Как объяснить ребенку задачи с уравнением

Как научить детей решать задачи по математике: советы именитых педагогов и простых мам

Научить детей решать задачи по математике — дело учителя, но и родители не должны оставаться в стороне, если их чадо «тормозит» в этом вопросе. Одним учебником математики сыт не будешь. Ведь если научить ребенка самостоятельно решать задачи в 1-3 классах, дальше он будет щелкать как семечки не только задачи по математике, но и по физике, химии, геометрии и др. И самое главное — этот навык пригодится ребенку в жизни!

Как объяснить ребенку задачи с уравнением vogazeta.ru

В статье Как научить ребенка математике мы подробно писали, из каких 4 частей состоит любая задача и что нужно сделать в первую очередь, чтобы ребенок понял, чего от него хотят и как ответить на вопрос задачи. Уяснив алгоритм решения задач, ребенок сможет самостоятельно решить практически любую задачу, даже несмотря на то, что они все кажутся такими разными.

Содержание
  1. Основные типы задач по математике: краткий конспект
  2. 1. Простые задачи на сложение и вычитание
  3. 2. Составные задачи на сложение и вычитание
  4. 3. Задачи на понимание смысла действий умножения и деления
  5. 4. Простые задачи на умножение и деление
  6. 5. Составные задачи на все 4 арифметические действия
  7. 6. Задачи на цену, количество, стоимость
  8. 7. Задачи на движение
  9. Типичные ошибки в решении задач
  10. Творческий подход в решении задач
  11. На школу надейся, а сам не плошай
  12. Практические советы по решению задач от реальных мам
  13. О методике работы репетитора по математике с темой «решение уравнений» в 5-6 классах
  14. Задачи, решаемые с помощью уравнения: примеры, объяснение. Задачи по алгебре
  15. Алгоритм решения
  16. Основа основ — задача про корзины
  17. Закрепление: концертные залы
  18. Классика: полки с книгами
  19. Практикуемся дальше: бобры
  20. Соотносим уравнения и условия
  21. Усложняем: система уравнений — конфеты
  22. Ещё сложнее: квадратные уравнения и земельный участок
  23. Повторяем: деревья в саду
  24. Контрольная: сумма чисел
  25. Заключение

Видео:Решение задач с помощью уравнений.Скачать

Решение задач с помощью уравнений.

Основные типы задач по математике: краткий конспект

Небольшой ликбез, т.к. далеко не все родители учились в педагогических ВУЗах и владеют методикой преподавания. Пробежимся по теории, чтобы понимать, кто, кому и чего «должен». Зная ключевые моменты, вам будет проще помочь ребенку в решении задач, которые вызывают у него сложности, вы сможете определить, где пробелы в знаниях и что нужно «подтянуть» в каждом конкретном случае.

Как объяснить ребенку задачи с уравнениемiqsha.ru

Рассмотрим самые распространенные виды задач в начальных классах.

Видео:Решение задач с помощью уравнений. Видеоурок 29. Математика 6 классСкачать

Решение задач с помощью уравнений. Видеоурок 29. Математика 6 класс

1. Простые задачи на сложение и вычитание

К этой группе относятся несколько задач, но для всех есть общие рекомендации:

  • Решаются в одно действие.
  • Иногда удобно составить уравнение.
  • На их примере ребенок должен научится выполнять краткую запись.
  • Если краткого условия недостаточно, нарисовать рисунок. Если не помог рисунок, показываем на конкретных предметах и производим действия с ними.
  • Четко усвоить, что «+» — это прибавить, увеличить, а «-» — уменьшить, отнять, вычесть.
  • Хорошо запомнить компоненты арифметических действий:

слагаемое + слагаемое = сумма
уменьшаемое — вычитаемое = разность

  • Понять разницу между словами «стало» и «осталось». Четко понимать, что значит «на … меньше», «на … больше».
  • Важно понять и запомнить: чтобы узнать, НА СКОЛЬКО одно число больше или меньше другого, нужно из большего числа вычесть меньшее.
  • Важно понять и запомнить: чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое.
  • Важно понять и запомнить: чтобы найти неизвестное уменьшаемое, нужно к вычитаемому прибавить разность.
  • Важно понять и запомнить: чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность.

Задачи с косвенным вопросом

Это самые коварные задачи из этой группы. Внимательно прочитайте условие — и поймете почему.

На стоянке у первого подъезда 7 машин. Это на 2 машины больше, чем на стоянке у второго подъезда. сколько машин на стоянке у второго подъезда.

Видео:Математика 6 класс (Урок№51 - Решение задач с помощью уравнений. Часть 1.)Скачать

Математика 6 класс (Урок№51 - Решение задач с помощью уравнений. Часть 1.)

2. Составные задачи на сложение и вычитание

Эти задачи решаются двумя и более действиями.

Есть несколько способов решения:

  • по действиям с пояснениями;
  • по действиям с вопросами;
  • выражением.

В решении таких задач главное:

  • найти главное и сделать краткую запись;
  • разложить эту задачу на несколько простых и составить план решения;
  • помнить главное: по двум данным находим третье.

