Овладение детьми способом решения уравнений в начальной школе создает прочную основу для дальнейшего обучения алгебры, химии, физики и других предметов.
Начиная с 3-го класса, ученикам встречаются сложные уравнения, но справиться с ними очень просто.
Дети уже умеют решать простые уравнения, читай об этом здесь.
А эта статья будет посвящена решению сложных уравнений в 2-3 действия.
Очень часто родители, желая помочь, объясняют так: вот смотри, сейчас вот это число перенести в другую часть от знака равенства, надо поменять знак на противоположный: было умножение, меняем на деление; было сложение меняем на вычитание.
В начальной школе это объяснение не срабатывает, т.к. ребенок не знаком с законами алгебры.
Как сложное уравнение привести к тому, которые мы уже умеем решать, а именно к уравнению в 1 действие?
Рассмотрим уравнение в 2 действия:
х + 56 = 98 — 2 — оно достаточно легкое.
Здесь особого труда не будет в решении, потому что ребенок сразу догадается, что сначала надо 98-2.
х + 56 = 98 — 2
х + 56 = 96 – это простое уравнение. А его решаем очень быстро!
Сейчас мы рассмотрим уравнение:
Такое уравнение можно решить несколькими способами.
- У нас здесь неизвестное число х. Мы не знаем, что спрятано за этим числом.
А когда к х + 5 – это число тоже известно.
Закроем его и пусть это будет другое число, например b .
Мы видим, что у нас получилось самое простое уравнение в 1 действие.
2 • b = 30
А чтобы найти а, нам нужно 30 : на 2.
А b не что иное, как х + 5.
х + 5 = 30 : 2
х + 5 = 15
х = 15 – 5
х = 10
Проверку делаем как обычно: переписываем первое уравнение: 2 • (10 + 5) = 30.
30 – переписываем, а левую часть считаем — будет 30.
30 = 30, значит, уравнение решили правильно.
При решении таких сложных уравнений самое главное – понять, что заменить на другое неизвестное число. Когда в уравнении всего 2 действия – это очень просто.
- Более удобно и понятно, как показывает практика, если использовать решение сложных уравнений на основе зависимости между компонентами действий.
Наше уравнение 2 • (х + 5) = 30 читаем так: число 2 умножить на сумму х и пяти, получится 30. В данном случае – нам неизвестна сумма, чтобы ее найти, надо 30:2.
48 : (16 – а) = 4.
Если опять заменять часть уравнения другим неизвестным числом, можно запутаться. Поэтому легче использовать взаимосвязи компонентов и результата действия: число 48 разделить на разность.
Нам неизвестна разность, поэтому сначала нужно узнать чему она равна. Надо 48 : 4.
16 — а = 48 : 4
16 — а = 12 – это простое уравнение.
а = 16 — 12
а = 4
Проверка: 48 : (16 — 4) = 4
Давайте посмотрим еще одно:
Из 96 надо вычесть разность с и 16. Чтобы найти разность, надо 96-94.
Проверка: 96 — (16 — 14) = 94
А сейчас мы переходим к тем уравнениям, у которых не 2, а 3 действия. Как же нам поступать в этом случае? При решении таких сложных уравнения используем знания порядка выполнения действий в выражениях со скобками и без них.
Рассмотрим уравнение: 36 – (8 • у + 5) = 7
Прежде всего, нужно внимательно оценить левую часть уравнения: ту, которая с неизвестным числом. Вы должны четко себе представить какое вы будете делать действие первым, какое – вторым, какое – третьим: сначала делается умножение, потом сложение и последним – вычитание.
И вот то, которое вы будете делать третьим, с него и начнем, т.е. начинаем упрощать уравнение с последнего действия. Последнее действие – вычитание. С него и начнем: из числа 36 вычесть то, что в скобках и получим 7.
Значит, то что в скобках – вычитаемое, чтобы его найти, надо 36 — 7.
