Научить детей решать задачи по математике — дело учителя, но и родители не должны оставаться в стороне, если их чадо «тормозит» в этом вопросе. Одним учебником математики сыт не будешь. Ведь если научить ребенка самостоятельно решать задачи в 1-3 классах, дальше он будет щелкать как семечки не только задачи по математике, но и по физике, химии, геометрии и др. И самое главное — этот навык пригодится ребенку в жизни!
vogazeta.ru
В статье Как научить ребенка математике мы подробно писали, из каких 4 частей состоит любая задача и что нужно сделать в первую очередь, чтобы ребенок понял, чего от него хотят и как ответить на вопрос задачи. Уяснив алгоритм решения задач, ребенок сможет самостоятельно решить практически любую задачу, даже несмотря на то, что они все кажутся такими разными.
- Основные типы задач по математике: краткий конспект
- 1. Простые задачи на сложение и вычитание
- 2. Составные задачи на сложение и вычитание
- 3. Задачи на понимание смысла действий умножения и деления
- 4. Простые задачи на умножение и деление
- 5. Составные задачи на все 4 арифметические действия
- 6. Задачи на цену, количество, стоимость
- 7. Задачи на движение
- Типичные ошибки в решении задач
- Творческий подход в решении задач
- На школу надейся, а сам не плошай
- Практические советы по решению задач от реальных мам
- О методике работы репетитора по математике с темой «решение уравнений» в 5-6 классах
- Задачи, решаемые с помощью уравнения: примеры, объяснение. Задачи по алгебре
- Алгоритм решения
- Основа основ — задача про корзины
- Закрепление: концертные залы
- Классика: полки с книгами
- Практикуемся дальше: бобры
- Соотносим уравнения и условия
- Усложняем: система уравнений — конфеты
- Ещё сложнее: квадратные уравнения и земельный участок
- Повторяем: деревья в саду
- Контрольная: сумма чисел
- Заключение
Видео:Математика 6 класс (Урок№51 - Решение задач с помощью уравнений. Часть 1.)Скачать
Основные типы задач по математике: краткий конспект
Небольшой ликбез, т.к. далеко не все родители учились в педагогических ВУЗах и владеют методикой преподавания. Пробежимся по теории, чтобы понимать, кто, кому и чего «должен». Зная ключевые моменты, вам будет проще помочь ребенку в решении задач, которые вызывают у него сложности, вы сможете определить, где пробелы в знаниях и что нужно «подтянуть» в каждом конкретном случае.
iqsha.ru
Рассмотрим самые распространенные виды задач в начальных классах.
Видео:Решение задач с помощью уравнений.Скачать
1. Простые задачи на сложение и вычитание
К этой группе относятся несколько задач, но для всех есть общие рекомендации:
- Решаются в одно действие.
- Иногда удобно составить уравнение.
- На их примере ребенок должен научится выполнять краткую запись.
- Если краткого условия недостаточно, нарисовать рисунок. Если не помог рисунок, показываем на конкретных предметах и производим действия с ними.
- Четко усвоить, что «+» — это прибавить, увеличить, а «-» — уменьшить, отнять, вычесть.
- Хорошо запомнить компоненты арифметических действий:
слагаемое + слагаемое = сумма
уменьшаемое — вычитаемое = разность
- Понять разницу между словами «стало» и «осталось». Четко понимать, что значит «на … меньше», «на … больше».
- Важно понять и запомнить: чтобы узнать, НА СКОЛЬКО одно число больше или меньше другого, нужно из большего числа вычесть меньшее.
- Важно понять и запомнить: чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое.
- Важно понять и запомнить: чтобы найти неизвестное уменьшаемое, нужно к вычитаемому прибавить разность.
- Важно понять и запомнить: чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность.
Задачи с косвенным вопросом
Это самые коварные задачи из этой группы. Внимательно прочитайте условие — и поймете почему.
На стоянке у первого подъезда 7 машин. Это на 2 машины больше, чем на стоянке у второго подъезда. сколько машин на стоянке у второго подъезда.
Видео:Решение задач с помощью уравнений. Видеоурок 29. Математика 6 классСкачать
2. Составные задачи на сложение и вычитание
Эти задачи решаются двумя и более действиями.
Есть несколько способов решения:
- по действиям с пояснениями;
- по действиям с вопросами;
- выражением.
В решении таких задач главное:
- найти главное и сделать краткую запись;
- разложить эту задачу на несколько простых и составить план решения;
- помнить главное: по двум данным находим третье.
Видео:Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать
3. Задачи на понимание смысла действий умножения и деления
- Важно запомнить названия компонентов действий и понять их смысл:
1-й множитель х 2-й множитель = произведение
делимое : делитель =частное
- Ребенок должен понимать, что 1-й множитель показывает, КАКОЕ число повторяется а 2-й множитель показывает — СКОЛЬКО РАЗ оно повторяется.