Видео:Уравнение. Практическая часть - решение задачи. 1 часть. 5 класс.Скачать

Уравнение. Практическая часть - решение задачи. 1 часть. 5 класс.

3. Задачи на понимание смысла действий умножения и деления

  • Важно запомнить названия компонентов действий и понять их смысл:

1-й множитель х 2-й множитель = произведение
делимое : делитель =частное

  • Ребенок должен понимать, что 1-й множитель показывает, КАКОЕ число повторяется а 2-й множитель показывает — СКОЛЬКО РАЗ оно повторяется.

Это очень важно для правильной записи в задачах, иначе получится бессмыслица.

Советы о том, как научить ребенка осознанно относиться к умножению и делению, вы найдете в нашей статье Как научить детей быстро считать: математика до школы. Если возникли проблемы с решением задач на умножение — сдайте чуть-чуть назад, закрепите осознание этого арифметического действия.

Видео:АЛГЕБРА 7 класс : Решение задач с помощью уравнений | ВидеоурокСкачать

АЛГЕБРА 7 класс : Решение задач с помощью уравнений | Видеоурок

4. Простые задачи на умножение и деление

  • Очень важно понять и запомнить разницу «в «, «на».

«Во сколько раз» или «на сколько»? Предлог «на» — это сложение или вычитание, а «в» — умножение или деление.

  • Важно понять и запомнить: чтобы узнать, во сколько раз одно число больше или меньше другого, нужно большее число разделить на меньшее.

Видео:4 класс: как легко составить уравнение по задаче?Скачать

4 класс: как легко составить уравнение по задаче?

5. Составные задачи на все 4 арифметические действия

Видео:РЕШЕНИЕ УРАВНЕНИЙ |ПОДРОБНОЕ ОБЪЯСНЕНИЕ КАК РЕШИТЬ УРАВНЕНИЯ / ПРОСТЫЕ УРАВНЕНИЯ 2 КЛАСС МАТЕМАТИКАСкачать

РЕШЕНИЕ УРАВНЕНИЙ |ПОДРОБНОЕ ОБЪЯСНЕНИЕ КАК РЕШИТЬ УРАВНЕНИЯ / ПРОСТЫЕ УРАВНЕНИЯ  2 КЛАСС МАТЕМАТИКА

6. Задачи на цену, количество, стоимость

Видео:Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?

7. Задачи на движение

Это отдельная обширная тема, вернемся к ней позже.

Видео:Как научить ребенка решать задачи по математике. Почему не получается решать задачи по математике?Скачать

Как научить ребенка решать задачи по математике. Почему не получается решать задачи по математике?

Типичные ошибки в решении задач

Ошибка №1. Ребенок невнимательно прочитал условие задачи.

Часто бывает так, что ошибки возникают от невнимательности. Так часто бывает в задачах с косвенным вопросом. Ребенок смотрит на цифры, вроде все логично, но… не верно.

Например: «У Маши 8 конфет, это на 2 меньше, чем у Кати. Сколько конфет у Кати».

Ребенок видит «на 2 меньше» и делает «логичный» вывод, что надо отнять. Отнять можно от бОльшего числа, т.е. сразу напрашивается решение 8-2=6. И ответ: 6 конфет у Кати. А ответ-то не тот! Если внимательно почитать условие, то станет понятно, что у Кати конфет больше чем у Маши. И вовсе тут не отнимать надо.

Как исправить ошибку. Сразу разберитесь с условием, поможет краткая запись.

Ошибка №2. Ребенок допустил ошибку в решении.

Когда в задаче несколько неизвестных, решение затрудняется, требуется выполнить не одно действие, а придумать целую цепочку рассуждений.

Как исправить ошибку. Для начала определим, каких данных нам не хватает. Решаем по действиям. Находим нужные числа (помним правило: по двум неизвестным находим третье), подставляем их и отвечаем на вопрос задачи.

Ошибка №3. Неправильная запись ответа.

Часто ребенок пишет не то пояснение.

Как исправить ошибку. Нужно внимательно прочитать вопрос задачи. Уяснить раз и навсегда, что ответ начинается с числа, а дальше пишем, что требовалось найти (переписываем формулировку вопроса задачи).

Видео:Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать

Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?

Творческий подход в решении задач

Как объяснить ребенку задачи с уравнением www.craftykidsathome.com

  • Учите ребенка рассуждать.
  • Придумывайте задачи с лишними или недостающими данными.

Пусть ребенок сам вычеркнет лишнее, те данные, которые не влияют на решение.

  • Дайте условие, а ребенок пусть сам придумает ответ.
  • Пусть ребенок сам составит обратную задачу.
  • Придумать несколько задач на одно решение.
  • Придумать, как решить задачу другим способом и объяснить его.

Видео:Математика 2 класс (Урок№26 - Уравнение. Решение уравнений подбором неизвестного числа.)Скачать

Математика 2 класс (Урок№26 - Уравнение. Решение уравнений подбором неизвестного числа.)

На школу надейся, а сам не плошай

Заглянем в педагогику и «расшифруем» мысли умных и заслуженных, исходя из сегодняшних реалий.