По правилам математики в данной записи скобки – не ставим.
8 • у + 5 = 29 – уравнение сложное. Нужно его упростить. Данное уравнение читаем так: к произведению 8 и у прибавили 5 и получилось 29. Нам неизвестно произведение, чтобы его найти, надо 29-5.
8 • у = 24 – это уравнение простое.
Проверка: 36 — (8 • у + 5) = 7 . Правую часть – 7 — переписываем, а левую считаем.
Итак: 7 = 7. Значит, уравнение решили правильно.
(36 + d) : 4 + 8 = 18. Определяем порядок действий: первое – сложение в скобках, второе – деление, третье сложение вне скобок. Значит, все, что до 8 – это первое слагаемое, чтобы его найти, надо 18 — 8
(36 + d) : 4 = 18 — 8
(36 + d) : 4 = 10 – уравнение сложное, теперь последнее действие — :, значит
36 + d = 40 – уравнение простое и его мы решаем легко!
Для удобства и быстроты решения сложных уравнений можете пользоваться данной памяткой
Дело в том, что при кажущейся сложности, если внимательно изучить все приемы, которые я вам сегодня показала, эти уравнения дети будете щелкать как семечки. Обязательно напишите в комментариях, какой способ вам более удобен.
Насколько публикация полезна?
Нажмите на звезду, чтобы оценить!
Средняя оценка 5 / 5. Количество оценок: 58
- Раскрытие скобок
- Понятие раскрытия скобок
- Первое правило раскрытия скобок
- Второе правило раскрытия скобок
- Другие правила раскрытия скобок
- Таблица с формулами раскрытия скобок
- Скобка в скобке
- Порядок раскрытия скобок
- Задачи для самостоятельного решения
- Памятка : «Решение уравнений», 5 класс
- Дистанционное обучение как современный формат преподавания
- Математика: теория и методика преподавания в образовательной организации
- Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
- Дистанционные курсы для педагогов
- Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
- Материал подходит для УМК
- Другие материалы
- Вам будут интересны эти курсы:
- Оставьте свой комментарий
- Автор материала
- Дистанционные курсы для педагогов
- Подарочные сертификаты
- 📽️ Видео
Видео:Сложные уравнения. Как решить сложное уравнение?Скачать
Раскрытие скобок
О чем эта статья:
Видео:Решаем уравнения со скобками.Правило раскрытия скобок.Скачать
Понятие раскрытия скобок
В задачах по математике постоянно встречаются числовые и буквенные выражения, а также выражения с переменными, которые составлены с использованием скобок.
Основная функция скобок — менять порядок действий при вычислениях значений числовых выражений.
Часто можно перейти от одного выражения со скобками к тождественно равному выражению без скобок. Например:
Такой переход от выражения со скобками к тождественно равному выражению без скобок несет в себе основную идею о раскрытии скобок.
Начальное выражение со скобками и результат, полученный после раскрытия скобок, удобно записывать в виде равенства, как мы это сделали в предыдущем примере.
В школе тему раскрытия скобок обычно подходят в 6 классе. На этом этапе раскрытие скобок воспринимают, как избавление от скобок, которые указывают порядок выполнения действий. И изучают раскрытие скобок на примерах выражений, которые содержат:
- знаки плюс или минус перед скобками, которые заключают сумму или разность, например, (a + 7) и -(-3 + 2a — 12 — b);
- произведение числа, одной или нескольких букв и суммы или разности в скобках, например, 3(2 — 7), (3 — a + 8c)(-b) или -2a(b + 2c — 3m).
Раскрытие скобок также можно рассматривать шире.
Раскрытием скобок можно назвать переход от выражения, которое содержит отрицательные числа в скобках, к выражению без скобок. Например:
Или, если в описанных выше выражениях вместо чисел и переменных могут быть любые выражения. В полученных таким способом выражениях тоже можно проводить раскрытие скобок. Например:
Раскрытие скобок — это избавление от скобок, которые указывают порядок выполнения действий, а также избавление от скобок, в которые заключены отдельные числа и выражения.