Это очень важно для правильной записи в задачах, иначе получится бессмыслица.
Советы о том, как научить ребенка осознанно относиться к умножению и делению, вы найдете в нашей статье Как научить детей быстро считать: математика до школы. Если возникли проблемы с решением задач на умножение — сдайте чуть-чуть назад, закрепите осознание этого арифметического действия.
Видео:Уравнение. Практическая часть - решение задачи. 1 часть. 5 класс.Скачать
4. Простые задачи на умножение и деление
- Очень важно понять и запомнить разницу «в «, «на».
«Во сколько раз» или «на сколько»? Предлог «на» — это сложение или вычитание, а «в» — умножение или деление.
- Важно понять и запомнить: чтобы узнать, во сколько раз одно число больше или меньше другого, нужно большее число разделить на меньшее.
Видео:4 класс: как легко составить уравнение по задаче?Скачать
5. Составные задачи на все 4 арифметические действия
Видео:РЕШЕНИЕ УРАВНЕНИЙ |ПОДРОБНОЕ ОБЪЯСНЕНИЕ КАК РЕШИТЬ УРАВНЕНИЯ / ПРОСТЫЕ УРАВНЕНИЯ 2 КЛАСС МАТЕМАТИКАСкачать
6. Задачи на цену, количество, стоимость
Видео:АЛГЕБРА 7 класс : Решение задач с помощью уравнений | ВидеоурокСкачать
7. Задачи на движение
Это отдельная обширная тема, вернемся к ней позже.
Видео:Математика 2 класс (Урок№26 - Уравнение. Решение уравнений подбором неизвестного числа.)Скачать
Типичные ошибки в решении задач
Ошибка №1. Ребенок невнимательно прочитал условие задачи.
Часто бывает так, что ошибки возникают от невнимательности. Так часто бывает в задачах с косвенным вопросом. Ребенок смотрит на цифры, вроде все логично, но… не верно.
Например: «У Маши 8 конфет, это на 2 меньше, чем у Кати. Сколько конфет у Кати».
Ребенок видит «на 2 меньше» и делает «логичный» вывод, что надо отнять. Отнять можно от бОльшего числа, т.е. сразу напрашивается решение 8-2=6. И ответ: 6 конфет у Кати. А ответ-то не тот! Если внимательно почитать условие, то станет понятно, что у Кати конфет больше чем у Маши. И вовсе тут не отнимать надо.
Как исправить ошибку. Сразу разберитесь с условием, поможет краткая запись.
Ошибка №2. Ребенок допустил ошибку в решении.
Когда в задаче несколько неизвестных, решение затрудняется, требуется выполнить не одно действие, а придумать целую цепочку рассуждений.
Как исправить ошибку. Для начала определим, каких данных нам не хватает. Решаем по действиям. Находим нужные числа (помним правило: по двум неизвестным находим третье), подставляем их и отвечаем на вопрос задачи.
Ошибка №3. Неправильная запись ответа.
Часто ребенок пишет не то пояснение.
Как исправить ошибку. Нужно внимательно прочитать вопрос задачи. Уяснить раз и навсегда, что ответ начинается с числа, а дальше пишем, что требовалось найти (переписываем формулировку вопроса задачи).
Видео:Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать
Творческий подход в решении задач
www.craftykidsathome.com
- Учите ребенка рассуждать.
- Придумывайте задачи с лишними или недостающими данными.
Пусть ребенок сам вычеркнет лишнее, те данные, которые не влияют на решение.
- Дайте условие, а ребенок пусть сам придумает ответ.
- Пусть ребенок сам составит обратную задачу.
- Придумать несколько задач на одно решение.
- Придумать, как решить задачу другим способом и объяснить его.
Видео:Уравнение. Практическая часть - решение задачи. 2 часть. 5 класс.Скачать
На школу надейся, а сам не плошай
Заглянем в педагогику и «расшифруем» мысли умных и заслуженных, исходя из сегодняшних реалий.
В далеком 1867 году К. Ушинский сказал: «У хороших преподавателей дело выходит так, что арифметическая задача есть вместе занимательный рассказ, урок сельского хозяйства или домашней экономии, или историческая или статистическая тема и упражнение в языке».
- Ученика нужно поставить в такие условия, чтобы он оказался в эпицентре событий, т.е., решая задачу, видел ее применение в жизни.
Не всегда задачи в школьном учебнике «вдохновляют» современных школьников. Многим не ясно условие по одной простой причине: ребенок не имеет представления о том, что говорится. Например, задача про надои и бидоны с молоком, а городской «деть» и корову-то в глаза не видел, не то, что тонны молока в бидонах. Или в задаче использованы такие значения, которые в жизни нереальны — это затрудняет восприятие, т.к. ребенок все воспринимает буквально.