В далеком 1867 году К. Ушинский сказал: «У хороших преподавателей дело выходит так, что арифметическая задача есть вместе занимательный рассказ, урок сельского хозяйства или домашней экономии, или историческая или статистическая тема и упражнение в языке».

  • Ученика нужно поставить в такие условия, чтобы он оказался в эпицентре событий, т.е., решая задачу, видел ее применение в жизни.

Не всегда задачи в школьном учебнике «вдохновляют» современных школьников. Многим не ясно условие по одной простой причине: ребенок не имеет представления о том, что говорится. Например, задача про надои и бидоны с молоком, а городской «деть» и корову-то в глаза не видел, не то, что тонны молока в бидонах. Или в задаче использованы такие значения, которые в жизни нереальны — это затрудняет восприятие, т.к. ребенок все воспринимает буквально.

Задача родителей — помочь ребенку ПОНЯТЬ условие. Любым способом: хоть рисуй, хоть танцуй.

  • К решению задач нужно подходить творчески.

Интерес заставляет ребенка быть активным, а активность в свою очередь усиливает внимание.

В каждодневной жизни нам то и дело приходится решать задачи. Привлекайте ребенка, задавайте вопросы, просите совета. Например, тема ремонта. Вычислить метраж комнаты; просчитать нужное количество краски, зная расход на метр квадратный; купить линолеум, зная длину и ширину комнаты; просчитать, какой метраж выгоднее, если есть напольное покрытие шириной 2, 5 метра и 3 метра, чтобы меньше остатков было и по цене вышло выгоднее. Купить ткань на пошив постельного белья, зная размеры матраса. Примеров масса! И это работает гораздо эффективнее, чем «бездушная» задача в учебнике, которая совершенно не привязана к жизни и не вызывает эмоциональный отклик.

  • При решении жизненных задач у ребенка помимо всего прочего развивается наблюдательность, речь, появляется рабочее настроение, развиваются творческие способности и самостоятельность.

Через некоторое время вы заметите, что ребенок различными способами комбинирует информацию, с легкостью составляет задачи сам, находя идеи в окружающем мире, а не высасывая из пальца.

  • Когда ребенка просят составить собственную задачу, нужно следить и за содержанием, и за решением. Задача должна быть осмысленной и целесообразной.

Например, нельзя допускать таких «ляпов», как «Я съел 13 желтых груш и 20 зеленых яблок. Сколько фруктов я съел?» Задача теряет смысл, если она оторвана от жизни.

  • От задачи надо идти к примеру, а не наоборот.

Дети мыслят не абстрактно, а конкретными образами. Пример 12-6 ни о чем не говорит, а вот ситуация, когда из 12 человек 6 уже купили билеты на футбольный матч — это совсем другое дело. Тут ребенок не задумываясь ответит, что оставшиеся шестеро очень рискуют, нужно поторопиться, иначе билетов может не хватить и придется сидеть у телевизора, вместо того, чтобы активно скандировать на трибунах в поддержку любимой команды.

Лебединцев в своей книге «Введение в современную методику математики» писал: «То влияние, которое может оказывать обучение счислению и вообще математике на умственное развитие детей, находится в прямой зависимости от материала, которым мы пользуемся при обучении; если в учебном материале будут преобладать отвлеченные упражнения в действиях и хитроумные задачи с условиями, лишенными внутренней связи и, по существу, далекими от жизни, то, упражняя учащихся на таком материале, мы, может быть, и выработаем у них формальные навыки в вычислениях и, пожалуй, изощрим их ум для разгадывания разных ребусов и головоломок, но отнюдь не сделаем их более способными к правильному мышлению в жизни или какой-либо области знания…».

Французский педагог Жан Мосе тоже был уверен, что «заставлять ребенка начинать с отвлеченного правила и затем предлагать ему задачи — это значит идти наперекор ходу развития человеческого ума…».

Видео:Задачи по математике 2 класс. Как научиться решать задачи во 2 классе?Скачать

Задачи по математике 2 класс. Как научиться решать задачи во 2 классе?

Практические советы по решению задач от реальных мам

Как объяснить ребенку задачи с уравнением fb.ru

Что нам Ушинский, Лебединцев и Мосе, спросим у тех, кто «из нашей песочницы». Как они помогают своим детям решать задачи по математике, что «работает», какие приемы на практике доказали свою эффективность и помогли повысить успеваемость.

Татьяна, мама учеников 4 кл. и 6 кл.

«Я знаю, что особую сложность у детей вызывают задачи на скорость, поэтому начала готовить своих мальчишек к этому уже с 1 класса. Когда ехали к бабушке в Пинск, говорили о скорости, засекали время, считали сколько мы проехали км, смотрели на знаки и вычисляли сколько нам останется времени, если мы будем ехать с такой же скоростью и сколько, если папа будет ехать с другой. В общем, я очень удивлялась, когда мои пацаны на скорость задачи решали как орехи. Я поняла, что в моем детстве не хватало практического представления того, о чем говорилось в задачах».

Ольга, мама ученика 1 кл. и ученицы 4 кл.