Важно отметить еще один момент, который касается особенностей записи решения при раскрытии скобок. При раскрытии скобок в громоздких выражениях можно прописывать промежуточные результаты в виде цепочки равенств. Например, вот так:
- 5 — (3 — (2 — 1)) = 5 — (3 — 2 + 1) = 5 — 3 + 2 — 1
Видео:Раскрытие скобок. 6 класс.Скачать
Первое правило раскрытия скобок
Это выражение равно двум. А теперь раскроем скобки, то есть избавимся от них. Мы ожидаем, что после избавления от скобок значение выражения 8 + (−9 + 3) также должно быть равно 2.
Первое правило раскрытия скобок
Если перед скобками стоит знак плюс — все числа, которые стоят внутри скобок, сохраняют свой знак.
Формула раскрытия скобок
Мы видим что в выражении 8 + (−9 + 3) перед скобками стоит плюс. Значит плюс нужно опустить вместе со скобками. То, что было в скобках — запишем без изменений, вот так:
Так мы получили выражение без скобок 8 − 9 + 3. Снова получаем в результате вычисления два.
Поэтому между выражениями 8 + (−9 + 3) и 8 − 9 + 3 можно поставить знак равенства, поскольку они равны одному и тому же значению:
Потренируемся применять правило на примерах.
Пример 1. Раскрыть скобки в выражении 8 + (−3 − 1)
Перед скобками стоит плюс, значит этот плюс опустим вместе со скобками. А то, что было в скобках оставим без изменений:
Пример 2. Раскрыть скобки в выражении 6 + (−2)
Перед скобками стоит плюс, значит применим то же правило:
Раскрытие скобок в предыдущих пример выглядит, как обратная операция замены вычитания сложением.
В выражении 6 − 2 происходит вычитание, но его можно заменить сложением. Тогда получится выражение 6 + (−2). Но если в выражении 6 + (−2) раскрыть скобки, то получится снова 6 − 2.
Поэтому первое правило раскрытия скобок можно использовать для упрощения выражений после любых других преобразований.
Идем дальше. Теперь упростим выражение 2a + a − 5b + b.
Чтобы упростить такое выражение, нужно привести подобные слагаемые. Для этого нужно сложить коэффициенты подобных слагаемых и результат умножить на общую буквенную часть:
- 2a + a — 5b + b = 2a + a + (-5b) + b = (2 + 1) * a + (-5 + 1) * b = 3a + (-4b)
Получили выражение 3a + (−4b). Раскроем скобки. Перед скобками стоит плюс, поэтому используем первое правило раскрытия скобок: опустим скобки вместе с плюсом, который стоит перед этими скобками.
Таким образом, выражение 2a + a − 5b + b упрощается до 3a − 4b.
После открытия одних скобок, по пути можно найти другие. К ним применяем те же правила, что и к первым. Например, раскроем скобки в таком выражении:
Здесь нужно раскрыть скобки в двух местах. Снова применяем первое правило раскрытия скобок, а именно опускаем скобки вместе с плюсом, который стоит перед:
- 2 + (−3 + 1) + 3 + (−6) = 2 − 3 + 1 + 3 − 6
Пример 3. Раскрыть скобки 6 + (−3) + (−2)
В обоих местах перед скобками стоит плюс. Применяем первое правило раскрытия скобок:
Можно встретить такой пример, когда первое слагаемое в скобках записано без знака. Например, в выражении 1 + (2 + 3 − 4) первое слагаемое в скобках 2 записано без знака. Какой знак будет стоять перед двойкой после того, как скобки и плюс, стоящий перед скобками опустятся? Ответ интуитивно понятен — перед двойкой будет стоять плюс.
Дело в том, что даже в скобках перед двойкой стоит плюс, просто мы его не видим так как плюс не принято записывать. Полная запись положительных чисел выглядит так: +1, +2, +3, но плюсы по традиции не записывают, поэтому положительные числа мы всегда видим в таком виде: 1, 2, 3.
Поэтому, чтобы раскрыть скобки в выражении 1 + (2 + 3 − 4), нужно как обычно опустить скобки вместе с плюсом, который стоит перед этими скобками, но первое слагаемое которое было в скобках записать со знаком плюс:
- 1 + (2 + 3 − 4) = 1 + 2 + 3 − 4
Пример 4. Раскрыть скобки в выражении (−7)
Перед скобками стоит плюс, но мы его не видим так как до него нет других чисел или выражений. Убираем скобки, применив первое правило раскрытия скобок:
Пример 5. Раскрыть скобки 9a + (−5b + 6c) + 2a + (−2d)
Видим два места, где нужно раскрыть скобки. В обоих участках перед скобками стоит плюс, значит этот плюс опускается вместе со скобками. То, что было в скобках запишем без изменений:
Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!
Видео:Уравнения. 5 классСкачать
Второе правило раскрытия скобок
Здесь рассмотрим второе правило раскрытия скобок. Звучит так:
Второе правило раскрытия скобок
Если перед скобками стоит знак минус — все числа, которые стоят внутри скобок, меняют свой знак на противоположный.
Формула раскрытия скобок
Например, раскроем скобки в выражении 5 − (−2 − 3)
Видим, что перед скобками стоит минус. Значит нужно применить второе правило раскрытия, а именно опустить скобки вместе с минусом, который стоит перед этими скобками. При этом слагаемые, которые были в скобках, поменяют свой знак на противоположный:
Так мы получили выражение без скобок 5 + 2 + 3. Это выражение равно десяти, как и предыдущее выражение со скобками было равно 10.
Поэтому между выражениями 5 − (−2 − 3) и 5 + 2 + 3 можно поставить знак равенства так как они равны одному и тому же значению:
Пример 1. Раскрыть скобки в выражении 18 − (−1 − 5)
Перед скобками стоит минус, поэтому применим второе правило раскрытия скобок:
18 − (−1 − 5) = 18 + 1 + 5
Пример 2. Раскрыть скобки −(−6 + 7)
Перед скобками стоит минус, поэтому применим второе правило раскрытия скобок:
Пример 3. Раскрыть скобки −(−7 − 4) + 15 + (−6 − 2)
Здесь мы видим два места, где нужно раскрыть скобки. В первом случае применим второе правило раскрытия скобок, а во втором — первое правило:
−(−7 − 4) + 15 + (−6 − 2) = 7 + 4 + 15 − 6 − 2
Пример 4. Раскрыть скобки в выражении a − (3b + 3) + 10
Перед скобками стоит минус, поэтому применим второе правило раскрытия скобок:
a − (3b + 3) + 10 = a − 3b − 3 + 10
Видео:УРАВНЕНИЯ СО СКОБКАМИ. Примеры | МАТЕМАТИКА 5 классСкачать
Другие правила раскрытия скобок
Правило раскрытия скобок при делении
Если после скобок стоит знак деления — каждое число внутри скобок делится на делитель, который стоит после скобок.
Формула раскрытия скобок
(a + b) : c = a/c + b/c.
Деление скобки на число предполагает, что необходимо разделить на число все заключенные в скобки слагаемые.
Деление можно предварительно заменить умножением, после чего можно воспользоваться подходящим правилом раскрытия скобок в произведении. Это же правило применимо и при делении скобки на скобку.
Например, нам необходимо раскрыть скобки в выражении (x + 2) : 2/3. Для этого сначала заменим деление умножением на обратное число:
Далее умножим скобку на число:
- (x + 2) * 3/2 = x * 3/2 + 2 * 3/2.