Задача родителей — помочь ребенку ПОНЯТЬ условие. Любым способом: хоть рисуй, хоть танцуй.
- К решению задач нужно подходить творчески.
Интерес заставляет ребенка быть активным, а активность в свою очередь усиливает внимание.
В каждодневной жизни нам то и дело приходится решать задачи. Привлекайте ребенка, задавайте вопросы, просите совета. Например, тема ремонта. Вычислить метраж комнаты; просчитать нужное количество краски, зная расход на метр квадратный; купить линолеум, зная длину и ширину комнаты; просчитать, какой метраж выгоднее, если есть напольное покрытие шириной 2, 5 метра и 3 метра, чтобы меньше остатков было и по цене вышло выгоднее. Купить ткань на пошив постельного белья, зная размеры матраса. Примеров масса! И это работает гораздо эффективнее, чем «бездушная» задача в учебнике, которая совершенно не привязана к жизни и не вызывает эмоциональный отклик.
- При решении жизненных задач у ребенка помимо всего прочего развивается наблюдательность, речь, появляется рабочее настроение, развиваются творческие способности и самостоятельность.
Через некоторое время вы заметите, что ребенок различными способами комбинирует информацию, с легкостью составляет задачи сам, находя идеи в окружающем мире, а не высасывая из пальца.
- Когда ребенка просят составить собственную задачу, нужно следить и за содержанием, и за решением. Задача должна быть осмысленной и целесообразной.
Например, нельзя допускать таких «ляпов», как «Я съел 13 желтых груш и 20 зеленых яблок. Сколько фруктов я съел?» Задача теряет смысл, если она оторвана от жизни.
- От задачи надо идти к примеру, а не наоборот.
Дети мыслят не абстрактно, а конкретными образами. Пример 12-6 ни о чем не говорит, а вот ситуация, когда из 12 человек 6 уже купили билеты на футбольный матч — это совсем другое дело. Тут ребенок не задумываясь ответит, что оставшиеся шестеро очень рискуют, нужно поторопиться, иначе билетов может не хватить и придется сидеть у телевизора, вместо того, чтобы активно скандировать на трибунах в поддержку любимой команды.
Лебединцев в своей книге «Введение в современную методику математики» писал: «То влияние, которое может оказывать обучение счислению и вообще математике на умственное развитие детей, находится в прямой зависимости от материала, которым мы пользуемся при обучении; если в учебном материале будут преобладать отвлеченные упражнения в действиях и хитроумные задачи с условиями, лишенными внутренней связи и, по существу, далекими от жизни, то, упражняя учащихся на таком материале, мы, может быть, и выработаем у них формальные навыки в вычислениях и, пожалуй, изощрим их ум для разгадывания разных ребусов и головоломок, но отнюдь не сделаем их более способными к правильному мышлению в жизни или какой-либо области знания…».
Французский педагог Жан Мосе тоже был уверен, что «заставлять ребенка начинать с отвлеченного правила и затем предлагать ему задачи — это значит идти наперекор ходу развития человеческого ума…».
Видео:Как научить ребенка решать задачи по математике. Почему не получается решать задачи по математике?Скачать
Практические советы по решению задач от реальных мам
fb.ru
Что нам Ушинский, Лебединцев и Мосе, спросим у тех, кто «из нашей песочницы». Как они помогают своим детям решать задачи по математике, что «работает», какие приемы на практике доказали свою эффективность и помогли повысить успеваемость.
Татьяна, мама учеников 4 кл. и 6 кл.
«Я знаю, что особую сложность у детей вызывают задачи на скорость, поэтому начала готовить своих мальчишек к этому уже с 1 класса. Когда ехали к бабушке в Пинск, говорили о скорости, засекали время, считали сколько мы проехали км, смотрели на знаки и вычисляли сколько нам останется времени, если мы будем ехать с такой же скоростью и сколько, если папа будет ехать с другой. В общем, я очень удивлялась, когда мои пацаны на скорость задачи решали как орехи. Я поняла, что в моем детстве не хватало практического представления того, о чем говорилось в задачах».
Ольга, мама ученика 1 кл. и ученицы 4 кл.
«С задачами старшая плохо дружит)) Почти всегда приходит за помощью. Стараюсь выработать алгоритм решения, но частенько упираюсь в «лень подумать». Если совсем «затык», рисуем схемы. На дополнительные задачи совсем нет времени, а сама по своей воле заниматься ими дочь точно не будет)) Иногда встречаются задачи с некорректно поставленным вопросом, тут приходится помогать с формулировкой ответа.
Младшего усадить за математику очень сложно. В те редкие моменты, когда дело доходит до задач, он их решает в уме и выдает ответ устно).»
Вероника, мама учеников 2 кл. и 4 кл.
«Младший задачи решает без проблем, но ненавидит чертить схемы к ним и писать пояснения. Старший ходит на факультатив по математике, дома домашку сам делает».
Катерина, мама ученика 2 кл. и ученицы 5 кл.
«Сын отлично справляется сам. Он такие схемы рисует, что я иногда в шоке)). Если за помощью обращается дочь, стараюсь упростить условие задачи до понятных образов, а потом она сама догадывается, как сложную модель решить».
Татьяна, мама ученицы 5 кл.
«Чаще всего прибегаем к рисованию. Прямо вот как по условию… садимся и рисуем, как есть. Так сказать, наглядность помогает. Велосипедист выехал… значит рисуем человечка на велосипеде, город из которого он выехал и тд)))) Если катер плывет по течению, рисуем море, волны)))))) С пояснениями никогда исправлений со стороны учителя не было, да и у нас, собственно, тоже вопросов не возникало. Смотри по условию, что спрашивают — и пиши ответы возле каждого действия».
Наталья, мама ученика 5 кл.
«Приходилось объяснять дроби на примере сломанных карандашей, порванных в клочья бумажек. В гостях в тот момент был друг-проектировщик, он именно так решил наглядно пояснить сыну задачу. Я обычно прибегаю к помощи рисования. В задачах на скорость/время/расстояние рисовали целые истории: кто куда и на чем поехал, кого встретил по дороге и в какой момент. Порой решение задач превращалось в мультфильм, одного черновика обычно мало. Несколько раз решали задачи всей семьей: мама отдельно от папы, потом сравнивали результаты и каждый объяснял ребенку свой «самый рациональный и простой» способ. Как правило, у мужчин своя логика)), мое решение обычно отличается от папиного».
Уважаемые читатели! Делитесь в комментариях своими находками и сложностями в решении задач по математике с детьми. будем разы разобраться вместе и помочь советами и полезными статьями на интересующие вас темы.
Предлагаем Вашему вниманию программы развивающих занятий с собаками- терапевтами в зависимости от возраста ребёнка и Ваших пожеланий:
- Тренинг по освобождению от страха собак. 3+
- Занятия с собаками-терапевтами «Почитай собаке». 5+
- Занятие для малышей «Собаки-обнимаки». 0+ (до 3 лет)
- Обучающее занятие «Детям о профессиях людских и собачьих». 4+
- Обучающие занятия с собаками-терапевтами в рамках творческого лагеря. 8+
- Занятия с собаками-терапевтами и детьми с нарушениями в развитии. 5+
- Развивающий курс «Собака — друг человека». (4 занятия). 4+
Видео:Задачи по математике 2 класс. Как научиться решать задачи во 2 классе?Скачать
О методике работы репетитора по математике с темой «решение уравнений» в 5-6 классах
З накомство ребенка с уравнениями начинается почти с самого начала изучения математики, задолго до ЕГЭ и, как правило, задолго до обращения к репетитору. Еще в младшей школе решаются простейшие алгебраические уравнения, которые служат фундаментом для построения алгоритмов решения уравнений в 11 классе. Каких только разновидностей уравнений не встретишь в школе: алгебраические, иррациональные, тригонометрические, показательные, логарифмические. Голова идет кругом. При этом, почти к каждому разделу учебника математики прикрепляются уравнения определенного вида с различной комбинацией изученных действий, функций и разным уровнем сложности. Репетитору по математике важно помнить о том, что методы обучения решению уравнений на разных этапах освоения предмета имеют много общего, так как по сути перед учеником ставится одна и та же задача — подбор числа или чисел, удовлетворяющих данному равенству.
Основы работы с уравнениями закладываются задолго до 11 класса и объясняются на простых математических объектах, пока предмет еще не разделен на алгебру и геометрию. Именно в этом возрасте ребенку отводится время на формирование представление о том, как изучаемый объект устроен и как он используется в реальных ситуациях. Исключение этого важного этапа математической подготовки в большинстве случаев оказывается в последствии невосполнимым. Даже опытный репетитор по математике, работая с учеником старших классов, не сможет в полной мере компенсировать недостаток внимания к уравнениям в младших. Можно только дать представление о методах решения или натаскать на заучивание определенных алгоритмов.
Наверное любой репетитор по математике, успевший плотно поработать с учениками 5-6 классов хотя бы пару лет, слышал жалобы от родителей, связанные со снижением успеваемости при переходе в 6 класс. Проблемы начинают возникать даже, казалось бы, с такой простой темой, как уравнения. К удивлению родителей она вдруг неожиданно переходит в категорию трудных. «Мой ребенок всегда хорошо решал уравнения и вдруг перестал их понимать», — часто жалуются родители репетитору математики. «Что нам делать? Я не могу ему донести то, что понимаю сама, а в школе преподаватель толком ничего не объясняет, а только требует», — обычная картина из практики репетитора: родители в панике. Однако, попытка найти спасение нанимая ребенку преподаваеля, не всегда приводит к желаемому результату. Почему?
Репетитор по математике в работе со слабым шестиклассником часто повторяет методологию учебников и опирается на определенные навыки работы с числами и действиями, которые должны быть у школьника сформированны к этому моменту. Но это относится только к способному ребенку. Реальность репетиторской работы такова, что эти навыки дети часто или не получают вовсе или не могут применить их работе с аналогичными, но более сложными конструкциями. И дело не только в том, что этому мало кто учит. Причина кроется еще и в возрастных особенностях работы памяти ребенка и его мышления, в способности рассмотреть простой объект внутри сложного. В большинстве случаев, с которыми репетитору приходится сталкиваться, ученику рано переходить к использованию алгоритмов в более сложных математических объектах.
Во-первых, понимание этих аналогий часто еще не успевает сформираться. Во-вторых, механизмы позволяющие переносить эти операции на более сложные объекты могут быть не отработаны на достаточном количестве заданий. В третьих, сами операции и правила, по которым они выполняются, часто забываются.
Глубоким заблуждением многих методистов, репетиторов по математике и школьных преподавателей является мнение о том, что правила нахождения компонентов алгебраических действий помогают ребенку принять решение о том том, сложить ли ему данные числа, или отнять, найти ли разность a-b или b-a. Вспомните себя, помогало ли вам на уроках математике такое правило: чтобы найти вычитаемое, надо из уменьшаемого вычесть разность? Приходится вспоминать названия участников действия, затем текст правила (каждое для своего случая). Пока будет вспоминать текст, — успеет забыть где у него в уравнении стоит уменьшаемое, а где вычитаемое. Начтет вспоминать названия — забудет правило. А еще нужно правильно записать и произвести вычисления. Куда тут до правильного ответа? Укротить бы термины.
Как действует ученик в простом случае и почему он промахивается с подбором действий в более сложных? Дело в том, что к моменту, когда ему необходимо решить уравнение 8-x=3 он, как правило, получает хорошую практику вычислений (если преподаватель по математике дал классу эту практику) и просто узнает знакомую картинку, в которой пропущено одно число. Он может и без правил догадаться, какое число ему поставить вместо икса. И если требуется записать действие для его нахождения, он переберет все возможные варианты с числами 8 и 3 (благо они перед глазами) и выпишет подходящее. Никакими правилами нахождения вычитаемого он в большинстве случаев не пользуется. Это слишком сложно для него.
С некоторым напряжением ученику даются уравнения, нагруженные несколькими действиями, например . Если числа в таких уравнених не очень большие, то в голове пятиклассника реализуется тот же самый алгоритм подбора неизвестного компонента 2x-8 в делении. Этот алгоритм, обычно, опережает подбор действия, с помощью которого получается ответ. Сложности возникают только с тем, что ребенку приходится находить не икс, а некотороый промежуточный результат. Практика моей работы репетитором по математике показывает, что с этим видом непонимния часто удается справиться сравнительно легко. Главная помощь репетитора здесь заключается в своевременном повторении понятия «корень уравнения» и «проверка корня». При этом репетитор должен уделить внимание практическому ходу этой проверки и выделить в ней определенные этапы:
1) Берем наугад число для проверки
2) Выполняем его умножение на 2, затем потом вычитаем 8 и получаем некоторый промежуточный результат
3) делим 42 на него и должно получиться 7.
При такой форме ребенок в 95 % случаев сам скажет репетитору математики, что нужно разделить 6. В этот момент грамотный репетитор обязательно укажет ученику на то, что подобранное число 6 должно получиться в результате вычитания. Останется понять как при вчитани числа 8 получить 6. Репетитору должен поставить новую цель: что вставить вместо икса, чтобы после умножения на 2 и вычитания восьми эта шестерка получилась. Тогда надо решить уравнение, в котором слева уже стоит не , а . Этот момент отдельно выделяется и репетитору обязательно нужно на нем остановиться отдельно. Решая такими путями уравнения ребенок запоминиает поведение чисел. Те взаимосвязи, которые предлагабются ему для заучивания запоминаются в естественном порядке, а именно в процессе деятельности.
Существуют простые, но важные правила работы с методикой:
1) Репетитор по математике должен исключить из текстов своих пояснений стандартные математические термины и шаблонные фразы («значение выражения», «переменная», «делитель», «значение переменной, при которой. »)
2) При подборе уравнения следует не дупустить проникновение в него повторяющихся действий и даже повторяющихся чисел (как начальной в записи самого уравнения, так и во всех дальнейших формах). Иначе ребенок запутается, о каком делении репетитор по математики говорит в конкретный момент и о каком числе 6 идет речь, если она используется дважды.
3) Каждая пара чисел в уравнении на каждом этапе решения должна быть удобной для подбора третьего числа.
В конце 5-го и в начале 6-ого класса понятие числа расширяется. Появляются уравнения с дробями (десятичными и обыкновенными) и вместе с ними приходят главные проблемы. Как теперь решить такое?
Подбор числа и действия затрудняется, так как операции с дробями делаются в несколько этапов. Если раньше ребенок мог распознать, что число а не делится на число b, то теперь уже можно делить друг на друга почти все числа. Сложнее узнать знакомое сочетание и подбирать для него соответствующее арифметическое действие. При достаточном количестве решенного ранее, способные дети дети запоминают алгоритмы и по аналогии применяют их в новой систуации. А что делать отстающим? У многих из них информация о правилах еще успела прочно отложиться в его долговременной памяти. Репетитор по математике истытывает в работе с такими детьми огромные трудности, а ведь решение проблемы лежит на поверхности.
Репетитору необходимо продлить время привычной деятельности ученика при решении уравнений. То есть подбирать действия прежним способом. Для этого преподавателю достаточно обязать (или разрешить) рядом с решаемым уравнением составить любой простенький пример на это же действие, но с натуральными числами. Допустим, надо решить уравнение:
Репетитор просит ученика определить последнее действие в левой части уравнения, составить с его участием любой простенький пример из программы 2-го класса и записать его где-нибудь рядом. В особых случаях можно рекомендовать использовать нижнюю строчку под самим уравнением. Ребенок смотрит, какой учасник последнего действия в исходном уравнении неизвестен, находит его аналог в придуманном примере и по нему подбирает арифметическое действие с соседними числами (благо они перед глазами). Затем просто переносит его на свое уравнение. И так с каждым исключением последнего действия. Полное оформление может выглядеть следующим образом:
Репетитор по математике должен договориться с учеником о том, чтобы в составленных примерах числа не повторялись. Не стоит cоставлять такие примеры:
и подобные им .
Для совсем слабых детей репетитор может заготовить отдельные карточки с уже подобранными примерами на все действия и класть их перед учеником в нужный момент.
Статья из цикла «методики для репетиторов».
Колпаков Александр Николаевич, репетитор по математике. Москва, Строгино.
Видео:Урок 14 Решение задач с помощью уравнений (5 класс)Скачать
Задачи, решаемые с помощью уравнения: примеры, объяснение. Задачи по алгебре
Рано или поздно любому школьнику на уроках алгебры встречаются задачи, решаемые с помощью уравнения. Поначалу появление букв вместо привычных цифр и действия с ними ставят в тупик даже самых одарённых, но если разобраться, всё далеко не так сложно, как кажется на первый взгляд.
Видео:РЕШЕНИЕ УРАВНЕНИЙ ЛЕГКО ! 1 КЛАСС МАТЕМАТИКА УРАВНЕНИЯ - ПЕТЕРСОН / ОБЪЯСНЕНИЕ КАК РЕШАТЬ УРАВНЕНИЯСкачать
Алгоритм решения
Перед тем как перейти к конкретным примерам, необходимо понять алгоритм решения задач с помощью уравнений. В любом уравнении есть неизвестное, чаще всего обозначаемое буквой Х. Также и в каждой задаче есть то, что необходимо найти, то же самое неизвестное. Именно его и нужно обозначать как Х. А потом, следуя условию задачи, прибавлять, отнимать, умножать и делить – совершать любые необходимые действия.
После нахождения неизвестного обязательно выполнение проверки, чтобы быть уверенными, что задача решена правильно. Стоит заметить, что дети уже в начальной школе начинают решение задач с помощью уравнений. Примеры этому — те задачи, которые нужно решать отрезками, являющимися полнейшими аналогами буквенных неизвестных.
Видео:Краткая запись задачи. Как сделать краткую запись к задаче?Скачать
Основа основ — задача про корзины
Итак, попробуем же на практике применить решение задач с помощью уравнений, объяснение алгоритма которых было дано чуть выше.
Дана задача: Собрали некоторое количество корзин с яблоками. Сначала 3 корзины продали, потом дособирали ещё 8 корзин. В итоге получилось 12 корзин. Сколько корзин яблок собрали первоначально?
Начнём решение задачи с того, что обозначим неизвестное — то есть первоначальное количество корзин – буквой Х. Теперь начинаем составлять уравнение: Х (первоначальное количество) – 3 (проданные корзины) + 8 (те, которые собрали позже) = 12 (итоговое число корзин), то есть Х — 3 + 8 = 12. Решив простое уравнение, получим, что Х = 7. Обязательно выполняем проверку, то есть подставляем найденное число в равенство: 7 — 3 + 8 действительно равно 12, то есть задача решена верно.
Видео:Уравнения для 2 класса Математика Как объяснить ребенку решение уравнений 2 классСкачать
Закрепление: концертные залы
Дана следующая задача: В двух концертных залах 450 мест. Известно, что в одном зале мест в 4 раза больше, чем в другом. Нужно узнать, сколько мест в каждом зале.
Для того чтобы решать подобные задачи по алгебре, снова нужно применить уравнение. Мы знаем, что сумма двух чисел, одно из которых в 4 раза больше другого, равна 450. Пусть число мест в меньшем зале, неизвестное, будет равно Х, тогда число мест в большем зале – 4 * Х = 4Х. Следовательно, 450 = Х + 4Х = 5Х. А дальше нужно решить стандартное уравнение 450 = 5Х, где Х = 450 / 5 = 90, то есть в меньшем зале 90 мест, значит в большем – 90 * 4 = 360. Чтобы убедиться, что задача решена правильно, можно проверить неравенство: 360 + 90 = 450, то есть ответ верный.
Видео:Математика 6 класс. Решение задач на составление уравненийСкачать
Классика: полки с книгами
Но задачи, решаемые с помощью уравнения, могут быть и посложнее. Например, есть три полки с книгами. На первой полке книг на 8 больше, чем на второй, а на третьей — в 3 раза больше, чем на второй, причём количество книг на первой и третьей полках равное. Сколько книг на каждой полке?
Понятно, что отталкиваться здесь нужно от второй полки, которая встречается в обоих условиях. Если мы обозначаем количество книг на ней за Х, то тогда на первой полке Х + 8 книг, а на третьей — Х * 3 книг, при этом Х + 8 = 3Х. Решив уравнение, получаем Х = 4. Выполняем проверку, подставляя неизвестное в равенство: 4 + 8 действительно равно 3 * 4, то есть задача решена правильно.
Видео:Математика 3 класс. «Решение задач с помощью уравнений»Скачать
Практикуемся дальше: бобры
Как видите, решение задач с помощью уравнения гораздо легче, чем кажется на первый взгляд. Закрепим навыки работы с уравнениями ещё одной задачей. Первый бобр сгрыз за день какое-то количество деревьев. Второй бобр сгрыз в 6 раз больше. Третий бобр сгрыз в 2 раза больше деревьев, чем первый, но в 3 раза меньше, чем второй. Сколько деревьев сгрыз каждый бобр?
Задача не такая запутанная, какой кажется на первый взгляд. Для начала найдём неизвестное – в этой задаче это количество деревьев, сгрызенных первым бобром. Следовательно, второй бобр уничтожил 6 * Х деревьев, а третий – 2 * Х, причём это число в 3 раза меньше 6 * Х. Составляем уравнение: 6Х = 3 * 2Х. Решив его, получаем, что первый бобр погрыз всего одно дерево, тогда второй – 6, а третий – 2. Подставив числа в уравнение, понимаем, что задача решена верно.
Видео:Задачи по математике 4 класс. Как научиться решать задачи в 4 классе?Скачать
Соотносим уравнения и условия
Если вам скажут: «К каждой задаче подберите соответствующее уравнение», — не пугайтесь – это целиком и полностью реально.
Даны следующие уравнения:
Условия задач следующие:
- У мальчика было 6 яблок, а у девочки в два раза меньше, сколько было яблок у девочки?
- На столе лежат ручки и карандаши, известно, что ручек на столе 6, а карандашей на 2 меньше, сколько ручек и сколько карандашей на столе?
- У Вани на шесть монет больше, чем у Тани, а у Тани в два раза меньше, чем у Ани, сколько монет у каждого ребёнка, если у Вани и Ани одинаковое количество монет?
Составим уравнения по каждой из задач.
- В первом случае нам не известно число яблок у девочки, то есть оно равно Х, мы знаем, что Х в 2 раза меньше 6, то есть 6 = 2Х, следовательно, к этому условию подходит уравнение №2.
- Во втором случае за Х обозначается количество карандашей, тогда количество ручек Х + 2, но при этом мы знаем, что ручек 6, то есть Х + 2 = 6, значит сюда подходит третье уравнение.
- Что касается последней задачи, под номером 3, количество Таниных монет, которое встречается в двух условиях, является искомым неизвестным, тогда у Вани 6 + Х монет, а у Ани 2Х монет, то есть 6 + Х = 2Х – очевидно, что сюда подходит первое уравнение.
Если у вас есть задачи, решаемые с помощью уравнения, к которым необходимо подобрать соответствующее равенство, то составьте уравнение для каждой из задач, а потом уже соотносите то, что получилось у вас, с данными уравнениями.
Усложняем: система уравнений — конфеты
Следующий этап применения буквенных равенств в алгебре – это задачи, решаемые системой уравнений. В них имеется два неизвестных, причём одно из них выражается через другое на основании имеющихся данных. Известно, что у Паши и Кати вместе 20 конфет. Ещё известно, что если бы у Паши было на 2 конфеты больше, то у него было бы 15 конфет, сколько конфет у каждого?
В данном случае мы не знаем ни количество Катиных конфет, ни количество Сашиных конфет, следовательно, у нас два неизвестных, Х и Y соответственно. Вместе с тем, мы знаем, что Y + 2 = 15.
Составив систему, получаем два уравнения:
А дальше действуем по правилам решения систем: выводим Y из второго уравнения, получая Y = 15 — 2, а потом подставляем его в первое, то есть Х + Y = Х + (15 — 2) = 20. Решив уравнение, получаем Х = 7, тогда Y = 20 — 7 = 13. Проверяем правильность решения, подставив Y во второе уравнение: 13 + 2 действительно равно 15, то есть у Кати 7 конфет, а у Паши — 13.
Ещё сложнее: квадратные уравнения и земельный участок
Встречаются также и задачи по алгебре, решаемые квадратным уравнением. В них нет ничего сложного, просто стандартная система преобразовывается в квадратное уравнение в ходе решения. Например, дан участок земли площадью в 6 гектаров (60000 квадратных метров), забор, огораживающий его, имеет длину 1000 метров. Каковы длина и ширина участка?
Составляем уравнения. Длина забора является периметром участка, следовательно, если длину обозначить Х, а ширину Y, то 1000 = 2 * (Х + Y). Площадь же, то есть Х * Y = 60000. Из первого уравнения выводим Х = 500 — Y. Подставляя его во второе уравнение, получаем (500 — Y) * Y = 60000, то есть 500Y — Y 2 = 60000. Решив уравнение, получаем стороны равные 200 и 300 метрам – квадратное уравнение имеет два корня, один из которых зачастую не подходит по условию, например, является отрицательным, тогда как ответ должен быть числом натуральным, поэтому проверку проводить обязательно.
Повторяем: деревья в саду
Закрепляя тему, решим ещё одну задачу. В саду есть несколько яблонь, 6 груш и несколько вишнёвых деревьев. Известно, что общее количество деревьев в 5 раз больше, чем количество яблонь, при этом вишневых деревьев в 2 раза больше, чем яблоневых. Сколько деревьев каждого вида в саду и сколько в саду всего деревьев?
За неизвестное Х, как, наверное, уже понятно, обозначаем яблоневые деревья, через которые мы сможем выразить остальные величины. Известно, что Y = 2X, а Y + Х + 6 = 5Х. Подставив Y из первого уравнения, получаем равенство 2Х + Х + 6 = 5Х, откуда Х = 3, следовательно в саду Y = 3 * 2 = 6 вишнёвых деревьев. Проводим проверку и отвечаем на второй вопрос, складывая получившиеся величины: 3 + 6 + 6 = 3 * 5, то есть задача решена верно.
Контрольная: сумма чисел
Решение задач с помощью уравнения далеко не такое сложное, как кажется на первый взгляд. Главное – не ошибиться в выборе неизвестного и, что ещё важнее, правильно его выразить, особенно если речь идёт о системе уравнений. В завершение даётся последняя задача, гораздо более запутанная, чем представленные выше.
Сумма трёх чисел – 40. Известно, что Х = 2Y + 3Z, а Y = Z — 2 / 3. Чему равны Х, Y и Z?
Итак, начнём с избавления от первого неизвестного. Вместо Х подставляем в равенство соответствующее выражение, получаем 2Y + 3Z + Z + Y = 3Y + 4Z = 40. Далее заменяем также известный Y, получая равенство 3Z — 2 + 4Z = 40, откуда Z = 6. Возвращаясь к Y, находим, что он равен 5.2, а Х, в свою очередь, равен 18. С помощью проверки убеждаемся в истинности выражения, следовательно задача решена правильно.
Заключение
Итак, что же такое задачи, решаемые с помощью уравнения? Так ли они страшны, как кажется на первый взгляд? Ни в коем случае! При должной усидчивости разобраться в них не составляет никакого труда. А однажды поняв алгоритм, в дальнейшем вы сможете щёлкать подобные задачки, даже самые запутанные, как семечки. Главное – внимательность, именно она поможет правильно определить неизвестное и путём решения порой множества уравнений найти ответ.