«С задачами старшая плохо дружит)) Почти всегда приходит за помощью. Стараюсь выработать алгоритм решения, но частенько упираюсь в «лень подумать». Если совсем «затык», рисуем схемы. На дополнительные задачи совсем нет времени, а сама по своей воле заниматься ими дочь точно не будет)) Иногда встречаются задачи с некорректно поставленным вопросом, тут приходится помогать с формулировкой ответа.

Младшего усадить за математику очень сложно. В те редкие моменты, когда дело доходит до задач, он их решает в уме и выдает ответ устно).»

Вероника, мама учеников 2 кл. и 4 кл.

«Младший задачи решает без проблем, но ненавидит чертить схемы к ним и писать пояснения. Старший ходит на факультатив по математике, дома домашку сам делает».

Катерина, мама ученика 2 кл. и ученицы 5 кл.

«Сын отлично справляется сам. Он такие схемы рисует, что я иногда в шоке)). Если за помощью обращается дочь, стараюсь упростить условие задачи до понятных образов, а потом она сама догадывается, как сложную модель решить».

Татьяна, мама ученицы 5 кл.

«Чаще всего прибегаем к рисованию. Прямо вот как по условию… садимся и рисуем, как есть. Так сказать, наглядность помогает. Велосипедист выехал… значит рисуем человечка на велосипеде, город из которого он выехал и тд)))) Если катер плывет по течению, рисуем море, волны)))))) С пояснениями никогда исправлений со стороны учителя не было, да и у нас, собственно, тоже вопросов не возникало. Смотри по условию, что спрашивают — и пиши ответы возле каждого действия».

Наталья, мама ученика 5 кл.

«Приходилось объяснять дроби на примере сломанных карандашей, порванных в клочья бумажек. В гостях в тот момент был друг-проектировщик, он именно так решил наглядно пояснить сыну задачу. Я обычно прибегаю к помощи рисования. В задачах на скорость/время/расстояние рисовали целые истории: кто куда и на чем поехал, кого встретил по дороге и в какой момент. Порой решение задач превращалось в мультфильм, одного черновика обычно мало. Несколько раз решали задачи всей семьей: мама отдельно от папы, потом сравнивали результаты и каждый объяснял ребенку свой «самый рациональный и простой» способ. Как правило, у мужчин своя логика)), мое решение обычно отличается от папиного».

Уважаемые читатели! Делитесь в комментариях своими находками и сложностями в решении задач по математике с детьми. будем разы разобраться вместе и помочь советами и полезными статьями на интересующие вас темы.

Предлагаем Вашему вниманию программы развивающих занятий с собаками- терапевтами в зависимости от возраста ребёнка и Ваших пожеланий:

  • Тренинг по освобождению от страха собак. 3+
  • Занятия с собаками-терапевтами «Почитай собаке». 5+
  • Занятие для малышей «Собаки-обнимаки». 0+ (до 3 лет)
  • Обучающее занятие «Детям о профессиях людских и собачьих». 4+
  • Обучающие занятия с собаками-терапевтами в рамках творческого лагеря. 8+
  • Занятия с собаками-терапевтами и детьми с нарушениями в развитии. 5+
  • Развивающий курс «Собака — друг человека». (4 занятия). 4+

Видео:Уравнение. Практическая часть - решение задачи. 2 часть. 5 класс.Скачать

Уравнение. Практическая часть - решение задачи. 2 часть. 5 класс.

О методике работы репетитора по математике с темой «решение уравнений» в 5-6 классах

З накомство ребенка с уравнениями начинается почти с самого начала изучения математики, задолго до ЕГЭ и, как правило, задолго до обращения к репетитору. Еще в младшей школе решаются простейшие алгебраические уравнения, которые служат фундаментом для построения алгоритмов решения уравнений в 11 классе. Каких только разновидностей уравнений не встретишь в школе: алгебраические, иррациональные, тригонометрические, показательные, логарифмические. Голова идет кругом. При этом, почти к каждому разделу учебника математики прикрепляются уравнения определенного вида с различной комбинацией изученных действий, функций и разным уровнем сложности. Репетитору по математике важно помнить о том, что методы обучения решению уравнений на разных этапах освоения предмета имеют много общего, так как по сути перед учеником ставится одна и та же задача — подбор числа или чисел, удовлетворяющих данному равенству.

Основы работы с уравнениями закладываются задолго до 11 класса и объясняются на простых математических объектах, пока предмет еще не разделен на алгебру и геометрию. Именно в этом возрасте ребенку отводится время на формирование представление о том, как изучаемый объект устроен и как он используется в реальных ситуациях. Исключение этого важного этапа математической подготовки в большинстве случаев оказывается в последствии невосполнимым. Даже опытный репетитор по математике, работая с учеником старших классов, не сможет в полной мере компенсировать недостаток внимания к уравнениям в младших. Можно только дать представление о методах решения или натаскать на заучивание определенных алгоритмов.

Наверное любой репетитор по математике, успевший плотно поработать с учениками 5-6 классов хотя бы пару лет, слышал жалобы от родителей, связанные со снижением успеваемости при переходе в 6 класс. Проблемы начинают возникать даже, казалось бы, с такой простой темой, как уравнения. К удивлению родителей она вдруг неожиданно переходит в категорию трудных. «Мой ребенок всегда хорошо решал уравнения и вдруг перестал их понимать», — часто жалуются родители репетитору математики. «Что нам делать? Я не могу ему донести то, что понимаю сама, а в школе преподаватель толком ничего не объясняет, а только требует», — обычная картина из практики репетитора: родители в панике. Однако, попытка найти спасение нанимая ребенку преподаваеля, не всегда приводит к желаемому результату. Почему?

Репетитор по математике в работе со слабым шестиклассником часто повторяет методологию учебников и опирается на определенные навыки работы с числами и действиями, которые должны быть у школьника сформированны к этому моменту. Но это относится только к способному ребенку. Реальность репетиторской работы такова, что эти навыки дети часто или не получают вовсе или не могут применить их работе с аналогичными, но более сложными конструкциями. И дело не только в том, что этому мало кто учит. Причина кроется еще и в возрастных особенностях работы памяти ребенка и его мышления, в способности рассмотреть простой объект внутри сложного. В большинстве случаев, с которыми репетитору приходится сталкиваться, ученику рано переходить к использованию алгоритмов в более сложных математических объектах.

Во-первых, понимание этих аналогий часто еще не успевает сформираться. Во-вторых, механизмы позволяющие переносить эти операции на более сложные объекты могут быть не отработаны на достаточном количестве заданий. В третьих, сами операции и правила, по которым они выполняются, часто забываются.

Глубоким заблуждением многих методистов, репетиторов по математике и школьных преподавателей является мнение о том, что правила нахождения компонентов алгебраических действий помогают ребенку принять решение о том том, сложить ли ему данные числа, или отнять, найти ли разность a-b или b-a. Вспомните себя, помогало ли вам на уроках математике такое правило: чтобы найти вычитаемое, надо из уменьшаемого вычесть разность? Приходится вспоминать названия участников действия, затем текст правила (каждое для своего случая). Пока будет вспоминать текст, — успеет забыть где у него в уравнении стоит уменьшаемое, а где вычитаемое. Начтет вспоминать названия — забудет правило. А еще нужно правильно записать и произвести вычисления. Куда тут до правильного ответа? Укротить бы термины.

Как действует ученик в простом случае и почему он промахивается с подбором действий в более сложных? Дело в том, что к моменту, когда ему необходимо решить уравнение 8-x=3 он, как правило, получает хорошую практику вычислений (если преподаватель по математике дал классу эту практику) и просто узнает знакомую картинку, в которой пропущено одно число. Он может и без правил догадаться, какое число ему поставить вместо икса. И если требуется записать действие для его нахождения, он переберет все возможные варианты с числами 8 и 3 (благо они перед глазами) и выпишет подходящее. Никакими правилами нахождения вычитаемого он в большинстве случаев не пользуется. Это слишком сложно для него.

С некоторым напряжением ученику даются уравнения, нагруженные несколькими действиями, например Как объяснить ребенку задачи с уравнением. Если числа в таких уравнених не очень большие, то в голове пятиклассника реализуется тот же самый алгоритм подбора неизвестного компонента 2x-8 в делении. Этот алгоритм, обычно, опережает подбор действия, с помощью которого получается ответ. Сложности возникают только с тем, что ребенку приходится находить не икс, а некотороый промежуточный результат. Практика моей работы репетитором по математике показывает, что с этим видом непонимния часто удается справиться сравнительно легко. Главная помощь репетитора здесь заключается в своевременном повторении понятия «корень уравнения» и «проверка корня». При этом репетитор должен уделить внимание практическому ходу этой проверки и выделить в ней определенные этапы:
1) Берем наугад число для проверки
2) Выполняем его умножение на 2, затем потом вычитаем 8 и получаем некоторый промежуточный результат
3) делим 42 на него и должно получиться 7.

При такой форме ребенок в 95 % случаев сам скажет репетитору математики, что нужно разделить 6. В этот момент грамотный репетитор обязательно укажет ученику на то, что подобранное число 6 должно получиться в результате вычитания. Останется понять как при вчитани числа 8 получить 6. Репетитору должен поставить новую цель: что вставить вместо икса, чтобы после умножения на 2 и вычитания восьми эта шестерка получилась. Тогда надо решить уравнение, в котором слева уже стоит не Как объяснить ребенку задачи с уравнением, а Как объяснить ребенку задачи с уравнением. Этот момент отдельно выделяется и репетитору обязательно нужно на нем остановиться отдельно. Решая такими путями уравнения ребенок запоминиает поведение чисел. Те взаимосвязи, которые предлагабются ему для заучивания запоминаются в естественном порядке, а именно в процессе деятельности.

Существуют простые, но важные правила работы с методикой:

1) Репетитор по математике должен исключить из текстов своих пояснений стандартные математические термины и шаблонные фразы («значение выражения», «переменная», «делитель», «значение переменной, при которой. »)

2) При подборе уравнения следует не дупустить проникновение в него повторяющихся действий и даже повторяющихся чисел (как начальной в записи самого уравнения, так и во всех дальнейших формах). Иначе ребенок запутается, о каком делении репетитор по математики говорит в конкретный момент и о каком числе 6 идет речь, если она используется дважды.

3) Каждая пара чисел в уравнении на каждом этапе решения должна быть удобной для подбора третьего числа.

В конце 5-го и в начале 6-ого класса понятие числа расширяется. Появляются уравнения с дробями (десятичными и обыкновенными) и вместе с ними приходят главные проблемы. Как теперь решить такое?

Подбор числа и действия затрудняется, так как операции с дробями делаются в несколько этапов. Если раньше ребенок мог распознать, что число а не делится на число b, то теперь уже можно делить друг на друга почти все числа. Сложнее узнать знакомое сочетание и подбирать для него соответствующее арифметическое действие. При достаточном количестве решенного ранее, способные дети дети запоминают алгоритмы и по аналогии применяют их в новой систуации. А что делать отстающим? У многих из них информация о правилах еще успела прочно отложиться в его долговременной памяти. Репетитор по математике истытывает в работе с такими детьми огромные трудности, а ведь решение проблемы лежит на поверхности.

Репетитору необходимо продлить время привычной деятельности ученика при решении уравнений. То есть подбирать действия прежним способом. Для этого преподавателю достаточно обязать (или разрешить) рядом с решаемым уравнением составить любой простенький пример на это же действие, но с натуральными числами. Допустим, надо решить уравнение:Как объяснить ребенку задачи с уравнением

Репетитор просит ученика определить последнее действие в левой части уравнения, составить с его участием любой простенький пример из программы 2-го класса и записать его где-нибудь рядом. Как объяснить ребенку задачи с уравнениемВ особых случаях можно рекомендовать использовать нижнюю строчку под самим уравнением. Ребенок смотрит, какой учасник последнего действия в исходном уравнении неизвестен, находит его аналог в придуманном примере и по нему подбирает арифметическое действие с соседними числами (благо они перед глазами). Затем просто переносит его на свое уравнение. И так с каждым исключением последнего действия. Полное оформление может выглядеть следующим образом:Как объяснить ребенку задачи с уравнением

Репетитор по математике должен договориться с учеником о том, чтобы в составленных примерах числа не повторялись. Не стоит cоставлять такие примеры:
Как объяснить ребенку задачи с уравнением Как объяснить ребенку задачи с уравнениеми подобные им .

Для совсем слабых детей репетитор может заготовить отдельные карточки с уже подобранными примерами на все действия и класть их перед учеником в нужный момент.

Статья из цикла «методики для репетиторов».
Колпаков Александр Николаевич, репетитор по математике. Москва, Строгино.

Видео:Краткая запись задачи. Как сделать краткую запись к задаче?Скачать

Краткая запись задачи. Как сделать краткую запись к задаче?

Задачи, решаемые с помощью уравнения: примеры, объяснение. Задачи по алгебре

Рано или поздно любому школьнику на уроках алгебры встречаются задачи, решаемые с помощью уравнения. Поначалу появление букв вместо привычных цифр и действия с ними ставят в тупик даже самых одарённых, но если разобраться, всё далеко не так сложно, как кажется на первый взгляд.

Видео:Урок 14 Решение задач с помощью уравнений (5 класс)Скачать

Урок 14 Решение задач с помощью уравнений (5 класс)

Алгоритм решения

Перед тем как перейти к конкретным примерам, необходимо понять алгоритм решения задач с помощью уравнений. В любом уравнении есть неизвестное, чаще всего обозначаемое буквой Х. Также и в каждой задаче есть то, что необходимо найти, то же самое неизвестное. Именно его и нужно обозначать как Х. А потом, следуя условию задачи, прибавлять, отнимать, умножать и делить – совершать любые необходимые действия.

Как объяснить ребенку задачи с уравнением

После нахождения неизвестного обязательно выполнение проверки, чтобы быть уверенными, что задача решена правильно. Стоит заметить, что дети уже в начальной школе начинают решение задач с помощью уравнений. Примеры этому — те задачи, которые нужно решать отрезками, являющимися полнейшими аналогами буквенных неизвестных.

Видео:Уравнения для 2 класса Математика Как объяснить ребенку решение уравнений 2 классСкачать

Уравнения для 2 класса Математика Как объяснить ребенку решение уравнений 2 класс

Основа основ — задача про корзины

Итак, попробуем же на практике применить решение задач с помощью уравнений, объяснение алгоритма которых было дано чуть выше.

Дана задача: Собрали некоторое количество корзин с яблоками. Сначала 3 корзины продали, потом дособирали ещё 8 корзин. В итоге получилось 12 корзин. Сколько корзин яблок собрали первоначально?

Как объяснить ребенку задачи с уравнением

Начнём решение задачи с того, что обозначим неизвестное — то есть первоначальное количество корзин – буквой Х. Теперь начинаем составлять уравнение: Х (первоначальное количество) – 3 (проданные корзины) + 8 (те, которые собрали позже) = 12 (итоговое число корзин), то есть Х — 3 + 8 = 12. Решив простое уравнение, получим, что Х = 7. Обязательно выполняем проверку, то есть подставляем найденное число в равенство: 7 — 3 + 8 действительно равно 12, то есть задача решена верно.

Видео:РЕШЕНИЕ УРАВНЕНИЙ ЛЕГКО ! 1 КЛАСС МАТЕМАТИКА УРАВНЕНИЯ - ПЕТЕРСОН / ОБЪЯСНЕНИЕ КАК РЕШАТЬ УРАВНЕНИЯСкачать

РЕШЕНИЕ УРАВНЕНИЙ ЛЕГКО ! 1 КЛАСС МАТЕМАТИКА УРАВНЕНИЯ - ПЕТЕРСОН / ОБЪЯСНЕНИЕ КАК РЕШАТЬ УРАВНЕНИЯ

Закрепление: концертные залы

Дана следующая задача: В двух концертных залах 450 мест. Известно, что в одном зале мест в 4 раза больше, чем в другом. Нужно узнать, сколько мест в каждом зале.

Как объяснить ребенку задачи с уравнением

Для того чтобы решать подобные задачи по алгебре, снова нужно применить уравнение. Мы знаем, что сумма двух чисел, одно из которых в 4 раза больше другого, равна 450. Пусть число мест в меньшем зале, неизвестное, будет равно Х, тогда число мест в большем зале – 4 * Х = 4Х. Следовательно, 450 = Х + 4Х = 5Х. А дальше нужно решить стандартное уравнение 450 = 5Х, где Х = 450 / 5 = 90, то есть в меньшем зале 90 мест, значит в большем – 90 * 4 = 360. Чтобы убедиться, что задача решена правильно, можно проверить неравенство: 360 + 90 = 450, то есть ответ верный.

Видео:Математика 6 класс. Решение задач на составление уравненийСкачать

Математика 6 класс. Решение задач на составление уравнений

Классика: полки с книгами

Но задачи, решаемые с помощью уравнения, могут быть и посложнее. Например, есть три полки с книгами. На первой полке книг на 8 больше, чем на второй, а на третьей — в 3 раза больше, чем на второй, причём количество книг на первой и третьей полках равное. Сколько книг на каждой полке?

Понятно, что отталкиваться здесь нужно от второй полки, которая встречается в обоих условиях. Если мы обозначаем количество книг на ней за Х, то тогда на первой полке Х + 8 книг, а на третьей — Х * 3 книг, при этом Х + 8 = 3Х. Решив уравнение, получаем Х = 4. Выполняем проверку, подставляя неизвестное в равенство: 4 + 8 действительно равно 3 * 4, то есть задача решена правильно.

Видео:Задачи по математике 4 класс. Как научиться решать задачи в 4 классе?Скачать

Задачи по математике 4 класс. Как научиться решать задачи в 4 классе?

Практикуемся дальше: бобры

Как видите, решение задач с помощью уравнения гораздо легче, чем кажется на первый взгляд. Закрепим навыки работы с уравнениями ещё одной задачей. Первый бобр сгрыз за день какое-то количество деревьев. Второй бобр сгрыз в 6 раз больше. Третий бобр сгрыз в 2 раза больше деревьев, чем первый, но в 3 раза меньше, чем второй. Сколько деревьев сгрыз каждый бобр?

Как объяснить ребенку задачи с уравнением

Задача не такая запутанная, какой кажется на первый взгляд. Для начала найдём неизвестное – в этой задаче это количество деревьев, сгрызенных первым бобром. Следовательно, второй бобр уничтожил 6 * Х деревьев, а третий – 2 * Х, причём это число в 3 раза меньше 6 * Х. Составляем уравнение: 6Х = 3 * 2Х. Решив его, получаем, что первый бобр погрыз всего одно дерево, тогда второй – 6, а третий – 2. Подставив числа в уравнение, понимаем, что задача решена верно.

Видео:Математика 3 класс. «Решение задач с помощью уравнений»Скачать

Математика 3 класс. «Решение задач с помощью уравнений»

Соотносим уравнения и условия

Если вам скажут: «К каждой задаче подберите соответствующее уравнение», — не пугайтесь – это целиком и полностью реально.

Даны следующие уравнения:

Условия задач следующие:

  1. У мальчика было 6 яблок, а у девочки в два раза меньше, сколько было яблок у девочки?
  2. На столе лежат ручки и карандаши, известно, что ручек на столе 6, а карандашей на 2 меньше, сколько ручек и сколько карандашей на столе?
  3. У Вани на шесть монет больше, чем у Тани, а у Тани в два раза меньше, чем у Ани, сколько монет у каждого ребёнка, если у Вани и Ани одинаковое количество монет?

Составим уравнения по каждой из задач.

  • В первом случае нам не известно число яблок у девочки, то есть оно равно Х, мы знаем, что Х в 2 раза меньше 6, то есть 6 = 2Х, следовательно, к этому условию подходит уравнение №2.
  • Во втором случае за Х обозначается количество карандашей, тогда количество ручек Х + 2, но при этом мы знаем, что ручек 6, то есть Х + 2 = 6, значит сюда подходит третье уравнение.
  • Что касается последней задачи, под номером 3, количество Таниных монет, которое встречается в двух условиях, является искомым неизвестным, тогда у Вани 6 + Х монет, а у Ани 2Х монет, то есть 6 + Х = 2Х – очевидно, что сюда подходит первое уравнение.

Как объяснить ребенку задачи с уравнением

Если у вас есть задачи, решаемые с помощью уравнения, к которым необходимо подобрать соответствующее равенство, то составьте уравнение для каждой из задач, а потом уже соотносите то, что получилось у вас, с данными уравнениями.

Усложняем: система уравнений — конфеты

Следующий этап применения буквенных равенств в алгебре – это задачи, решаемые системой уравнений. В них имеется два неизвестных, причём одно из них выражается через другое на основании имеющихся данных. Известно, что у Паши и Кати вместе 20 конфет. Ещё известно, что если бы у Паши было на 2 конфеты больше, то у него было бы 15 конфет, сколько конфет у каждого?

В данном случае мы не знаем ни количество Катиных конфет, ни количество Сашиных конфет, следовательно, у нас два неизвестных, Х и Y соответственно. Вместе с тем, мы знаем, что Y + 2 = 15.

Составив систему, получаем два уравнения:

А дальше действуем по правилам решения систем: выводим Y из второго уравнения, получая Y = 15 — 2, а потом подставляем его в первое, то есть Х + Y = Х + (15 — 2) = 20. Решив уравнение, получаем Х = 7, тогда Y = 20 — 7 = 13. Проверяем правильность решения, подставив Y во второе уравнение: 13 + 2 действительно равно 15, то есть у Кати 7 конфет, а у Паши — 13.

Ещё сложнее: квадратные уравнения и земельный участок

Встречаются также и задачи по алгебре, решаемые квадратным уравнением. В них нет ничего сложного, просто стандартная система преобразовывается в квадратное уравнение в ходе решения. Например, дан участок земли площадью в 6 гектаров (60000 квадратных метров), забор, огораживающий его, имеет длину 1000 метров. Каковы длина и ширина участка?

Как объяснить ребенку задачи с уравнением

Составляем уравнения. Длина забора является периметром участка, следовательно, если длину обозначить Х, а ширину Y, то 1000 = 2 * (Х + Y). Площадь же, то есть Х * Y = 60000. Из первого уравнения выводим Х = 500 — Y. Подставляя его во второе уравнение, получаем (500 — Y) * Y = 60000, то есть 500Y — Y 2 = 60000. Решив уравнение, получаем стороны равные 200 и 300 метрам – квадратное уравнение имеет два корня, один из которых зачастую не подходит по условию, например, является отрицательным, тогда как ответ должен быть числом натуральным, поэтому проверку проводить обязательно.

Повторяем: деревья в саду

Закрепляя тему, решим ещё одну задачу. В саду есть несколько яблонь, 6 груш и несколько вишнёвых деревьев. Известно, что общее количество деревьев в 5 раз больше, чем количество яблонь, при этом вишневых деревьев в 2 раза больше, чем яблоневых. Сколько деревьев каждого вида в саду и сколько в саду всего деревьев?

Как объяснить ребенку задачи с уравнением

За неизвестное Х, как, наверное, уже понятно, обозначаем яблоневые деревья, через которые мы сможем выразить остальные величины. Известно, что Y = 2X, а Y + Х + 6 = 5Х. Подставив Y из первого уравнения, получаем равенство 2Х + Х + 6 = 5Х, откуда Х = 3, следовательно в саду Y = 3 * 2 = 6 вишнёвых деревьев. Проводим проверку и отвечаем на второй вопрос, складывая получившиеся величины: 3 + 6 + 6 = 3 * 5, то есть задача решена верно.

Контрольная: сумма чисел

Решение задач с помощью уравнения далеко не такое сложное, как кажется на первый взгляд. Главное – не ошибиться в выборе неизвестного и, что ещё важнее, правильно его выразить, особенно если речь идёт о системе уравнений. В завершение даётся последняя задача, гораздо более запутанная, чем представленные выше.

Сумма трёх чисел – 40. Известно, что Х = 2Y + 3Z, а Y = Z — 2 / 3. Чему равны Х, Y и Z?

Итак, начнём с избавления от первого неизвестного. Вместо Х подставляем в равенство соответствующее выражение, получаем 2Y + 3Z + Z + Y = 3Y + 4Z = 40. Далее заменяем также известный Y, получая равенство 3Z — 2 + 4Z = 40, откуда Z = 6. Возвращаясь к Y, находим, что он равен 5.2, а Х, в свою очередь, равен 18. С помощью проверки убеждаемся в истинности выражения, следовательно задача решена правильно.

Заключение

Итак, что же такое задачи, решаемые с помощью уравнения? Так ли они страшны, как кажется на первый взгляд? Ни в коем случае! При должной усидчивости разобраться в них не составляет никакого труда. А однажды поняв алгоритм, в дальнейшем вы сможете щёлкать подобные задачки, даже самые запутанные, как семечки. Главное – внимательность, именно она поможет правильно определить неизвестное и путём решения порой множества уравнений найти ответ.

Поделиться или сохранить к себе: