений анализировать, проводить обобщения, переносить знания в новую ситуацию

    Урок 1.

    Ход урока.

    1) Орг. момент.

    2) Актуализация опорных знаний.

    Определение. Линейным уравнением с двумя переменными называется уравнение вида

    mx + ny = k, где m, n, k – числа, x, y – переменные.

    Определение. Решением уравнения с двумя переменными называется пара значений переменных, обращающая это уравнение в верное равенство.

    Уравнения с двумя переменными, имеющими одни и те же решения, называются равносильными.

    1. 5x+2y=12 Как объяснить уравнения с двумя неизвестными(2)y = -2.5x+6

    Данное уравнение может иметь сколько угодно решений. Для этого достаточно взять любое значение x и найти соответствующее ему значение y.

    Пусть x = 2, y = -2.5•2+6 = 1

    x = 4, y = -2.5•4+6 =- 4

    Пары чисел (2;1); (4;-4) – решения уравнения (1).

    Данное уравнение имеет бесконечно много решений.

    3) Историческая справка

    Неопределенные (диофантовы) уравнения – это уравнения, содержащие более одной переменной.

    В III в. н.э. – Диофант Александрийский написал “Арифметику”, в которой расширил множество чисел до рациональных, ввел алгебраическую символику.

    Так же Диофант рассмотрел проблемы решения неопределенных уравнений и им даны методы решения неопределенных уравнений второй и третьей степени.

    4) Изучение нового материала.

    Определение: Неоднородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = k, где m, n, k, x, y Как объяснить уравнения с двумя неизвестнымиZ kКак объяснить уравнения с двумя неизвестными0

    Если свободный член k в уравнении (1) не делится на наибольший общий делитель (НОД) чисел m и n, то уравнение (1) не имеет целых решений.

    Пример: 34x – 17y = 3.

    НОД (34; 17) = 17, 3 не делится нацело на 17, в целых числах решения нет.

    Пусть k делится на НОД (m, n). Делением всех коэффициентов можно добиться, что m и n станут взаимно простыми.

    Если m и n уравнения (1) взаимно простые числа, то это уравнение имеет по крайней мере одно решение.

    Если коэффициенты m и n уравнения (1) являются взаимно простыми числами, то это уравнение имеет бесконечно много решений:

    Как объяснить уравнения с двумя неизвестнымигде (Как объяснить уравнения с двумя неизвестными; Как объяснить уравнения с двумя неизвестными) – какое-либо решение уравнения (1), t Как объяснить уравнения с двумя неизвестнымиZ

    Определение. Однородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = 0, где (2)

    m, n, x, y Как объяснить уравнения с двумя неизвестнымиZ

    Если m и n – взаимно простые числа, то всякое решение уравнения (2) имеет вид Как объяснить уравнения с двумя неизвестными

    5) Домашнее задание. Решить уравнение в целых числах:

  • 9x – 18y = 5
  • x + y= xy
  • Несколько детей собирали яблоки. Каждый мальчик собрал по 21 кг, а девочка по 15 кг. Всего они собрали 174 кг. Сколько мальчиков и сколько девочек собирали яблоки?
  • Замечание. На данном уроке не представлены примеры решения уравнений в целых числах. Поэтому домашнее задание дети решают исходя из утверждения 1 и подбором.

    Урок 2.

    1) Организационный момент

    2) Проверка домашнего задания

    5 не делится нацело на 9, в целых числах решений нет.

    Методом подбора можно найти решение

    3) Составим уравнение:

    Пусть мальчиков x, x Как объяснить уравнения с двумя неизвестнымиZ, а девочек у, y Как объяснить уравнения с двумя неизвестнымиZ, то можно составить уравнение 21x + 15y = 174

    Многие учащиеся, составив уравнение, не смогут его решить.

    Ответ: мальчиков 4, девочек 6.

    3) Изучение нового материала

    Столкнувшись с трудностями при выполнении домашнего задания, учащиеся убедились в необходимости изучения их методов решений неопределенных уравнений. Рассмотрим некоторые из них.

    I. Метод рассмотрения остатков от деления.

    Пример. Решить уравнение в целых числах 3x – 4y = 1.

    Левая часть уравнения делится на 3, следовательно, должна делиться и правая часть. Рассмотрим три случая.

    1. Если y = 3m, m Как объяснить уравнения с двумя неизвестнымиZ, то 4y + 1= 4•3m + 1 = 12m + 1 не делится на 3.
    2. Если y = 3 m + 1, то 4y +1 = 4• (3m + 1)+1 = 12m + 5 не делится на 3.
    3. Если y = 3 m + 2, то 4y +1 = 4• (3m + 2)+1 = 12m + 9 делится на 3, поэтому 3x = 12m + 9, следовательно, x = 4m + 3, а y = 3m + 2.

    Ответ: Как объяснить уравнения с двумя неизвестнымигде m Как объяснить уравнения с двумя неизвестнымиZ.

    Описанный метод удобно применять в случае, если числа m и n не малы, но зато разлагаются на простые сомножители.

    Пример: Решить уравнения в целых числах.

    Пусть y = 4n, тогда 16 — 7y = 16 – 7•4n = 16 – 28n = 4*(4-7n) делится на 4.

    y = 4n+1, тогда 16 – 7y = 16 – 7• (4n + 1) = 16 – 28n – 7 = 9 – 28n не делится на 4.

    y = 4n+2, тогда 16 – 7y = 16 – 7• (4n + 2) = 16 – 28n – 14 = 2 – 28n не делится на 4.

    y = 4n+3, тогда 16 – 7y = 16 – 7• (4n + 3) = 16 – 28n – 21 = -5 – 28n не делится на 4.

    Следовательно, y = 4n, тогда

    4x = 16 – 7•4n = 16 – 28n, x = 4 – 7n

    Ответ: Как объяснить уравнения с двумя неизвестными, где n Как объяснить уравнения с двумя неизвестнымиZ.

    II. Неопределенные уравнения 2-ой степени

    Сегодня на уроке мы лишь коснемся решения диофантовых уравнений второго порядка.

    И из всех типов уравнений рассмотрим случай, когда можно применить формулу разности квадратов или другой способ разложения на множители.

    Пример: Решить уравнение в целых числах.

    Как объяснить уравнения с двумя неизвестными

    13 – простое число, поэтому оно может быть разложено на множители лишь четырьмя способами: 13 = 13•1 = 1•13 = (-1)(-13) = (-13)(-1)

    Рассмотрим эти случаи

    а) Как объяснить уравнения с двумя неизвестными=> Как объяснить уравнения с двумя неизвестными

    б) Как объяснить уравнения с двумя неизвестными=> Как объяснить уравнения с двумя неизвестными

    в) Как объяснить уравнения с двумя неизвестными=> Как объяснить уравнения с двумя неизвестными

    г) Как объяснить уравнения с двумя неизвестными=> Как объяснить уравнения с двумя неизвестными

    4) Домашнее задание.

    Примеры. Решить уравнение в целых числах:

    а) Как объяснить уравнения с двумя неизвестными

    Как объяснить уравнения с двумя неизвестнымиКак объяснить уравнения с двумя неизвестнымиКак объяснить уравнения с двумя неизвестными
    2x = 42x = 52x = 5
    x = 2x = 5/2x = 5/2
    y = 0не подходитне подходит
    Как объяснить уравнения с двумя неизвестнымиКак объяснить уравнения с двумя неизвестнымиКак объяснить уравнения с двумя неизвестными
    2x = -4не подходитне подходит
    x = -2
    y = 0

    б) Как объяснить уравнения с двумя неизвестными

    в) Как объяснить уравнения с двумя неизвестными

    Итоги. Что значит решить уравнение в целых числах?

    Какие методы решения неопределенных уравнений вы знаете?

    Упражнения для тренировки.

    1) Решите в целых числах.

    а) 8x + 12y = 32x = 1 + 3n, y = 2 — 2n, n Как объяснить уравнения с двумя неизвестнымиZ
    б) 7x + 5y = 29x = 2 + 5n, y = 3 – 7n, n Как объяснить уравнения с двумя неизвестнымиZ
    в) 4x + 7y = 75x = 3 + 7n, y = 9 – 4n, n Как объяснить уравнения с двумя неизвестнымиZ
    г) 9x – 2y = 1x = 1 – 2m, y = 4 + 9m, m Как объяснить уравнения с двумя неизвестнымиZ
    д) 9x – 11y = 36x = 4 + 11n, y = 9n, n Как объяснить уравнения с двумя неизвестнымиZ
    е) 7x – 4y = 29x = 3 + 4n, y = -2 + 7n, n Как объяснить уравнения с двумя неизвестнымиZ
    ж) 19x – 5y = 119x = 1 + 5p, y = -20 + 19p, p Как объяснить уравнения с двумя неизвестнымиZ
    з) 28x – 40y = 60x = 45 + 10t, y = 30 + 7t, t Как объяснить уравнения с двумя неизвестнымиZ

    2) Найти целые неотрицательные решения уравнения:

    а) 8x + 65y = 81x = 2, y = 1
    б) 17x + 23y = 183x = 4, y = 5

    3) Найти все пары целых чисел (x; y), удовлетворяющие следующим условиям

    а) x + y = xy(0;0), (2;2)
    б) Как объяснить уравнения с двумя неизвестными(1;2), (5;2), (-1;-1), (-5;-2)

    Как объяснить уравнения с двумя неизвестными

    Число 3 можно разложить на множители:

    a) Как объяснить уравнения с двумя неизвестнымиб) Как объяснить уравнения с двумя неизвестнымив) Как объяснить уравнения с двумя неизвестнымиг) Как объяснить уравнения с двумя неизвестными
    в) Как объяснить уравнения с двумя неизвестными(11;12), (-11;-12), (-11;12), (11;-12)
    г) Как объяснить уравнения с двумя неизвестными(24;23), (24;-23), (-24;-23), (-24;23)
    д) Как объяснить уравнения с двумя неизвестными(48;0), (24;1), (24;-1)
    е) Как объяснить уравнения с двумя неизвестнымиx = 3m; y = 2m, mКак объяснить уравнения с двумя неизвестнымиZ
    ж) y = 2x – 1x = m: y = 2m – 1, m Как объяснить уравнения с двумя неизвестнымиZ
    з) Как объяснить уравнения с двумя неизвестнымиx = 2m; y = m; x = 2m; y = -m, m Как объяснить уравнения с двумя неизвестнымиZ
    и)Как объяснить уравнения с двумя неизвестнымирешений нет

    4) Решить уравнения в целых числах

    Как объяснить уравнения с двумя неизвестными(-3;-2), (-1;1), (0;4), (2;-2), (3;1), (5;4)
    (x — 3)(xy + 5) = 5(-2;3), (2;-5), (4;0)
    (y + 1)(xy – 1)=3(0;-4), (1;-2), (1;2)
    Как объяснить уравнения с двумя неизвестными(-4;-1), (-2;1), (2;-1), (4;1)
    Как объяснить уравнения с двумя неизвестными(-11;-12), (-11;12), (11;-12), (11;12)
    Как объяснить уравнения с двумя неизвестными(-24;23), (-24;23), (24;-23), (24;23)

    5) Решить уравнения в целых числах.

    а) Как объяснить уравнения с двумя неизвестными(-1;0)
    б)Как объяснить уравнения с двумя неизвестными(5;0)
    в) Как объяснить уравнения с двумя неизвестными(2;-1)
    г) Как объяснить уравнения с двумя неизвестными(2; -1)
  • Детская энциклопедия “Педагогика”, Москва, 1972 г.
  • Алгебра-8, Н.Я. Виленкин, ВО “Наука”, Новосибирск, 1992 г.
  • Конкурсные задачи, основанные на теории чисел. В.Я. Галкин, Д.Ю. Сычугов. МГУ, ВМК, Москва, 2005г.
  • Задачи повышенной трудности в курсе алгебры 7-9 классов. Н.П. Косрыкина. “Просвещение”, Москва, 1991 г.
  • Алгебра 7, Макарычев Ю.Н., “Просвещение”.
  • Видео:Алгебра 7 класс (Урок№45 - Уравнения первой степени с двумя неизвестными.)Скачать

    Алгебра 7 класс (Урок№45 - Уравнения первой степени с двумя неизвестными.)

    Системы линейных уравнений

    Как объяснить уравнения с двумя неизвестнымиЛинейные уравнения (уравнения первой степени) с двумя неизвестными
    Как объяснить уравнения с двумя неизвестнымиСистемы из двух линейных уравнений с двумя неизвестными
    Как объяснить уравнения с двумя неизвестнымиСистемы из трех линейных уравнений с тремя неизвестными

    Как объяснить уравнения с двумя неизвестными

    Видео:Нелинейные уравнения с двумя переменными и их геометрический смысл. 9 класс.Скачать

    Нелинейные уравнения с двумя переменными и их геометрический смысл. 9 класс.

    Линейные уравнения (уравнения первой степени) с двумя неизвестными

    Определение 1 . Линейным уравнением (уравнением первой степени) с двумя неизвестными x и y называют уравнение, имеющее вид

    ax +by = c ,(1)

    где a , b , c – заданные числа.

    Определение 2 . Решением уравнения (1) называют пару чисел (x ; y) , для которых формула (1) является верным равенством.

    Пример 1 . Найти решение уравнения

    2x +3y = 10(2)

    Решение . Выразим из равенства (2) переменную y через переменную x :

    Как объяснить уравнения с двумя неизвестными(3)

    Из формулы (3) следует, что решениями уравнения (2) служат все пары чисел вида

    Как объяснить уравнения с двумя неизвестными

    где x – любое число.

    Замечание . Как видно из решения примера 1, уравнение (2) имеет бесконечно много решений. Однако важно отметить, что не любая пара чисел (x ; y) является решением этого уравнения. Для того, чтобы получить какое-нибудь решение уравнения (2), число x можно взять любым, а число y после этого вычислить по формуле (3).

    Видео:Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать

    Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.

    Системы из двух линейных уравнений с двумя неизвестными

    Определение 3 . Системой из двух линейных уравнений с двумя неизвестными x и y называют систему уравнений, имеющую вид

    Как объяснить уравнения с двумя неизвестными(4)

    Определение 4 . В системе уравнений (4) числа a1 , b1 , a2 , b2 называют коэффициентами при неизвестных , а числа c1 , c2 – свободными членами .

    Определение 5 . Решением системы уравнений (4) называют пару чисел (x ; y) , являющуюся решением как одного, так и другого уравнения системы (4).

    Определение 6 . Две системы уравнений называют равносильными (эквивалентными) , если все решения первой системы уравнений являются решениями второй системы, и все решения второй системы являются решениями первой системы.

    Равносильность систем уравнений обозначают, используя символ «Как объяснить уравнения с двумя неизвестными»

    Системы линейных уравнений решают с помощью метода последовательного исключения неизвестных , который мы проиллюстрируем на примерах.

    Пример 2 . Решить систему уравнений

    Как объяснить уравнения с двумя неизвестными(5)

    Решение . Для того, чтобы решить систему (5) исключим из второго уравнения системы неизвестное х .

    С этой целью сначала преобразуем систему (5) к виду, в котором коэффициенты при неизвестном x в первом и втором уравнениях системы станут одинаковыми.

    Если первое уравнение системы (5) умножить на коэффициент, стоящий при x во втором уравнении (число 7 ), а второе уравнение умножить на коэффициент, стоящий при x в первом уравнении (число 2 ), то система (5) примет вид

    Как объяснить уравнения с двумя неизвестными(6)

    Теперь совершим над системой (6) следующие преобразования:

    • первое уравнение системы оставим без изменений;
    • из второго уравнения вычтем первое уравнение и заменим второе уравнение системы на полученную разность.

    В результате система (6) преобразуется в равносильную ей систему

    Как объяснить уравнения с двумя неизвестными

    Из второго уравнения находим y = 3 , и, подставив это значение в первое уравнение, получаем

    Как объяснить уравнения с двумя неизвестными

    Пример 3 . Найти все значения параметра p , при которых система уравнений

    Как объяснить уравнения с двумя неизвестными(7)

    а) имеет единственное решение;

    б) имеет бесконечно много решений;

    в) не имеет решений.

    Решение . Выражая x через y из второго уравнения системы (7) и подставляя полученное выражение вместо x в первое уравнение системы (7), получим

    Как объяснить уравнения с двумя неизвестными

    Как объяснить уравнения с двумя неизвестными

    Как объяснить уравнения с двумя неизвестными

    Как объяснить уравнения с двумя неизвестными

    Следовательно, система (7) равносильна системе

    Как объяснить уравнения с двумя неизвестными(8)

    Исследуем решения системы (8) в зависимости от значений параметра p . Для этого сначала рассмотрим первое уравнение системы (8):

    y (2 – p) (2 + p) = 2 + p(9)

    Если Как объяснить уравнения с двумя неизвестными, то уравнение (9) имеет единственное решение

    Как объяснить уравнения с двумя неизвестными

    Следовательно, система (8) равносильна системе

    Как объяснить уравнения с двумя неизвестными

    Таким образом, в случае, когда Как объяснить уравнения с двумя неизвестными, система (7) имеет единственное решение

    Как объяснить уравнения с двумя неизвестными

    Если p = – 2 , то уравнение (9) принимает вид

    Как объяснить уравнения с двумя неизвестными,

    и его решением является любое число Как объяснить уравнения с двумя неизвестными. Поэтому решением системы (7) служит бесконечное множество всех пар чисел

    Как объяснить уравнения с двумя неизвестными,

    где y – любое число.

    Если p = 2 , то уравнение (9) принимает вид

    Как объяснить уравнения с двумя неизвестными

    и решений не имеет, откуда вытекает, что и система (7) решений не имеет.

    Видео:7 класс, 8 урок, Линейное уравнение с двумя переменными и его графикСкачать

    7 класс, 8 урок, Линейное уравнение с двумя переменными и его график

    Системы из трех линейных уравнений с тремя неизвестными

    Определение 7 . Системой из трех линейных уравнений с тремя неизвестными x , y и z называют систему уравнений, имеющую вид

    Как объяснить уравнения с двумя неизвестными(10)

    Определение 9 . Решением системы уравнений (10) называют тройку чисел (x ; y ; z) , при подстановке которых в каждое из трех уравнений системы (10) получается верное равенство.

    Пример 4 . Решить систему уравнений

    Как объяснить уравнения с двумя неизвестными(11)

    Решение . Будем решать систему (11) при помощи метода последовательного исключения неизвестных .

    Для этого сначала исключим из второго и третьего уравнений системы неизвестное y , совершив над системой (11) следующие преобразования:

    • первое уравнение системы оставим без изменений;
    • ко второму уравнению прибавим первое уравнение и заменим второе уравнение системы на полученную сумму;
    • из третьего уравнения вычтем первое уравнение и заменим третье уравнение системы на полученную разность.

    В результате система (11) преобразуется в равносильную ей систему

    Как объяснить уравнения с двумя неизвестными(12)

    Теперь исключим из третьего уравнения системы неизвестное x , совершив над системой (12) следующие преобразования:

    • первое и второе уравнения системы оставим без изменений;
    • из третьего уравнения вычтем второе уравнение и заменим третье уравнение системы на полученную разность.

    В результате система (12) преобразуется в равносильную ей систему

    Как объяснить уравнения с двумя неизвестными(13)

    Из системы (13) последовательно находим

    Пример 5 . Решить систему уравнений

    Как объяснить уравнения с двумя неизвестными(14)

    Решение . Заметим, что из данной системы можно получить удобное следствие, сложив все три уравнения системы:

    Как объяснить уравнения с двумя неизвестными

    Как объяснить уравнения с двумя неизвестными

    Как объяснить уравнения с двумя неизвестными

    Если числа (x ; y ; z) являются решением системы (14), то они должны удовлетворять и уравнению (15). Однако в таком случае числа (x ; y ; z) должны также быть решением системы, которая получается, если из каждого уравнения системы (14) вычесть уравнение (15):

    Как объяснить уравнения с двумя неизвестными

    Поскольку мы использовали следствие из системы (14), не задумываясь о том, являются ли сделанные преобразования системы (14) равносильными, то полученный результат нужно проверить. Подставив тройку чисел (3 ; 0 ; –1) в исходную систему (14), убеждаемся, что числа (3 ; 0 ; –1) действительно являются ее решением.

    Замечание . Рекомендуем посетителю нашего сайта, интересующемуся методами решения систем уравнений, ознакомиться также c разделом справочника «Системы с нелинейными уравнениями» и нашим учебным пособием «Системы уравнений».

    🔍 Видео

    Урок СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ С ДВУМЯ ПЕРЕМЕННЫМИ 7 КЛАСССкачать

    Урок СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ С ДВУМЯ ПЕРЕМЕННЫМИ 7 КЛАСС

    ГРАФИК ЛИНЕЙНОГО УРАВНЕНИЯ С ДВУМЯ ПЕРЕМЕННЫМИ 7 КЛАСС видеоурокСкачать

    ГРАФИК ЛИНЕЙНОГО УРАВНЕНИЯ С ДВУМЯ ПЕРЕМЕННЫМИ 7 КЛАСС видеоурок

    Уравнение с двумя переменными и его график. Алгебра, 9 классСкачать

    Уравнение с двумя переменными и его график. Алгебра, 9 класс

    Алгебра 7 Линейное уравнение с двумя переменными и его графикСкачать

    Алгебра 7 Линейное уравнение с двумя переменными и его график

    Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

    Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

    ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

    ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по Математике

    7 класс, 37 урок, Системы двух линейных уравнения с двумя переменными. Основные понятияСкачать

    7 класс, 37 урок, Системы двух линейных уравнения с двумя переменными. Основные понятия

    9 класс, 8 урок, Уравнения с двумя переменнымиСкачать

    9 класс, 8 урок, Уравнения с двумя переменными

    Уравнение с двумя неизвестными. Решить в целых числах. ЗадачаСкачать

    Уравнение с двумя неизвестными. Решить в целых числах. Задача

    Решение систем уравнений методом подстановкиСкачать

    Решение систем уравнений методом подстановки

    СИСТЕМА УРАВНЕНИЙ нелинейных 9 класс алгебраСкачать

    СИСТЕМА УРАВНЕНИЙ нелинейных 9 класс алгебра
    Поделиться или сохранить к себе: