Для уравнений четвертой степени применимы все те общие схемы решения уравнений высших степеней, что мы разбирали в предыдущем материале. Однако существует ряд нюансов в решении двучленных, биквадратных и возвратных уравнений, на которых мы хотели бы остановиться подробнее.
Также в статье мы разберем искусственный метод разложения многочлена на множители, решение в радикалах и метод Феррари, который используется для того, чтобы свести решение уравнения четвертой степени к кубическому уравнению.
- Решение двучленного уравнения четвертой степени
- Решение возвратного уравнения четвертой степени
- Решение биквадратного уравнения
- Решение уравнений четвертой степени с рациональными корнями
- Решение уравнений четвертой степени по методу Феррари
- Уравнение четвертой степени
- Уравнение четвертой степени
- Формула уравнения четвертой степени:
- Формула уравнения четвертой степени:
- Решение уравнения четвертой степени:
- Пример 1:
- Шаг 1:
- Шаг 2:
- Шаг 3:
- Шаг 4:
- Шаг 5:
- Шаг 6:
- Шаг 7:
- Шаг 8:
- Решение уравнений четвертой степени
- Решение биквадратных уравнений четвёртой степени
- Решение возвратных уравнений 4 степени
- Готовые работы на аналогичную тему
- 🌟 Видео
Видео:Как решать уравнения 4 степени Решите уравнение четвертой степени Разложить на множители Безу столбиСкачать
Решение двучленного уравнения четвертой степени
Это простейший тип уравнений четвертой степени. Запись уравнения имеет вид A x 4 + B = 0 .
Для решения этого типа уравнений применяются формулы сокращенного умножения:
A x 4 + B = 0 x 4 + B A = 0 x 4 + 2 B A x 2 + B A — 2 B A x 2 = 0 x 2 + B A 2 — 2 B A x 2 = 0 x 2 — 2 B A 4 x + B A x 2 + 2 B A 4 x + B A = 0
Остается лишь найти корни квадратных трехчленов.
Решить уравнение четвертой степени 4 x 4 + 1 = 0 .
Решение
Для начала проведем разложение многочлена 4 x 4 + 1 на множители:
4 x 4 + 1 = 4 x 4 + 4 x 2 + 1 = ( 2 x 2 + 1 ) 2 — 4 x 2 = 2 x 2 — 2 x + 1 ( 2 x 2 + 2 x + 1 )
Теперь найдем корни квадратных трехчленов.
2 x 2 — 2 x + 1 = 0 D = ( — 2 ) 2 — 4 · 2 · 1 = — 4 x 1 = 2 + D 2 · 2 = 1 2 + i x 2 = 2 — D 2 · 2 = 1 2 — i
2 x 2 + 2 x + 1 = 0 D = 2 2 — 4 · 2 · 1 = — 4 x 3 = — 2 + D 2 · 2 = — 1 2 + i x 4 = — 2 — D 2 · 2 = — 1 2 — i
Мы получили четыре комплексных корня.
Ответ: x = 1 2 ± i и x = — 1 2 ± i .
Видео:Решаем быстро и красиво ★ Уравнение четвертой степени ★ x^4+8x-7=0Скачать
Решение возвратного уравнения четвертой степени
Возвратные уравнения четвертого порядка имеют вид A x 4 + B x 3 + C x 2 + B x + A = 0
х = 0 не является корнем этого уравнения: A · 0 4 + B · 0 3 + C · 0 2 + B · 0 + A = A ≠ 0 . Поэтому на x 2 можно смело разделить обе части этого уравнения:
A x 4 + B x 3 + C x 2 + B x + A = 0 A x 2 + B x + C + B x + A x 2 = 0 A x 2 + A x 2 + B x + B x + C = 0 A x 2 + 1 x 2 + B x + 1 x + C = 0
Проведем замену переменных x + 1 x = y ⇒ x + 1 x 2 = y 2 ⇒ x 2 + 1 x 2 = y 2 — 2 :
A x 2 + 1 x 2 + B x + 1 x + C = 0 A ( y 2 — 2 ) + B y + C = 0 A y 2 + B y + C — 2 A = 0
Так мы проведи сведение возвратного уравнения четвертой степени к квадратному уравнению.
Найти все комплексные корни уравнения 2 x 4 + 2 3 + 2 x 3 + 4 + 6 x 2 + 2 3 + 2 x + 2 = 0 .
Решение
Симметрия коэффициентов подсказывает нам, что мы имеем дело с возвратным уравнением четвертой степени. Проведем деление обеих частей на x 2 :
2 x 2 + 2 3 + 2 x + 4 + 6 + 2 3 + 2 x + 2 x 2 = 0
2 x 2 + 2 x 2 + 2 3 + 2 x + 2 3 + 2 x + 4 + 6 + = 0 2 x 2 + 1 x 2 + 2 3 + 2 x + 1 x + 4 + 6 = 0
Проведем замену переменной x + 1 x = y ⇒ x + 1 x 2 = y 2 ⇒ x 2 + 1 x 2 = y 2 — 2
2 x 2 + 1 x 2 + 2 3 + 2 x + 1 x + 4 + 6 = 0 2 y 2 — 2 + 2 3 + 2 y + 4 + 6 = 0 2 y 2 + 2 3 + 2 y + 6 = 0
Решим полученное квадратное уравнение:
D = 2 3 + 2 2 — 4 · 2 · 6 = 12 + 4 6 + 2 — 8 6 = = 12 — 4 6 + 2 = 2 3 — 2 2 y 1 = — 2 3 — 2 + D 2 · 2 = — 2 3 — 2 + 2 3 — 2 4 = — 2 2 y 2 = — 2 3 — 2 — D 2 · 2 = — 2 3 — 2 — 2 3 + 2 4 = — 3
Вернемся к замене: x + 1 x = — 2 2 , x + 1 x = — 3 .
Решим первое уравнение:
x + 1 x = — 2 2 ⇒ 2 x 2 + 2 x + 2 = 0 D = 2 2 — 4 · 2 · 2 = — 14 x 1 = — 2 — D 2 · 2 = — 2 4 + i · 14 4 x 2 = — 2 — D 2 · 2 = — 2 4 — i · 14 4
Решим второе уравнение:
x + 1 x = — 3 ⇒ x 2 + 3 x + 1 = 0 D = 3 2 — 4 · 1 · 1 = — 1 x 3 = — 3 + D 2 = — 3 2 + i · 1 2 x 4 = — 3 — D 2 = — 3 2 — i · 1 2
Ответ: x = — 2 4 ± i · 14 4 и x = — 3 2 ± i · 1 2 .
Видео:Уравнение четвертой степениСкачать
Решение биквадратного уравнения
Биквадратные уравнения четвертой степени имеют вид A x 4 + B x 2 + C = 0 . Мы можем свести такое уравнение к квадратному A y 2 + B y + C = 0 путем замены y = x 2 . Это стандартный прием.
Решить биквадратное уравнение 2 x 4 + 5 x 2 — 3 = 0 .
Решение
Выполним замену переменной y = x 2 , что позволит нам свести исходное уравнение к квадратному:
2 y 2 + 5 y — 3 = 0 D = 5 2 — 4 · 2 · ( — 3 ) = 49 y 1 = — 5 + D 2 · 2 = — 5 + 7 4 = 1 2 y 2 = — 5 — D 2 · 2 = — 5 — 7 4 = — 3
Следовательно, x 2 = 1 2 или x 2 = — 3 .
Первое равенство позволяет нам получить корень x = ± 1 2 . Второе равенство не имеет действительных корней, зато имеет комплексно сопряженных корней x = ± i · 3 .
Ответ: x = ± 1 2 и x = ± i · 3 .
Найти все комплексные корни биквадратного уравнения 16 x 4 + 145 x 2 + 9 = 0 .
Решение
Используем метод замены y = x 2 для того, чтобы свести исходное биквадратное уравнение к квадратному:
16 y 2 + 145 y + 9 = 0 D = 145 2 — 4 · 16 · 9 = 20449 y 1 = — 145 + D 2 · 16 = — 145 + 143 32 = — 1 16 y 2 = — 145 — D 2 · 16 = — 145 — 143 32 = — 9
Поэтому, в силу замены переменной, x 2 = — 1 16 или x 2 = — 9 .
Ответ: x 1 , 2 = ± 1 4 · i , x 3 , 4 = ± 3 · i .
Видео:УДИВИТЕЛЬНЫЙ способ решения уравнения ★ Вы такого не видели! ★ Уравнение четвертой степениСкачать
Решение уравнений четвертой степени с рациональными корнями
Алгоритм нахождения рациональных корней уравнения четвертой степени приведен в материале «Решение уравнений высших степеней».
Видео:10 класс. Алгебра. Уравнение четвертой степени.Скачать
Решение уравнений четвертой степени по методу Феррари
Уравнения четвертой степени вида x 4 + A x 3 + B x 2 + C x + D = 0 в общем случае можно решить с применением метода Феррари. Для этого необходимо найти y 0 . Это любой из корней кубического уравнения y 3 — B y 2 + A C — 4 D y — A 2 D + 4 B D — C 2 = 0 . После этого необходимо решить два квадратных уравнения x 2 + A 2 x + y 0 2 + A 2 4 — B + y 0 x 2 + A 2 y 0 — C x + y 0 2 4 — D = 0 , у которых подкоренное выражение является полным квадратом.
Корни, полученные в ходе вычислений, будут корнями исходного уравнения четвертой степени.
Найти корни уравнения x 4 + 3 x 3 + 3 x 2 — x — 6 = 0 .
Решение
Имеем А = 3 , В = 3 , С = — 1 , D = — 6 . Применим метод Феррари для решения данного уравнения.
Составим и решим кубическое уравнение:
y 3 — B y 2 + A C — 4 D y — A 2 D + 4 B D — C 2 = 0 y 3 — 3 y 2 + 21 y — 19 = 0
Одним из корней кубического уравнения будет y 0 = 1 , так как 1 3 — 3 · 1 2 + 21 · 1 — 19 = 0 .
Запишем два квадратных уравнения:
x 2 + A 2 x + y 0 2 ± A 2 4 — B + y 0 x 2 + A 2 y 0 — C x + y 0 2 4 — D = 0 x 2 + 3 2 x + 1 2 ± 1 4 x 2 + 5 2 x + 25 4 = 0 x 2 + 3 2 x + 1 2 ± 1 2 x + 5 2 2 = 0
x 2 + 3 2 x + 1 2 + 1 2 x + 5 2 = 0 или x 2 + 3 2 x + 1 2 — 1 2 x — 5 2 = 0
x 2 + 2 x + 3 = 0 или x 2 + x — 2 = 0
Корнями первого уравнения будут x = — 1 ± i · 2 , корнями второго х = 1 и х = — 2 .
Ответ: x 1 , 2 = — 1 ± i 2 , x 3 = 1 , x 4 = — 2 .
Видео:9 класс. Алгебра. Уравнение четвертой степениСкачать
Уравнение четвертой степени
Равенство, содержащее неизвестное число, которое обозначено буквой, называется уравнением. Решение уравнения предполагает нахождение всех значений неизвестного (неизвестных), при которых соблюдается верное равенство. Такие значения неизвестного (неизвестных) являются корнями или решением уравнения.
Уравнение вида ах 4 + bх 3 + сх 2 + dх + е = 0 называется уравнением 4-й степени с одним неизвестным. В результате решения уравнения получается 4 комплексных или вещественных корня.
Для решения приведенного уравнения 4-й степени вида: х 4 + Ах 3 + Вх 2 +Сх + D = 0 можно воспользоваться методом Феррари.
Составим кубическое уравнение: у 3 — Ву 2 + (АС — 4D)у — А 2 D + 4ВD — С 2 = 0.
Решаем полученное уравнение, находим один из его вещественных корней у0, который используем для дальнейшего нахождения корней квадратных уравнений.
Получаем и решаем два квадратных уравнения: . Корни уравнений будут корнями первоначального уравнения 4-й степени.
Если дано биквадратное уравнение 4-й степени вида: Ах 4 + Вх 2 + С = 0 и нужно найти его корни, можно свести его к квадратному, заменив переменную х 2 на у (у = х 2 ). В результате получим уравнение вида: Ау 2 + Ву + С = 0. Далее решаем квадратное уравнение через дискриминант.
Если дано возвратное уравнение 4-й степени вида: Ах 4 + Вх 3 + Сх 2 + Вх + А = 0 и нужно найти его корни, следует разделить уравнение на х 2 , получим:
Ах 2 + Вх + С + В / х + А / х 2 = 0.
Группируем и выносим коэффициенты за скобки: Ах 2 + А / х 2 + Вх + В / х + С = 0; А(х 2 + 1 / х 2 ) + В(х + 1 / х) + С = 0.
Произведем замену переменных: х + 1 / х = у; х 2 + 1 / х 2 = у 2 — 2, получим: А(у 2 — 2) + Ву + С = 0.
Сводим уравнение 4-й степени к квадратному уравнению и решаем его через дискриминант Ау 2 + Ву + С — 2А = 0.
Находим у1 и у2, после чего возвращаемся к замене и находим корни.
Быстро решить любое уравнение вы сможете с помощью представленного на сайте онлайн калькулятора.
Видео:Решение биквадратных уравнений. 8 класс.Скачать
Уравнение четвертой степени
Уравнения четвертой степени имеет вид ах 4 ; + bх 3 + сх 2 + ах + е = 0. Общее уравнение четвертой степени (также называемый биквадратным) является четвертой степени полиномиального уравнения. Бесплатный онлайн калькулятор расчета уравнения четвертой степени, используемый для нахождения корней уравнения.
Формула уравнения четвертой степени:
ax 4 + bx 3 + cx 2 + dx + e = 0
- Примечание : Допустим что p и q квадратные корни из 2 ненулевых корней.
- p = sqrt(y1)
- q = sqrt(y3)
- r = -g / (8pq)
- s = b / (4a)
- x1 = p + q + r — s
- x2 = p — q — r — s
- x3> = -p + q — r — s
- x4 = -p — q + r — s
Уравнением четвертой степени называется полиномиальное уравнение четвертого порядка вида, ax 4 + bx 3 + cx 2 + dx + e = 0:
Формула уравнения четвертой степени:
ax 4 + bx 3 + cx 2 + dx + e = 0
где,
- a = коэффициент для x 4
- b = коэффициент для x 3
- c = коэффициент для x 2
- d = коэффициент для x
- e = константа.
Решение уравнения четвертой степени:
- x1 = p + q + r — s
- x2 = p — q — r — s
- x3 = -p + q — r — s
- x4 = -p — q + r — s
Пример 1:
Вычислить корни (x1, x2, x3, x4) уравнения четвертой степени, 3X 4 + 6X 3 — 123X 2 — 126X + 1080 = 0
Шаг 1:
Из приведенного выше уравнения, значения a=3, b=6, c=-123, d=-126, e=1080.
Шаг 2:
Найдем x : Подставьте значения в приведенных ниже формул.
- f = c — ( 3b ² / 8 )
- g = d + ( b ³ / 8 ) — ( b x c / 2 )
- h = e — ( 3 x b 4 / 256 ) + ( b ² x c / 16 ) — ( b x d / 4 )
Шаг 3:
Представим как уравнение третьей степени : y ³ + ( f / 2 ) y ² + (( f ² — 4 x h ) / 16 ) y — g ² / 64 = 0
где,
- a = коэффициент для y ³
- b = коэффициент для y²
- c = коэффициент для y
- d = константа
Шаг 4:
Из приведенного выше уравнения, значения:
Шаг 5:
Найдем y: Подставьте значения в формулу, чтобы найти корни.
дискриминант (Δ) = q 3 + r 2
- q = (3c — b 2 ) / 9
- r = -27d + b(9c — 2b 2 )
- s = r +√ (дискриминант)
- t = r — √(дискриминант)
- term1 = √(3.0) * ((-t + s) / 2)
- r13 = 2 * √(q)
- y1 = (- term1 + r13*cos(q 3 /3) )
- y2 = (- term1 + r13*cos(q 3 +(2∏)/3) )
- y3 = (- term1 + r13*cos(q 3 +(4∏)/3) )
Шаг 6:
Получим корни, y1 = 20.25 , y2 = 0 и y3 = 1.
Шаг 7:
После решения уравнения третьей степени решим уравнение четвертой степени.
Примечание : Пусть p и q квадратные корни 2 ненулевых корней.
- p = sqrt(y1) = 4.5
- q = sqrt(y3) = 1
- r = -g / (8pq) = 0
- s = b / (4a) = 0.5
Шаг 8:
Мы получили корни, x1 = 5, x2 = 3, x3 = -4 и x4 = -6.
Практический пример решения уравнения четвертой степени.
Видео:Возвратное уравнение четвертой степениСкачать
Решение уравнений четвертой степени
Вы будете перенаправлены на Автор24
В общем случае решение уравнения четвёртой степени осуществляется с использованием методов решения уравнений для высших степеней, например, методом Феррари или с помощью схемы Горнера. Но некоторые уравнения 4-ой степени имеют более простое решение.
Существует несколько особых типов уравнений четвертой степени, со способами решения которых вы познакомитесь ниже:
- Биквадратное уравнения $ax^4+bx^2+c=0$;
- Возвратные уравнения вида $ax^4+bx^3+cx^2 +bx+ a=0$;
- Уравнения вида $ax^4+b=0$.
Видео:Как решить алгебраическое уравнение 4-й степени x^4+4x^3+x^2−6x+2=0?Скачать
Решение биквадратных уравнений четвёртой степени
Биквадратные уравнения $ax^4+bx^2+c=0$ сводятся к квадратным путём замены переменной $x^2$ на новую, например, на $y$. После замены решается новое полученное уравнение, а затем значение найденной переменной подставляется в уравнение $x^2=y$. Результатом решения будут корни уравнения $x^2=y$.
Решите уравнение $x(x-1)(x-2)(x-3)=24$:
Раскроем скобки в многочлене:
В таком виде становится очевидно, что в качестве новой переменной можно выбрать выражение $y=x^2-3x$, подставим её:
Теперь решим два квадратных уравнения $x^2-3x=-4$ и $x^2-3x=-6$.
Корни первого уравнения $x_1=4;-1$, второе решений не имеет.
Видео:Как решить симметрическое уравнение | Сведение к квадратному | Замена переменнойСкачать
Решение возвратных уравнений 4 степени
Эти уравнения вида $ax^4+bx^3+cx^2 +bx+ a=0$ повторяют своими коэффициентами при младших членах коэффициенты при многочленах со старшими степенями. Для решения такого уравнения сначала делят его на $x^2$:
Затем заменяют $(x+frac)$ на новую переменную, тогда $(x^2+frac)=y^2-2$, после подстановки получаем следующее квадратное уравнение:
Готовые работы на аналогичную тему
После этого ищем корни уравнений $x+frac=y_1$ и $x+frac=y_2$.
Аналогичным методом решаются возвратные уравнения вида $ax^4+bx^3+cx^2 +kbx+ k^2a=0$.
Данное уравнение – возвратное уравнение вида $ax^4+bx^3+cx^2 +kbx+ k^2a=0$. Поэтому разделим всё уравнение на $x^2$:
Произведём замену выражения $x+frac$: $3(y^2-4)-2y-9=0$
Рассчитаем корни данного уравнения, они равны $y_1=3$ и $y_2=-frac$.
Соответственно, теперь необходимо решить два уравнения $x+frac=3$ и $x+frac=-frac$. Решение первого уравнения — $x_1=1, x_2=2$, второе уравнение не имеет корней.
Следовательно, корнями исходного уравнения являются $x_1=1, x_2=2$.
Уравнения вида $ax^4+b=0$
Корни уравнения такой разновидности находятся с помощью применения формул сокращённого умножения.
Получи деньги за свои студенческие работы
Курсовые, рефераты или другие работы
Автор этой статьи Дата последнего обновления статьи: 05.03.2022
🌟 Видео
9 класс. Алгебра. Решение уравнений четвертой степени. Возвратные уравнения.Скачать
8 класс. Алгебра. Решение уравнений четвертой степени.Скачать
Уравнение 4 степениСкачать
Схема Горнера. 10 класс.Скачать
9 класс. Алгебра. Решение уравнений четвертой степени.Скачать
9 класс. Алгебра. Решение уравнений четвертой степени.Скачать
Решить уравнение четвертой степени. Замена переменнойСкачать
11 класс, 3 урок, Уравнения высших степенейСкачать
Как решать такое уравнение четвертой степени? Необычный способСкачать
Как решить возвратное уравнение? | Подготовка к ЕГЭ | Уравнение 4-ой степени. 0+Скачать